
An Abstract Interface for Large-Scale Continuous Optimization
Decomposition Methods

Rodolfo A. Lopes

Federal University of Ouro Preto

Ouro Preto, Brazil

rodolfoayala@ufop.edu.br

Rodrigo C. P. Silva

Federal University of Ouro Preto

Ouro Preto, Brazil

rodrigo.silva@ufop.edu.br

Alan R. R. de Freitas

Federal University of Ouro Preto

Ouro Preto, Brazil

alandefreitas@ufop.edu.br

ABSTRACT
Decomposition methods are valuable approaches to support the

development of divide-and-conquer metaheuristics. When the prob-

lem structure is unknown, such as in black-box problems, this struc-

ture can be inferred through several decomposition mechanisms.

In the context of continuous optimization, the most efficient meta-

heuristics to deal with a large number of decision variables involve

decomposition methods. However, choosing a suitable decompo-

sition method is not a trivial task since each strategy requires an

appropriate set of parameters. In this context, this paper proposes

a C++ library called Continuous Optimization Problem Decomposi-

tion (COPD) that provides the most recent decomposition methods,

interfaces for new methods, and integration with solvers. Further-

more, the proposed library can aid related studies since the decom-

position for continuous optimization problems can be easily applied

with different methods. The experimental results demonstrate a

high grouping accuracy for most methods on large-scale problems.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; •Mathematics of computing→Continuous functions.

KEYWORDS
Decomposition Methods, Decomposition Library, Continuous Op-

timization

ACM Reference Format:
Rodolfo A. Lopes, Rodrigo C. P. Silva, and Alan R. R. de Freitas. 2021. An

Abstract Interface for Large-Scale Continuous Optimization Decomposition

Methods. In 2021 Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3449726.3463188

1 INTRODUCTION
The performance of traditional optimization methods tends to dete-

riorate as the number of decision variables increases. The research

field that studies methodologies to solve problems with many deci-

sion variables is known as Large-Scale Global Optimization (LSGO).

There are two primary reasons for this performance deterioration

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00

https://doi.org/10.1145/3449726.3463188

[15]: (i) the dimensionality of decision vectors exponentially in-

creases the search space, and (ii) the landscape complexity of the

objective function also increases with the problem dimensionality.

Decomposition-based metaheuristics are recognized as success-

ful approaches to solving LSGO problems [15]. For example, the

winner of the 2019 Competition on Large-Scale Global Optimization
[19] is a decomposition-based metaheuristic [26], and evidence is

shown in [16] and [25] that decomposition-based methods tend to

perform better than non-decomposition-based methods in large-

scale problems.

In divide-and-conquer metaheuristics, decomposition methods

investigate the decision variables interactions to find ways to split

an optimization problem into a set of smaller independent subprob-

lems. In addition, decomposition methods are helpful when the

algebraic decomposition of the optimization problem is not known,

e.g., black-box optimization problems. There exist several decom-

position methods in the literature, and they aim at near-optimal

optimization decomposition. Thus, the decomposition methods

directly influence the performance of these metaheuristics [15].

Considering the importance of the decomposition strategies, we

propose a library, called COPD - Continuous Optimization Prob-

lem Decomposition, to aid applications and metaheuristics based

on decomposition approaches. The proposed library facilitates the

implementation of optimization problems and the investigation of

decision variable interactions. It is available in the project reposi-

tory
1
.

COPD provides the most recent decomposition algorithms, an

interface to new decomposition methods, and integration with

solvers. COPD also addresses important recommendations made

to the optimization research community [2], for instance: (i) it pro-

vides standard benchmarking for the implemented methods; (ii) it

makes the automated algorithm design easier once the selection

of decomposition procedure can be automated; (iii) inspiration for

theoretical studies brought by the empirical results; and (iv) a trans-

parent and standard tool for the validation of new decomposition

methods.

