
Benchmark Generator for TD Mk Landscapes
Tobias van Driessel
Utrecht University
Utrecht, Netherlands

tobiasvandriessel@startmail.com

Dirk Thierens
Utrecht University
Utrecht, Netherlands
d.thierens@uu.nl

ABSTRACT
We introduce a publicly available benchmark generator for Tree
Decomposition (TD) Mk Landscapes. TD Mk Landscapes were in-
troduced by Whitley et al. to get rid of unnecessary restrictions of
Adjacent NK Landscapes while still allowing for the calculation of
the global optimum in polynomial time. This makes TD Mk Land-
scapes more lenient while still being as convenient as Adjacent
NK Landscapes. Together, these properties make it very suitable
for benchmarking blackbox algorithms. Whitley et al., however,
introduced a construction algorithm that only constructs Adjacent
NK Landscapes. Recently, Thierens et al. introduced an algorithm,
CliqueTreeMk, to construct any TD Mk Landscape and find its op-
timum. In this work, we introduce CliqueTreeMk in more detail,
implement it for public use, and show some results for LT-GOMEA
on an example TD Mk Landscape problem. The results show that
deceptive trap problems with higher overlap do not necessarily
decrease performance and effectiveness for LT-GOMEA.

CCS CONCEPTS
• Computing methodologies→Heuristic function construc-
tion.

KEYWORDS
Benchmarking, Decomposable Landscapes, Dynamic Programming,

ACM Reference Format:
Tobias van Driessel and Dirk Thierens. 2021. Benchmark Generator for TD
Mk Landscapes. In 2021 Genetic and Evolutionary Computation Conference-
Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3449726.3463177

1 INTRODUCTION
Suitable benchmark functions are vital to test the effectiveness and
performance of evolutionary algorithms. Ideally, these benchmark
functions should be completely understood in the sense that we
know their structure and, importantly, their global optimum (or op-
tima) so that we can check if a given EA has actually found the best
possible solution. A problem with designing benchmark functions
is that for many interesting problem classes it is not possible to com-
pute the global optimum efficiently. Not knowing whether an EA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21 Companion, July 10–14,2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463177

has found the best solution limits the practical use of the benchmark
and only allows relative comparisons between different algorithms
- or different parameter settings of a given algorithm - but it does
not allow to evaluate the overall performance and effectiveness. For
example, [6] propose an interesting class of benchmark functions,
but unfortunately there is no way to efficiently compute the global
optimum. Similarly, the well known NK Landscapes does not allow
to compute the global optimum. For this reason, EA researchers of-
ten use the Adjacent NK Landscapes where the interaction between
the variables is limited to adjacent problem variables, allowing the
use of dynamic programming to compute the global optimum.

NK Landscapes form a subset of 𝑘-bounded pseudo-Boolean op-
timization problems due to its additional constraints: the number of
subfunctions is equal to the number of variables 𝑁 (= problem size),
and every subfunction 𝑓𝑖 contains variable 𝑥𝑖 and 𝐾 neighbours,
thus setting the subfunction size 𝑘 to 𝑘 = 𝐾 + 1. For NK Landscapes,
these neighbours are 𝐾 random variables, and for Adjacent NK
Landscapes, these neighbours are the subsequent 𝐾 variables.

Although (Adjacent) NK Landscapes are popular as a bench-
mark for optimization algorithms, its constraints are unnecessary
for most benchmark purposes, as they turn out not to be impor-
tant for most fundamental theoretical properties of NK Landscapes
[9]. Whitley et al.[10] therefore recently introduced the term Mk
Landscapes to refer to any 𝑘-bounded pseudo-Boolean optimization
problem, thus a generalization of NK Landscapes without these
constraints. Additionally, they introduced the term Tree Decompo-
sition Mk Landscapes to refer to any Mk Landscape with a known
and bounded tree-width of 𝑘 . This is a generalization of Adjacent
NK Landscapes, as Adjacent NK Landscapes control tree-width by
only considering adjacent variables for the subfunctions, but this
constraint can be loosened to allow for any Mk Landscape that still
has a bounded tree-width. Ultimately, this bounded tree-width is
the key to calculate the global optimum (or optima) in polynomial
time.

Conveniently, the overall performance and effectiveness of al-
gorithms can be evaluated due to this polynomial time global op-
timum calculation. And although the global optimum is known,
black box algorithms do not know the problem structure and global
optimum, and therefore linkage learning will be necessary for par-
ticular codomains to find the global optimum reliably and efficiently.
The possibility of evaluating the performance and effectiveness of
algorithms, together with the difficulty of Tree Decomposition (TD)
Mk Landscapes for particular codomains (for blackbox algorithms),
make TD Mk Landscapes well suited as a benchmark function for
blackbox Genetic Algorithms. As the global optimum can be cal-
culated efficiently by a dynamic programming algorithm, TD Mk
Landscapes are not suitable in the context of graybox algorithms,
however, as these do know the problem structure.

1227

https://doi.org/10.1145/3449726.3463177
https://doi.org/10.1145/3449726.3463177

GECCO ’21 Companion, July 10–14,2021, Lille, France Tobias van Driessel and Dirk Thierens

In their work, Whitley et al.[10] introduced a construction algo-
rithm to construct TD Mk Landscapes, however, it only constructs
TD Mk Landscapes for which the subfunctions form a chain, much
like an Adjacent NK Landscape. Recently, Thierens et al.[8] in-
troduced an algorithm, CliqueTreeMk, to construct any TD Mk
Landscape and calculate its global optimum (or optima) using dy-
namic programming when its codomain values are known. In this
work, we introduce CliqueTreeMk in more detail, introduce a bench-
mark generator that implements the algorithm and is available on
GitHub, and show indicative results for the Linkage Tree Gene-pool
Optimal Mixing Evolutionary Algorithm (LT-GOMEA)[3][1], a link-
age learning blackbox evolutionary algorithm. These contributions
aim to provide a better understanding of the CliqueTreeMk algo-
rithm, let researchers use our implementation to generate TD Mk
Landscapes and benchmark their algorithms, and show that TD Mk
Landscapes could be of interest to benchmark blackbox algorithms.

2 TREE DECOMPOSITION MK LANDSCAPES
Whitley et al.[9] recently introduced the term Mk Landscapes to re-
fer to any 𝑘-bounded pseudo-Boolean optimization problem, a gen-
eralization of NK Landscapes without the unnecessary constraints
(𝑀 = 𝑁 , 𝑘 = 𝐾+1, and variable 𝑥𝑖 must appear in subfunction 𝑓𝑖).𝑀
is the number of subfunctions and 𝑘 is a constant that provides an
upper bound on the interaction order size of the subfunctions, with
𝑀 polynomial in 𝑁 . In a later work, Whitley et al.[10] introduced
Tree Decomposition Mk Landscapes, a generalization of Adjacent
NK Landscapes: Tree Decomposition Mk Landscapes refer to any
Mk Landscape with a known and bounded tree-width of 𝑘 . Tree
Decomposition (TD) Mk Landscapes focus on the key property
to allow for the global optimum be calculated in polynomial time
(𝑂 (𝑁 · 22𝐾) with Hammer’s algorithm[5][4]); a tree decomposi-
tion with bounded and known tree-width 𝑘 must be constructable
from (the Variable Interaction Graph of) the Mk Landscape, with
𝑘 ∈ 𝑂 (log𝑁). TD Mk Landscapes can be expressed by

𝑓 (𝑥) =
𝑀∑
𝑖=1

𝑓𝑖 (𝑥,𝐶𝑖)

where 𝑥 ∈ 𝑋 ,𝑋 represents the set of solutions over a bit string with
length 𝑁 ,𝑀 is the number of subfunctions, 𝑓𝑖 is the 𝑖th subfunction,
and 𝐶𝑖 is the 𝑖th subset of problem variables that form the input of
𝑓𝑖 .

Whitley et al.[10] introduced a construction algorithm to con-
struct TD Mk Landscapes, however, it limits the output to TD Mk
Landscapes with a chain-like tree decomposition, similar to the
structure of Adjacent NK Landscapes. It is therefore still limited
and can not construct all TD Mk Landscapes.

It constructs a 𝑀 × 𝑘 matrix, where the rows correspond with
the subfunctions and their variables. The variables must appear in
contiguous rows and all 𝑁 variables must appear in at least one
row. If constructed in this way, a tree decomposition can be made
with tree-width 𝑘 − 1, where every row of the matrix is represented
by a node in the tree.

3 CLIQUE TREE MK
To construct any TD Mk Landscape and calculate its global opti-
mum, Thierens et al.[8] introduced the CliqueTreeMk algorithm.

First it constructs a TDMk Landscape and then uses the structure of
the generated landscape to calculate its global optimum (or optima)
efficiently.

In the context of this algorithm, we use the term clique tree rather
than tree decomposition, as it makes heavily use of the concepts of
cliques and separators. The output of Whitley’s construction algo-
rithm could then be regarded as a clique chain rather than a clique
tree. We use the term clique to represent the set of problem vari-
ables in a subfunction, and the term separator to represent the set of
overlapping problem variables between two cliques/subfunctions,
as these terms reflect their properties in a clique tree/tree decom-
position in a succinct manner.

The idea behind CliqueTreeMk’s construction algorithm is to
construct the TD Mk Landscape by directly generating a clique
tree with the exact properties as required by the input topology
parameters, in order to ensure that a clique tree with the required
properties can be constructed, which is required by the definition of
TDMk Landscapes. Its input topology parameters are the number of
subfunctions/cliques𝑀 , number of variables per subfunction/clique
𝑘 , number of overlapping bits between subfunctions/cliques 𝑜 , and
branching factor 𝑏. The branching factor represents the number
of branches in the clique tree. The problem length 𝑁 can be repre-
sented by 𝑁 = (𝑀 − 1) · (𝑘 − 𝑜) + 𝑘 , as the first clique/subfunction
takes 𝑘 variables, and every other clique/subfunction overlaps 𝑜
variables with another clique/subfunction and adds 𝑘 − 𝑜 unused
variables to get to length 𝑘 .