In the following sections, we introduce the main concepts neces-

sary to successfully apply decomposition methods in continuous

optimization problems. Section 2 provides a short definition of a

continuous optimization problem and introduces general defini-

tions for continuous optimization separability. We then present a

brief overview of the main metaheuristics and their strategies to

solve continuous optimization problems.

Section 3 introduces the COPD library and its main components.

Section 4 describes details about the different decomposition meth-

ods available. Section 5 presents a comparison of these different

1
https://github.com/RodolfoALopes/decomposition_library

1267

https://doi.org/10.1145/3449726.3463188
https://doi.org/10.1145/3449726.3463188
https://github.com/RodolfoALopes/decomposition_library

GECCO ’21 Companion, July 10–14, 2021, Lille, France R. A. Lopes, et al.

decomposition methods on a well-known large-scale problem suite.

Lastly, Section 6 summarizes the topics presented throughout this

paper.

2 CONTINUOUS OPTIMIZATION
Optimization is a systematic search procedure for the best solu-

tion given an optimization problem. Without losing generality, the

optimization process searches for candidate solutions that satisfy

all the constraints and generate the minimum function value. A

continuous optimization problem is formulated as in Equation 1.

min 𝑓 (x)
𝑠 .𝑡 . 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, ..., 𝑝

ℎ 𝑗 (x) = 0, 𝑗 = 1, ..., 𝑞

𝑙𝑘 ≤ 𝑥𝑘 ≤ 𝑢𝑘 , 𝑘 = 1, ..., 𝐷

x ∈ R𝐷

(1)

where x is a decision vector of 𝐷 dimensions, the function 𝑓 (·) :
R𝐷 → R is the problem objective function, and the functions 𝑔𝑖 (·)
and ℎ 𝑗 (·) define inequality and equality constraints, respectively.

𝑙𝑘 is the lower bound and 𝑢𝑘 is the upper bound of variable 𝑥𝑘 .

2.1 Large-Scale Continuous Optimization
Problems

A continuous optimization problem (Equation 1) with a high num-

ber of decision variables (𝐷 ≥ 1000) might also be considered

a Large-Scale Global Optimization (LSGO) problem [15, 18, 19].

Evolutionary Algorithms (EAs), such as the Covariance Matrix

Adaptation - Evolution Strategy (CMA-ES) [10] and the Differen-

tial Evolution (DE) algorithm [23], are metaheuristics commonly

used to tackle LSGO problems [15, 18]. However, their performance

deteriorates with an increase in the number of decision variables

[15, 18].

The major non-decomposition strategies to improve EAs are

alternative initializationmethods [6, 17]; adaptation/self-adaptation

of operators and parameter control [1, 3, 22]; surrogate models [9,

14]; hybridization [8, 11]; and parallelization [4, 5]. However, these

strategies can be implemented independently from decomposition

strategies and are often not sufficient to deal with all the difficulties

of LSGO problems, as they do not directly address the curse of

dimensionality.

Decomposition approaches apply a divide-and-conquer proce-

dure in order to improve the EAs performance [15, 18]. Solving

lower-dimensional subproblems is faster than optimizing the com-

plete model due to the curse of dimensionality.

2.2 Optimization Separability
Broadly speaking, an optimization problem is separable if we can

divide it into two or more subproblems and solve these components

independently. The following definition can describe this idea:

Definition 2.1. An optimization problem defined over the ob-

jective function, 𝑓 (x), is partially separable with𝑚 independent

subcomponents if:

argmin

x∈F
𝑓 (x) =

〈
argmin

s1∈F1
𝑓 (s1), . . . , argmin

s𝑚 ∈F𝑚
𝑓 (s𝑚)

〉
(2)

where𝑚 represents the number of independent subcomponents,

x = ⟨𝑥1, ..., 𝑥𝐷 ⟩ ∈ R𝐷 is a decision vector of 𝐷 dimensions, s1 ∈
R𝐷1 , ..., s𝑚 ∈ R𝐷𝑚

are disjoint sub-vectors of x, 2 ≤ 𝑚 ≤ 𝐷 , and

𝐷1 + + 𝐷𝑚 = 𝐷 . F𝑖 ⊂ R𝐷𝑖
is the feasible set of the subproblem

defined of over s𝑖 such that F1, ..., F𝑚 are disjoint sets and F1 ∪ ...∪
F𝑚 = F .