The general idea of CliqueTreeMk’s construction algorithm is to
first construct clique 𝐶0 as the root of the clique tree by assigning
the first 𝑘 variables from the shuffled variable list, and then generate
𝑏 children cliques (𝐶 𝑗 ∈children𝑖) for every clique 𝐶𝑖 until we have
constructed𝑀 cliques. Each child𝐶 𝑗 overlaps with its parent𝐶𝑖 for
𝑜 variables, described by the separator 𝑆 𝑗 between 𝐶𝑖 and 𝐶 𝑗 , and
the remaining 𝑘 − 𝑜 variables are taken from the shuffled variable
list to complete 𝐶 𝑗 .

The global optimum dynamic programming algorithm then uses
this clique tree structure with its cliques and separators to calcu-
late the global optimum. It is comparable to Pelikan’s[7] dynamic
programming approach in the way it stores the 𝑘 − 𝑜 remaining
variables’s maximizing values for the values of the 𝑜 overlapping
variables (separator variables). Starting at the leaves of the tree, for
each separator 𝑆 𝑗 we store for each of the instances of the separator
variables the maximizing variable values for its child clique 𝐶 𝑗 and
the resulting score. Then, we can iterate in the reverse direction and
assign values to the clique variables in𝐶 𝑗 based on the maximizing
values for its variables stored in its parent separator 𝑆 𝑗 .

We illustrate the CliqueTreeMk algorithm during these phases
using an example instance with number of subfunctions/cliques
𝑀 = 7, subfunction/clique size 𝑘 = 3, and overlap 𝑜 = 2. To-
gether, these define length 𝑁 = 9. Furthermore, we choose a
branching factor 𝑏 = 2. The construction algorithm uses fixed
values for 𝑘 , 𝑜 , and 𝑏, but the algorithm can be extended to al-
low for non-fixed values during construction. Likewise for the
dynamic programming algorithm. The variables are randomly or-
dered: (𝑥4, 𝑥2, 𝑥7, 𝑥5, 𝑥1, 𝑥9, 𝑥3, 𝑥8, 𝑥6).

1228

Benchmark Generator for TD Mk Landscapes GECCO ’21 Companion, July 10–14,2021, Lille, France

3.1 Construction
The algorithm is described in a textual version below and a pseu-
docode version in Algorithm 1.

(1) At the start of the algorithm, take next 𝑘 variables as clique
𝐶0. Otherwise take next already constructed clique 𝐶𝑖 .

(2) Choose 𝑜 random variables from parent clique 𝐶𝑖 , assign to
separator 𝑆 𝑗

(3) Take next (𝑘 − 𝑜) unchosen variables and add the variables
from 𝑆 𝑗 to construct child clique 𝐶 𝑗

(4) Go to step 2 until 𝑏 branches have been built
(5) Go to 1 to build the whole tree

Algorithm 1: CliqueTreeMk Construction
Input:𝑀 , 𝑘 , 𝑁 , 𝑏, 𝑜 , shuffled list of variables
Result: Clique tree
𝐶0 ← first 𝑘 variables;
𝑐𝑜𝑢𝑛𝑡 ← 1;
for 𝑖 ← 0 to𝑀 − 2 do

for 𝑗 ← 0 to 𝑏 − 1 do
𝑆𝑐𝑜𝑢𝑛𝑡 ← 𝑜 random variables from clique 𝐶𝑖 ;
𝑥 ← next (𝑘 − 𝑜) unused variables;
𝐶𝑐𝑜𝑢𝑛𝑡 ← 𝑆𝑐𝑜𝑢𝑛𝑡 ∪ 𝑥 ;
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
if count == 𝑀 then

return clique tree;
end

end

Following the algorithm with the given example instance could
result in the following list of cliques: (𝑥4, 𝑥2, 𝑥7), (𝑥4, 𝑥7, 𝑥5), (𝑥4, 𝑥2, 𝑥1),
(𝑥7, 𝑥5, 𝑥9), (𝑥4, 𝑥7, 𝑥3), (𝑥4, 𝑥1, 𝑥8), (𝑥2, 𝑥1, 𝑥6)
In Figure 1 we illustrate the constructed clique tree with its separa-
tors.