Notice that a special case of Definition 2.1 is when𝑚 is equal to

𝐷 . In this case, the optimization problem is called fully separable,

meaning that all decision variables can be searched independently.

Another useful definition is one of function additive separability,

given below.

Definition 2.2. A 𝑓 (x) is partially additively separable function

if:

𝑓 (x) =
𝑚∑
𝑖=1

𝑓 _𝑠𝑢𝑏𝑖 (s𝑖) (3)

where x = ⟨𝑥1, ..., 𝑥𝐷 ⟩ ∈ R𝐷 is the global decision variable vector

of 𝐷 dimensions, s𝑖 are disjoint sub-vectors from x, and𝑚 is the

number of independent subcomponents.

When an objective function is additively separable, the uncon-

strained optimization problem defined over it is also separable

according to Definition 2.1.

Definition 2.2 has been commonly used to find subproblems in

several related works [12, 16, 20, 21, 24–27]. However, this defini-

tion does not represent all possible optimization separability types

implied by Definition 2.1. Therefore, methods that are solely based

on additive separability may not be able to find all subcomponents

in a problem.

2.3 Decomposition Strategies
Decomposition strategies aim to provide procedures able to ana-

lyze and decompose an optimization problem into subcomponents.

These decomposition strategies are essential to allow divider-and-

conquer EAs approaches to work with black-box optimization prob-

lems. Cooperative Coevolutive approaches are one of the most

popular of these divider-and-conquer EAs [26, 27, 30].

Decomposition strategies are only used when the problem struc-

ture is unknown and needs to be inferred. These strategies aim

to achieve near-optional subcomponents in terms of optimization

separability, as presented in Definition 2.1. Decomposition methods

found in the literature only require representing a candidate solu-

tion and objective function to compute the solution quality. Thus,

a possible decomposition of the optimization problem is provided

at the end of processing.

Besides being an essential alternative to decompose black-box

optimization problems, the decomposition methods can be funda-

mental to the development of gray-box operators since the structure

of the problem is not available. For instance, crossover and local

search gray-box operators have been proposed in the literature

over the past years [7, 28, 29]. However, these operators are only

applicable if the structure of the optimization problem is available;

therefore, decomposition methods can provide a way to support it

for black-box problems.

Different decomposition methods have been proposed since the

2010s, given the importance of these strategies. An important point

concerning decomposition methods is choosing the most suitable

1268

An Abstract Interface for Large-Scale Continuous Optimization Decomposition Methods GECCO ’21 Companion, July 10–14, 2021, Lille, France

method is not a trivial task. This fact is due to the different char-

acteristics and requirements of each method. Moreover, there is a

lack of a unique repository that provides easy usage of the major

decomposition methods.

Thus, this paper proposes a C++ library implementing decompo-

sition algorithms to provide an essential part of the decomposition

methods. Lastly, a repository with several decomposition methods

can help develop new related studies since the decomposition of

optimization problems can easily apply with different methods.

3 THE DECOMPOSITION LIBRARY
This section describes the design of the proposed decomposition

library called Continuous Optimization Problem Decomposition

(COPD). COPD provides several decomposition methods to analyze

the decision variables interactions to split the original continu-

ous optimization problem into smaller ones. The main goals of

this library are to (i) support the decomposition analysis of the

continuous optimization problems from different decomposition

methodologies; (ii) allow straightforward extension of the decom-

position methods; (iii) allow user-provided or third-party solvers

to integrate the library; and (iv) allow the development of gray-box

operators for black-box continuous optimization problems.

COPD has two major C++ classes: optimization_problem and

decomposition_algorithm and two additional classes, options and
criteria. The options class allows the specification of the parameters

of the methods by the user. The criteria class keeps a set of possible
stopping criteria which are updated by the solver and decomposi-
tion_algorithm classes and used by solver to halt the search.