Essentially, the algorithm creates a clique tree / tree decompo-
sition that adheres to the given constraints, defined by the input
topology parameters. Importantly, it adheres to the running inter-
section property, as problem variables are either part of a single
clique 𝐶𝑖 or part of multiple cliques that are directly connected by
separators. This follows from steps 2 and 3 of the textual version:
During construction of a clique 𝐶 𝑗 , each variable is either taken
from the unused problem variables list or copied from the parent
clique 𝐶𝑖 (and added to the separator 𝑆 𝑗), with 𝐶 𝑗 being a child of
𝐶𝑖 . The dynamic programming algorithm that calculates the global
optimum requires this running intersection property to select the
best value for variables in isolation: for 𝑘 − 𝑜 variables at every
clique and for 𝑜 variables at every separator. It is able to calculate
the global optimum in polynomial time due to the bounded (and
known) tree-width.

3.2 Global Optimum Dynamic Programming
Algorithm

To explain the dynamic programming algorithm, we first introduce
it in a textual form and then we introduce it in more detail using
some formulas.

x4 x2 x7

x4 x7 x5 x4 x2 x1

x7 x5 x9 x4 x7 x3 x4 x1 x8 x2 x1 x6

x4 x7 x4 x2

x7 x5 x4 x7 x4 x1 x2 x1

S1 S2

S3
S4 S5 S6

C0

C1 C2

C3 C4 C5 C6

Figure 1: Example clique tree with cliques C0 to C6 and sep-
arators S1 to S6.

The CliqueTreeMk global optimum solver follows very similar
steps to the dynamic programming algorithm by Pelikan et al.[7].
The CliqueTreeMk global optimum solver traverses the clique tree
from the leaves to the root, storing for each instance of separator 𝑆𝑖
(𝑜 overlapping bits) the maximizing values for the 𝑘 −𝑜 variables in
𝐶𝑖 \ 𝑆𝑖 with its score. The maximizing values for 𝐶𝑖 \ 𝑆𝑖 are stored
in 𝐾𝑖 and the accompanying score is stored in ℎ𝑖 . Then, for each
possible instance of the clique root 𝐶0, the best achievable score
𝑔0 is calculated using its children separators 𝑆 𝑗 and the stored best
achievable score in ℎ 𝑗 for that instance of the separator variables.
The highest score of these possible instances is the global optimum
(or global optima). To assemble the global optimum solution, 𝐶0’s
maximizing instance is written to the solution and the clique tree
is traversed from the root to the leaves, storing the maximizing
values for the 𝑘 − 𝑜 variables from each 𝐾𝑖 into the solution.

If there are multiple global optima, then there are multiple maxi-
mizing instances for one or more separators 𝑆𝑖 . Each of these maxi-
mizing instances for 𝑆𝑖 is stored in 𝐾𝑖 . When one of these cases of
multiple maximizing instances is encountered during the assem-
bly of the global optima, the current global optimum is copied a
number of times, according to the number of maximizing instances
in 𝐾𝑖 (minus one). Finally, each of these copies is assigned one of
the maximizing instances and the traversal of the clique tree is
continued. Each of these global optima solutions is now considered
at every remaining separator in the clique tree.

More specifically, we can define ∀ separators 𝑆𝑖 :
ℎ𝑖 (𝑎1, ..., 𝑎𝑜) = 𝑔𝑖 (𝑎1, ..., 𝑎𝑜 , 𝑎∗𝑜+1, ..., 𝑎

∗
𝑘
) with

𝑎1, ..., 𝑎𝑜 ∈ 𝑆𝑖 , 𝑎𝑜+1, ..., 𝑎𝑘 ∈ 𝐶𝑖 \ 𝑆𝑖 and 𝑎∗𝑜+1, ..., 𝑎
∗
𝑘
maximizing 𝑔𝑖

for values 𝑎1, ..., 𝑎𝑜 .
𝐾𝑖 (𝑎1, ..., 𝑎𝑜) = {𝑎∗𝑜+1, ..., 𝑎

∗
𝑘
}

And ∀ cliques 𝐶𝑖 :
𝑔𝑖 (𝑎1, ..., 𝑎𝑘) = 𝑓𝑖 (𝑎1, ..., 𝑎𝑘) +

∑
𝑗 ∈children𝑖 ℎ 𝑗 (𝑏1, ..., 𝑏𝑜)

To illustrate these, we can define the previous specifically for
our example instance. We define ∀ separators 𝑆𝑖 :
ℎ𝑖 (𝑥𝑎, 𝑥𝑏) = 𝑔𝑖 (𝑥𝑎, 𝑥𝑏 , 𝑥∗𝑐) with 𝑥𝑎, 𝑥𝑏 ∈ 𝑆𝑖 and 𝑥𝑐 ∈ 𝐶𝑖 \ 𝑆𝑖 and 𝑥∗𝑐
maximizing 𝑔𝑖 for 𝑥𝑎 and 𝑥𝑏 values.
𝐾𝑖 (𝑥𝑎, 𝑥𝑏) = {𝑥∗𝑐 }
And ∀ cliques 𝐶𝑖 : 𝑔𝑖 (𝑥𝑝 , 𝑥𝑞, 𝑥𝑟) = 𝑓𝑖 (𝑥𝑝 , 𝑥𝑞, 𝑥𝑟) + ℎ𝑐ℎ𝑖𝑙𝑑1 (𝑥𝑝 , 𝑥𝑞) +
ℎ𝑐ℎ𝑖𝑙𝑑2 (𝑥𝑝 , 𝑥𝑟)

Using the above formulas, we can write a shorter version of the
algorithm: For every possible instance of the problem variables in
𝐶0, calculate 𝑔0. Calculating 𝑔0 will recursively calculate all the
𝑔𝑖 , ℎ𝑖 , and 𝐾𝑖 values for 𝑖 > 0. The maximum of these 𝑔0 values

1229

GECCO ’21 Companion, July 10–14,2021, Lille, France Tobias van Driessel and Dirk Thierens

is the global optimum of the TD Mk Landscape and can be used
to retrieve the bit string that achieves this fitness. This is done by
acquiring the stored maximizing values for each separator 𝑆𝑖 from
𝐾𝑖 and assigning their values to the global optimum solution. Or in
a more pseudo code way:

(1) For each possible instance of problem variables in 𝐶0, calcu-
late 𝑔0

(2) Maximum 𝑔0 is global optimum
(3) Take next separator, starting with 𝑆1
(4) Take maximizing values from𝐾𝑖 , for problem variable values

already in global optimum solution, and put them in global
optimum solution

(5) Go to step 3 to assign all problem variable values
We illustrate the algorithm using the example used in the previ-

ous subsection. We use the following deceptive trap function for
each subfunction:

𝑓𝑖 (𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) : 111 => 4
000 => 2

otherwise => 2 − 𝑐 (𝑥𝑎, 𝑥𝑏 , 𝑥𝑐)
where 𝑐 returns the number of ones in the passed variable values.
We show the calculated ℎ𝑖 and 𝐾𝑖 values for 𝑆6 and 𝑆1, as 𝑖 ∈

{3, 4, 5, 6} have the same ℎ𝑖 and 𝐾𝑖 values and likewise for 𝑖 ∈ {1, 2}.
Then we show the construction of the global optimum using the
calculation of 𝑔0 for 𝐶0.

𝐶6 = {𝑥2, 𝑥1, 𝑥6}, 𝑆6 = {𝑥2, 𝑥1}
𝑔6 (𝑥2, 𝑥1, 𝑥6) = 𝑓6 (𝑥2, 𝑥1, 𝑥6)
𝑆6 = 𝑥2𝑥1 00 01 10 11
ℎ6 (𝑥2, 𝑥1) 2 1 1 4
𝐾6 = 𝑥∗6 0 0 0 1

In the above table, we list the possible instances of the separator
variables 𝑥2 and 𝑥1, the maximizing values of the remaining variable
𝑥6 in 𝐶6 for these instances (𝐾6), and the resulting scores for these
maximizing values (ℎ6). Because 𝐶6 is one of the leaves, 𝑔6 is equal
to 𝑓6. We can see the deceptive attractor at work here, attracting
any instance of the separator variables that does not contain a part
of the local optimum.

𝐶1 = {𝑥4, 𝑥7, 𝑥5}, 𝑆1 = {𝑥4, 𝑥7}
𝑔1 (𝑥4, 𝑥7, 𝑥5) = 𝑓1 (𝑥4, 𝑥7, 𝑥5) + ℎ4 (𝑥4, 𝑥7) + ℎ3 (𝑥7, 𝑥5)
𝑆1 = 𝑥4𝑥7 00 01 10 11

ℎ1 (𝑥4, 𝑥7)
2 + 2 + 2 0 + 4 + 1 0 + 1 + 4 4 + 4 + 4

= 6 = 5 = 5 = 12
𝐾1 = 𝑥∗5 0 1 1 1

Because 𝐶1 does have children cliques, the calculation of ℎ1 and
thus of 𝑔1 does involve the ℎ𝑖 values of its children, ℎ4 and ℎ3.

𝐶0 = {𝑥4, 𝑥2, 𝑥7}, 𝑆0 = ∅
𝑔0 (𝑥4, 𝑥2, 𝑥7) = 𝑓0 (𝑥4, 𝑥2, 𝑥7) + ℎ2 (𝑥4, 𝑥2) + ℎ1 (𝑥4, 𝑥7)

𝑥4𝑥2𝑥7 000
...

111

𝑔0 (𝑥4, 𝑥2, 𝑥7)
2 + 6 + 6 4 + 12 + 12
= 14 = 28

Finally, we calculate the 𝑔0 values for all possible instances of
the problem variables in𝐶0. Here we have illustrated just two cases,
instances 000 and 111 for 𝑥4𝑥2𝑥7. Note that this table differs from
the two before in the things we calculate; here we don’t calculate ℎ𝑖
values, as there is no separator. Instead, we calculate all 𝑔0 values
and record the maximum value as the global optimum (or global
optima).