The class diagram presented in Figure 1 describes these classes.

Figure 1 also depicts a standard interface for solvers, solver. It
helps users implement their own solvers, but it is not part of our

design goals to offer sophisticated algorithms for continuous opti-

mization problems.

The optimization_problem abstract class is responsible for repre-

senting a continuous optimization problem. The optimization_prob–
lem abstract class has attributes to define the dimensionality, lower

and upper boundaries, as well as, attributes to store information

from the problem structure. The function of the problem class called

value is used to calculate the objective function value given a can-

didate solution. Thus, for each continuous optimization problem

that the user needs to represent, the user should inherit the opti-
mization_problem class and implement the virtual function value.

The optimization_problem class also provides a function named

get_problem_structure, which aims to get the problem structure

identified by the decomposition algorithms. Thus, a data structure

formed by sets of integers inside a vector is declared to store the

problem subcomponents. The set of integers represents the indexes

of the decision variables of the same subcomponent. Each set from

the vector data structure represents a subcomponent in the problem.

The function set_problem_structure from the optimization_prob–
lem class is used to provide a way to assign the data structure that

contains the problem structure. Every time this function is invoked,

the protected attribute problem_structure_is_known is also assigned

as true in addition to the problem structure is assigned.

Whenever a new optimization problem needs to be represented,

a new class should be created, and it must inherit from the optimiza-
tion_problem class. For each new decomposition algorithm imple-

mented, a new class inheriting from the decomposition_algorithm
class should be created. The pure virtual function called decompose
must be implemented. In this scenario, the function decompose re-
ceives as parameters: (i) an object from the optimization_problem
class representing an optimization problem to be decomposed; (ii)

an object from the options class where has all parameters required

by the decomposition method; and (iii) an object from the criteria
class to account for the number of evaluation functions spent.

Lastly, this proposed library implemented eight different de-

composition methods that the users can easily use, and details are

available at the project repository
2
.

4 DECOMPOSITION METHODS
The COPD library implements eight decomposition methods found

in the literature. The set of methods is comprised of six well-

established and well-studied methods [12, 16, 20, 21, 24, 25], each

with at least 50 citations, and two updates [26, 27] of the method

presented in [25].

Following the proposed project design shown in Figure 1, the

decomposition methods inherit from the abstract class decomposi-
tion_algorithm.

4.1 Differential Grouping
Proposed by [20], the Differential Grouping (DG) method is one

of the first and main decomposition strategies to examine and

decompose continuous optimization problems automatically. Based

on the partial additive separability definition, defined in Equation 3,

DG uses the following theorem to identify an interaction between

two decision variables:

Theorem 4.1. Let 𝑓 (x) be an additively separable function.∀𝑎, 𝑏1
≠ 𝑏2, 𝜎 ∈ R, 𝜎 ≠ 0, if the following condition holds:

Δ𝜎,𝑥𝑝 [𝑓] (x) |𝑥𝑝=𝑎,𝑥𝑞=𝑏1 ≠ Δ𝜎,𝑥𝑝 [𝑓] (x) |𝑥𝑝=𝑎,𝑥𝑞=𝑏2 (4)

implies,

Δ𝜎,𝑥𝑝 [𝑓] (x) |𝑥𝑝=𝑎,𝑥𝑞=𝑏1 − Δ𝜎,𝑥𝑝 [𝑓] (x) |𝑥𝑝=𝑎,𝑥𝑞=𝑏2 ≠ 0 (5)

then 𝑥𝑝 and 𝑥𝑞 interact with each other, i.e., they are non-separable,
where

Δ𝜎,𝑥𝑝 [𝑓] (x) = 𝑓 (. . . , 𝑥𝑝 + 𝜎, . . .) − 𝑓 (. . . , 𝑥𝑝 , . . .) (6)

means the difference of 𝑓 (x) with respect to 𝑥𝑝 with the interval 𝜎 .