For this example, the global optimum value is 28. Themaximizing
instance for 𝐶0, while considering the rest of the clique tree using
dynamic programming, is 𝑥∗4𝑥

∗
2𝑥
∗
7 = 111. We can now traverse the

clique tree to assign the other bits of the global optimum solution.
First, 𝑆1 = {𝑥4, 𝑥7}, as is shown in the table for𝐶6 / 𝑆6, so we insert
the values of 𝑥4 and 𝑥7 from our global optimum solution, which
are 1 and 1. For instance 𝑥4𝑥7 = 11, 𝐾1 = 𝑥∗5 = 1, so we assign
value 1 to 𝑥5 in our global optimum solution. After doing this for
all separators, our global optimum solution is 111111111.

4 EXAMPLE
Our implementation of the CliqueTreeMk algorithm can be found
on GitHub1, here we show some results with our benchmark gen-
erator implementation to illustrate its ease of use. Its main func-
tionality is the generation of problems and the calculation of these
problems’s global optimum, however, it can also generate some
input codomain files for the problem generation. The codomain
files generation should make it easy to generate a TDMk Landscape
problem from scratch and benchmark an algorithm with it.

4.1 Problem Generation
The problem generator can take as input a configuration folder, a
codomain folder, a configuration file, or a codomain file. Here, we
highlight how to use the generator with a configuration file and
codomain file, and refer the reader to the documentation for the in-
structions on how to run the generator with multiple configuration
files in a folder or multiple codomain files in a folder.

4.1.1 Configuration Input. We create a configuration file to gener-
ate deceptive trap problems with topology parameters in a range,
in this case we use𝑀 ∈ {1, ..., 49}, 𝑘 = 5, 𝑜 = 1, 𝑏 = 1:

M 1 50
k 5 6
o 1 2
b 1 2
deceptive-trap

As options for the codomain we currently offer: Random, Decep-
tive Trap, NKq, NKp, and Random Deceptive Trap (a combination of
the two). Here we have chosen the deceptive trap function.

Then we use the executable problem_generator to generate the
codomain files and the problems (25 for each configuration), and
find the global optimum for each problem:

problem_generator configuration_file -n 25 FILE
CODOMAIN_OUT PROBLEM_OUT

where CODOMAIN_OUT and PROBLEM_OUT are the (existing) output
codomain folder and output problem folder.

1https://github.com/tobiasvandriessel/problem-generator

1230

Benchmark Generator for TD Mk Landscapes GECCO ’21 Companion, July 10–14,2021, Lille, France

4.1.2 Codomain Input. Instead of generating the codomain and
then generate a problem with this generated codomain, one can use
an existing codomain file to create a TD Mk Landscape problem.
The executable offers the following subcommand for this purpose:

problem_generator codomain_file CODOMAIN_FILE
PROBLEM_FILE_OUT

4.1.3 Codomain File Structure. The input codomain files should
have the following structure:

M K O B
CODOMAIN_VALUE_1
...
CODOMAIN_VALUE_LAST

where M, K, O, and B represent the to be inserted values of𝑀 , 𝑘 , 𝑜 and
𝑏, and CODOMAIN_VALUE_1 ... CODOMAIN_VALUE_LAST represent
the𝑀 · 2𝑘 decimal codomain values, each on a new line.

4.1.4 Problem File Structure. The output problem files have the
following structure:

M K O B
GLOB_OPT_VAL
NUM_GLOB_OPT
GLOB_OPT_1
...
GLOB_OPT_LAST
CLIQUE_INDICES_1
...
CLIQUE_INDICES_LAST

where GLOB_OPT_VAL represents the global optimum (optima) value,
NUM_GLOB_OPT represents the number of global optima, GLOB_OPT_1
... GLOB_OPT_LAST represent the global optima solutions, and
CLIQUE_INDICES_1 ... CLIQUE_INDICES_LAST represent the prob-
lem variables in each clique.

An example problem generated:

2 5 1 1
1.9
2
101000111
010111000
5 3 2 1 7
1 0 6 4 8

4.2 Experiment
To show the potential of the TD Mk Landscape benchmark, we
conducted a simple experiment: We generated deceptive trap prob-
lems with increasing problem size 𝑁 and overlap 𝑜 , and ran the
Linkage Tree Gene-pool Optimal Mixing Evolutionary Algorithm
(LT-GOMEA) on these generated problems to quantify the effect of
this increase in 𝑜 for the difficulty of the problem. LT-GOMEA is a
blackbox algorithm, and thus does not have any problem structure
information, that tries to learn the linkages between the problem
variables to learn the problem structure. LT-GOMEA has shown
state-of-the-art performance for discrete, Carthesian-space opti-
mization problems[2], and should therefore show just how difficult
and non-trivial TD Mk Landscapes can be. Because we know the

global optimum (or optima) of the generated problems, we can
evaluate the overall performance and effectiveness of LT-GOMEA.

Configuration input: 𝑀 ∈ {𝑚 | 𝑁 ≤ 150}, 𝑘 = 5, 𝑜 ∈ {0, 1, ..., 4},
𝑏 = 2. Where problem size 𝑁 = (𝑚 − 1) · (𝑘 − 𝑜) + 𝑘 . Note that
preliminary experiments indicate that the branching factor 𝑏 seems
to have a big impact on the number of global optima.

The codomain used for the experiment is the deceptive trap
function, where we generate for each subfunction a random bit
string of length 𝑘 to be the local optimum and its inverse to be
the deceptive attractor. The local optimum has a score of 1.0, the
deceptive attractor has a score of 0.9 and any other bit string has
score 0.9 − 𝑑 · 0.9

𝑘
, where 𝑑 is the hamming distance to the local

deceptive attractor.
Per configuration instance we generated 25 problems, and for

each of these problems, we ran LT-GOMEA 3 times. For the runs
where LT-GOMEA manages to find the global optimum, we record
the first hitting time. The first hitting time is the number of function
evaluations until the global optimum or one of the global optima
was found by the algorithm. To record the first hitting times, we
need to ignore any unsuccessful LT-GOMEA runs, as these did
not find the global optimum. So, for the 3 runs of LT-GOMEA,
we filter out any runs that did not find the global optimum and
take the median first hitting time for the remaining successful
runs. Then we take the median value from the median first hitting
times for the 25 generated problems, where again any runs that did
not find the global optimum were filtered out. This median value
is recorded together with the problem size of the configuration.
Besides this first hitting time, we record the effectiveness of LT-
GOMEA for every configuration. We measure the effectiveness
by counting the number of problems out of 25 (for the current
configuration) for which at least 1 LT-GOMEA run found the global
optimum, or one of the global optima in case the fitness function
has multiple global optima (note that LT-GOMEA is not designed
to be a multi-modal EA, so one should not expect it to return all
global optima simultaneously). Also note that when we filter out
unsuccessful runs in the first hitting time calculation, we still record
these unsuccessful runs in the effectiveness for that configuration
instance.

We use LT-GOMEA with the population sizing-free scheme as
introduced in [1], but we use its discrete cartesian version. We set
the No Improvement Stretch (NIS) to 1 + 𝑙𝑜𝑔10 (𝑃𝑖), where 𝑃𝑖 is
the population size of LT-GOMEA instance 𝑖 . Forced Improvement
(FI)[3] is run if the best fitness in a population did not improve
for more generations than this NIS. We use premature stopping to
stop any LT-GOMEA instance when a LT-GOMEA instance with a
bigger population size has a higher average fitness. A LT-GOMEA
instance is also stopped when the fitness variance in the population
of a LT-GOMEA instance is equal to or smaller than 0.00001. When
the global optimum score is found, we stop execution (of all LT-
GOMEA instances) and record the current number of evaluations
as the first hitting time. Finally, we also stop execution as soon as
we hit 300,000 evaluations, with every partial evaluation counting
as an evaluation as well.

The results are shown in Figure 2; the upper graph shows the
first hitting time for increasing values of the problem size 𝑁 , with a

1231

GECCO ’21 Companion, July 10–14,2021, Lille, France Tobias van Driessel and Dirk Thierens

line per overlap 𝑜 setting, and the lower graph shows the effective-
ness. When the effectiveness of an overlap configuration decreases
below 50%, it is not considered reliable anymore and therefore its
performance is not plotted anymore in the upper graph. To empha-
size this decision, we have highlighted the 50% effectiveness mark
in the lower graph with a horizontal line.

We hypothesised that the problems would become more difficult
to solve for LT-GOMEA with increasing overlap 𝑜 , however, the
results paint a different picture. Problems with overlap 1 and 2 do
require more evaluations and have a lower effectiveness than prob-
lems without any overlap, and are very close in both the required
number of evaluations as well as the effectiveness. Interestingly,
problems with overlap setting 3 have a lower number of required
evaluations and a higher effectiveness than overlap settings 1 and
2, so one could regard problems with overlap 3 as easier. Likewise,
problems with an overlap of 4 variables require less evaluations
and have a higher effectiveness than problems with overlap setting
3. Finally, and perhaps most surprising of all, the results show that
problems with overlap 4 are solved using fewer evaluations than
problems with overlap 0, for problem sizes 𝑁 ≤ 60. Importantly,
however, problems with overlap 0 are always solved, whereas prob-
lems with overlap 4 are not.

5 CONCLUSIONS
This paper aimed 1) to provide a better understanding of the Cli-
queTreeMk algorithm, 2) let researchers use our implementation to
generate TD Mk Landscapes and benchmark their algorithms, and
3) show that TD Mk Landscapes could be of interest to benchmark
blackbox algorithms.