Broadly speaking, Theorem 4.1 means that there is an interaction

between decision variables 𝑥𝑝 and 𝑥𝑞 if Equation 5 yields a value

different from 0. For more details and the proof of Theorem 4.1, see

[20].

The DG method analyzes pairs of decision variables, 𝑥𝑝 , and 𝑥𝑞 .

It starts with the first decision variable, 𝑥𝑝 , and computes its inter-

action with all other decision variables, 𝑥𝑞 . If no decision variable

interaction has been detected, it means that the decision variable

𝑥𝑝 can be searched independently. Then, 𝑥𝑝 is removed from the

set of variables. Otherwise, if interactions are identified, all decision

variables involved are grouped in the same set. Decision variables

2
https://github.com/RodolfoALopes/decomposition_library

1269

https://github.com/RodolfoALopes/decomposition_library

GECCO ’21 Companion, July 10–14, 2021, Lille, France R. A. Lopes, et al.

optimization_problem

dimension : integer
lower_bound_ : scalar []
upper_bound : scalar []
sub_problems : integer [[]]
problem_structure_is_known : boolean

value (scalar []) : scalar
get_problem_structure() : integer [[]]
set_problem_structure(integer [[]])
is_known_problem_structure() : boolean

solver

solver_options : options
current_criteria : criteria
stop_criteria : criteria

minimize (problem, scalar [])

decomposition_algorithm

decompose(problem, options, criteria)

options criteria

Figure 1: Class Diagram of Continuous Optimization Problem Decomposition (COPD) library.

in the same set indicate that there is an independent subproblem

defined over them. This process continues until there is no pair of

decision variables to analyze.

In the DG method, Theorem 4.1 is used to evaluate whether any

pair of decision variables interact. To do that, the algorithm initial-

izes two vectors, x and x′, with the lower bound of the decision

variables. To verify the interaction between the decision variables

𝑥𝑝 and 𝑥𝑞 , the variable 𝑥𝑝 from the vector x′ is changed to its upper
bound, then, the value of Δ1, is computed as follows:

Δ1 = 𝑓 (x) − 𝑓 (x′) (7)

After that, 𝑞-th variables from x and x′ are set to their middle

value. The new points generated from these changes will be called

y and y′, respectively. Then, a new Δ is computed, as follows:

Δ2 = 𝑓 (y) − 𝑓 (y′) (8)

Thus, an interaction between 𝑥𝑝 and 𝑥𝑞 is detected when the

condition described in Equation 9 is true.

|Δ1 − Δ2 | > 𝜖 (9)

where 𝜖 is a parameter of the DG algorithm which has to be defined

by the user.

Notice that the value of 𝜖 directly influences on the interactions

detected by this decomposition method, and its choice is not a

trivial task. Another disadvantage of this algorithm is that it may

incorrectly identify subproblems since it skips through the decision

variables for which one interaction has already been identified,

ignoring higher-order interactions. For instance, suppose 𝑓 (x) =
𝑥1𝑥2 + 𝑥2𝑥3𝑥4 | − 10.0 < 𝑥𝑘 < 10.0, in which the DG algorithm

incorrectly split the whole problem into groups formed by (i) 𝑥1
and 𝑥2; and (ii) 𝑥3 and 𝑥4.

Even though DG is not the most used algorithm due to more

function evaluations and its accuracy to identify the subproblems

compared to the other decomposition strategies, its theoretical

foundation is widely applied by other methods.

4.2 Differential Grouping - 2
An improved variant of the DG decomposition, the Differential

Grouping - 2 (DG-2), was proposed in 2017 by, [21]. The DG2

method is also based on Theorem 4.1 however, to deal with the

disadvantages as mentioned earlier of its predecessor, DG-2 does

the following:

(1) Computes the raw interaction matrix which stores the values

from |Δ1 − Δ2 | (see Equation 9) for all pairs of decision

variables;

(2) Defines 𝜖 based on the raw interaction matrix by estimating

the magnitude of round-off errors;

(3) Defines an adjacency matrix based on the raw interaction

matrix and the epsilon values;

(4) Extracts the subproblems by analyzing the adjacency matrix.

The DG-2 method has shown to be more efficient and presented

greater grouping accuracy than its predecessor. This version can

reuse sample points generated for detecting interactions and auto-

matically define a suitable threshold value (𝜖), respectively. Further-

more, the adjacency matrix available makes this algorithm useful

for gray-box operators, given that the problem structure is mapped.

1270

An Abstract Interface for Large-Scale Continuous Optimization Decomposition Methods GECCO ’21 Companion, July 10–14, 2021, Lille, France

4.3 Extended Differential Grouping
The Extended Differential Grouping (XDG) method is also a vari-

ant of the DG method [24]. The main aim of this method is to

identify direct and indirect interactions between the decision vari-

ables. Chronologically, XDG was proposed after the DG method

and before its improved version, DG-2.

The XDG algorithm works similarly to the DG method in which

computing the interaction between a pair of decision variables

according to Equation 9. This method evaluates the interaction

between all pairs of decision variables. If any decision variable

interaction exists, it is mapped in an adjacency matrix kept by the

XDG method. Afterward, the XDG can extract all subproblems just

by analyzing the adjacency matrix.

Although the XDG method can be more accurate than DG, it

stills requires a previous investigation of the suitable value for the

𝜖 parameter. On the other side, it can help develop the gray-box

operator, given that the problem structure is known and available

on the adjacency matrix.

4.4 Fast Interdependency Identification
The Fast Interdependency Identification (FII) algorithm is another

well-known decomposition method proposed in 2017 by [12]. Its

main aim was to reduce the function evaluations spent to decom-

pose a continuous optimization problem keeping the grouping

accuracy ratio.

Basically, the FII algorithm works in two stages to decompose

an optimization problem. The first stage identifies and divides the

set of decision variables into two groups: separable (x𝑠𝑒𝑝𝑠) and
non-separable (x𝑛𝑜𝑛𝑠𝑒𝑝𝑠). Note that in this stage, the non-separable

variables can still be separable into small problems. Then, given a

decision variable 𝑥𝑝 and a sample solution x, its difference value
Δx𝑝 is calculated by Equation below:

Δx𝑝 = 𝑓 (x′) − 𝑓 (x) (10)

where x′ is the solution x incremented by the value 𝜎 in 𝑥𝑝 .

According to the authors, perturbing all other decision variables

from the solution x produces a new solution y. In this way, a new

difference value (Δy𝑝) is calculated, according to Equation 11:

Δy𝑝 = 𝑓 (y′) − 𝑓 (y) (11)

where y′ is the solution y and the variable 𝑥𝑝equal the original

value of the solution x.
It classifies the decision variable 𝑥𝑝 as separable if the Equation

below is true:

|Δx𝑝 − Δy𝑝 | ≤ 𝜖1 (12)

where 𝜖 is a parameter defined by the user that controls the inter-

action between the decision variables. Therefore, 𝑥𝑝 is included on

the set of separable variables, x𝑠𝑒𝑝𝑠 . Otherwise, it is included on

the non-separable set, x𝑛𝑜𝑛𝑠𝑒𝑝𝑠 .
The second stage of the FII method is to identify possible subprob-

lem from the non-separable decision variables. Thus, this method

proposes perturbations on the remainder variables (x𝑛𝑜𝑛𝑠𝑒𝑝𝑠) for a
solution x, increasing a 𝛿 value on these variables and generating a

solution x′. Then, if a variable 𝑥𝑝 interact with another variable 𝑥𝑞 ,

the following Equation yields true results:

|Δx𝑞 − Δx′𝑞 | > 𝜖2 (13)

where 𝜖2 is a predefined value that is defined by the user.

Computational experiments [12] have shown that FII is more

efficient concerning the number of function evaluations than pre-

vious methods. Notice, however, that four parameters must be set

before the decomposition process can start. Thus, this setup step

may require additional experiments.