First, we introduced the CliqueTreeMk benchmark generator
for TD Mk Landscapes by Thierens et al.[8] in more detail. We
have shown the main difference with the construction algorithm
by Whitley et al.[10]: it is able to construct TD Mk Landscapes with
a clique tree rather than a clique chain, due to the branching factor
configuration parameter 𝑏. With this branching factor, it is able to
construct any TD Mk Landscape with fixed 𝑘 , 𝑜 , and 𝑏. In the exam-
ple section, we have illustrated the usage of our implementation of
CliqueTreeMk, which is publicly available on GitHub and designed
to be easy to use for researchers. Finally, we have reported on a sim-
ple experiment to show the variation in difficulty one can already
achieve with the change of one parameter of the TD Mk Landscape;
the number of overlapping bits between subfunctions 𝑜 . The results
show that the performance and effectiveness of LT-GOMEA do not
necessarily decrease with increasing overlap 𝑜 for deceptive trap
problems.

By varying the codomain of the landscape, multiple types of
problems can be created. TD Mk Landscapes are well suited to
serve as benchmark functions for blackbox Genetic Algorithms
that are not given the structural problem information as specified
by the clique tree. Specifically, for particular codomains - including
deceptive functions - linkage learning techniques will be neces-
sary to be able to find the global optima reliably and efficiently.
Experimental studies of genetic algorithms greatly benefit from the
availability of suitable and well understood benchmark functions.

In the future, one might consider extending the CliqueTreeMk
algorithm for variable (but bounded)𝑘 , 𝑜 , and𝑏. If implemented, this

would then allow for truly any TD Mk Landscape to be generated
and its optimum calculated.

REFERENCES
[1] Peter A.N. Bosman, Ngoc Hoang Luong, and Dirk Thierens. 2016. Expanding

from discrete cartesian to permutation Gene-Pool Optimal Mixing Evolutionary
Algorithms. GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Com-
putation Conference (2016), 637–644. https://doi.org/10.1145/2908812.2908917

[2] Peter A.N. Bosman and Dirk Thierens. 2013. More concise and robust linkage
learning by filtering and combining linkage hierarchies. GECCO 2013 - Proceedings
of the 2013 Genetic and Evolutionary Computation Conference (2013), 359–366.
https://doi.org/10.1145/2463372.2463420

[3] Peter A N Bosman and Dirk Thierens. 2012. Linkage Neighbors , Optimal Mix-
ing and Forced Improvements in Genetic Algorithms Categories and Subject
Descriptors. Gecco 2012 x (2012), 585–592.

[4] Yves Crama, Pierre Hansen, and Brigitte Jaumard. 1990. The basic algorithm for
pseudo-Boolean programming revisited. Discrete Applied Mathematics 29, 2-3
(1990), 171–185. https://doi.org/10.1016/0166-218X(90)90142-Y

[5] Peter L Hammer, Ivo Rosenberg, and Sergiu Rudeanu. 1963. Application of
discrete linear programming to the minimization of Boolean functions. Rev. Mat.
Pures Appl 8 (1963), 459–475.

[6] Kei Ohnishi, Shota Ikeda, and Tian-Li Yu. 2020. A Test Problem with Difficulty
in Decomposing into Sub-Problems for Model-Based Genetic Algorithms. In Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
(Cancún, Mexico) (GECCO ’20). Association for Computing Machinery, New York,
NY, USA, 221–222. https://doi.org/10.1145/3377929.3389993

[7] Martin Pelikan, Kumara Sastry, David E. Goldberg, Martin V. Butz, and Mark
Hauschild. 2009. Performance of evolutionary algorithms on NK landscapes with
nearest neighbor interactions and tunable overlap. Proceedings of the 11th Annual
Genetic and Evolutionary Computation Conference, GECCO-2009 (2009), 851–858.
https://doi.org/10.1145/1569901.1570018

[8] Dirk Thierens and Tobias van Driessel. 2021. A Benchmark Generator of Tree
Decomposition Mk Landscapes. In Proceedings of the Genetic and Evolutionary
Computation Conference 2021 (GECCO ’21). Association for ComputingMachinery,
p–p+1.

[9] Darrell Whitley. 2015. Mk landscapes, NK landscapes, MAX-kSAT: A proof that
the only challenging problems are deceptive. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. 927–934.

[10] Darrell L Whitley, Francisco Chicano, and Brian W Goldman. 2016. Gray box
optimization for Mk landscapes (NK landscapes and MAX-kSAT). Evolutionary
computation 24, 3 (2016), 491–519.

1232

https://doi.org/10.1145/2908812.2908917
https://doi.org/10.1145/2463372.2463420
https://doi.org/10.1016/0166-218X(90)90142-Y
https://doi.org/10.1145/3377929.3389993
https://doi.org/10.1145/1569901.1570018

Benchmark Generator for TD Mk Landscapes GECCO ’21 Companion, July 10–14,2021, Lille, France

Figure 2: Performance and effectiveness of LT-GOMEA for different overlap values

1233

	Abstract
	1 Introduction
	2 Tree Decomposition Mk Landscapes
	3 Clique Tree MK
	3.1 Construction
	3.2 Global Optimum Dynamic Programming Algorithm

	4 Example
	4.1 Problem Generation
	4.2 Experiment

	5 Conclusions
	References