The FII method may not be helpful to the development of gray-

box operators since the adjacency matrix is not readily available.

Therefore, extra computing is also required to extract the adjacency

matrix.

4.5 Global Differential Grouping
Proposed by [16], the Global Differential Grouping (GDG) algorithm

is another extension of the DG method. Also, based on Theorem

4.1, it was proposed to improve grouping accuracy compared to its

predecessor.

The GDG algorithm does not immediately exclude a variable 𝑥𝑞
from the set of all decision variables when an interaction is detected

with variable 𝑥𝑝 . With this characteristic, the GDG algorithm does

not miss mapping all interactions compared to the DG method.

Furthermore, this algorithm uses an adjacency matrix to map the

interaction between the decision variables found.

To deal with the necessity to define a suitable value for the

𝜖 parameter, the authors propose computing it according to the

following Equation:

𝜖 = 𝛼 ×min{|𝑓 (x1) |, . . . , |𝑓 (x𝑛) |} (14)

where 𝑛 is the number of points randomly selected, and 𝛼 is the

controlling coefficient proposed by the authors. The user should

define both parameters, 𝑛 and 𝛼 before the decomposition process

started.

Setting the GDG parameters is not a trivial task. These parame-

ters can directly influence the number of evaluation functions spent

and the grouping accuracy of the algorithm. Concerning the use of

this decomposition strategy to support the development of gray-

box operators, how the adjacency matrix is automatically available

at the process end, no extra process is required.

4.6 Recursive Differential Grouping
Proposed in 2018 by [25], the rationale of the Recursive Differen-

tial Grouping (RDG) method is recursively analyzing the decision

variable interaction placing all interacting decision variables into

the same group. For that, it based on the following Corollary:

Corollary 4.2. Let f(x), x1 and x1 mutually exclusive subsets
from the of decision variables where x1 ∩ x2 = ∅. If there two unit
vectors u1 and u2, two values 𝑙1 and 𝑙2 greater than 0, such that:

𝑓 (x + 𝑙1u1 + 𝑙2u2) − 𝑓 (x + 𝑙2u2) ≠ 𝑓 (x + 𝑙1u1) − 𝑓 (x) (15)

there is some interaction of at least one pair of decision variables
between sets x1 and x2. Moreover,𝑈x1 is a subset of𝑈x such that any
unit vector u1 = (𝑢1, . . . , 𝑢𝐷) ∈ 𝑈x, where:

𝑢𝑖 = 0, if 𝑥𝑖 ∉ x1 (16)

1271

GECCO ’21 Companion, July 10–14, 2021, Lille, France R. A. Lopes, et al.

and the same idea is applied to𝑈x2 .

According to [25], the interaction between x1 and x2 subsets can
be calculated setting a point x with the lower bound of all decision

variables. Then, x′ is defined by setting all decision variables with

the lower bound and perturbing the variables from the subset x1
with the upper bound. After, the objective function value difference

(𝛿1) is calculated by:

𝛿1 = 𝑓 (x) − 𝑓 (x′) (17)

Perturbing the decision variables of the subset x2 from points x
and x′ with the middle value between the lower and upper bounds,

we will generate the points y and y′. Thus, the objective function
value difference is described by:

𝛿2 = 𝑓 (y) − 𝑓 (y′) (18)

If |𝛿1 − 𝛿2 | > 𝜖 , it represents that there is some interaction be-

tween the decision variables from subsets x1 and x2 where 𝜖 repre-

sents a control parameter from the RDG method to defined variable

interaction. Similar to the GDG method, in the RDG algorithm, the

𝜖 is defined by Equation 14.

Unlike the other decomposition methods, the RDG algorithm

works recursively identifying the interaction between the decision

variables. It starts from the first variable from the subset x1, and if

there is no interaction, it is classified as a separable decision vari-

able. If some interaction is detected, the remainder of the decision

variables and the recursive identification of the interaction process

continue.

Lastly, the RDG method achieves a competitive grouping ac-

curacy rate compared to the other decomposition methods [25].

However, the RDG requires a suitable parameter setting for the

parameters 𝑛 and 𝛼 necessaries interaction threshold (𝜖). The RDG

method for the development of gray-box operators is not fully

compatible since the adjacency matrix is not known.

4.7 Recursive Differential Grouping - 2
A second version of the RDG decomposition method proposed by

[27] in 2018 is Recursive Differential Grouping - 2 (RDG-2). Its

predecessor, RDG [25], requires a parameter to estimate a threshold

value used to verify if two subsets of variables interact between

them or not. However, the RGD-2 method proposes a formulation

used to compute values automatically for the 𝜖 parameter.

So, the formulation used by the RDG-2 to define suitable values

for the 𝜖 parameter is:

𝜖 = 𝛾 × (|𝑓 (x) | + |𝑓 (x′) | + |𝑓 (y) | + |𝑓 (y′) |) (19)

where 𝛾 is defined by Equation below:

𝛾 = (𝑣 × 𝜇)/(1 − (𝑣 × 𝜇)) (20)

where 𝑣 =
√
𝐷 + 2, 𝜇 represents machine epsilon

3
, and 𝐷 is the

dimensionality of the optimization problem.

Even though the RDG-2 proposes an automatic definition of the

set parameters required by its predecessor, it still incompatible with

3
It represents the difference between 1.0 and the next value representable by the

floating-point. For C++, see epsilon function on numeric_limits.

gray-box operator development due to the adjacency matrix is not

known.

4.8 Recursive Differential Grouping - 3
A new version of RDG-2, called Recursive Differential Grouping - 3

(RDG-3), was proposed in 2019 by [26]. Themain difference between

the RDG-3 from its predecessors is its capability to decompose

overlapping decision variables. Overlapping optimization problems

share a set of decision variables with two or more subproblems.

Figure 2 presents a problem example in which a decision variable,

𝑥3, is shared by two subproblems.

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

Figure 2: Variable Interaction Graph for an optimization
problem example with a shared decision variable.

To deal with overlapping decision variables, the authors propose

a parameter 𝜖𝑛 to limit the group size of the decision variables

for overlapping problems. Therefore, this method only includes

indirect interactions in a group x1 if the predefined limit for the

group sizes (𝜖𝑛) is still respected.

The computational experiments proposed by [26] showed a simi-

lar grouping accuracy rate than their predecessors, RDG and RDG-2.

However, how the RDG-3 does still not automatically offer an adja-

cency matrix; it is not compatible with the development of gray-box

operators.

5 COMPARISON
This section summarizes the characteristics of the decomposition

methods implemented in the COPD library. They are compared

from the following perspectives:

(1) Support for the development of gray-box operators, i.e.,

whether the decomposition methods produce a variable in-

teraction graph (VIG) that gray-box methods can exploit;

(2) The number of parameters settings that influence the decom-

position methods accuracy; and

(3) The accuracy of the methods.

Table 1 shows which of the methods compute a Variable Inter-

action Graph (VIG) automatically. As mentioned before, VIG is

essential for the gray-box operators recently proposed in the litera-

ture. From all methods of COPD library, DG-2, XDG, and GDG are

the only method from the COPD library able to provide the VIG.

Table 2 relates the decomposition methods and the number of

parameters necessary to their working. Only two methods are

parameter-free, DG-2 and RDG-2. DG, XDG, and RDG-3 require

that one parameter must be set. GDG and RDG-2 require two setting

parameters. Lastly, the FII algorithm requires the setting of four

parameters.

1272

An Abstract Interface for Large-Scale Continuous Optimization Decomposition Methods GECCO ’21 Companion, July 10–14, 2021, Lille, France

Table 1: Variable Interaction Graph Available Analysis

Variable Interaction Graph Available Methods

Yes DG-2, XDG, GDG

No DG, FII, RDG, RDG-2, RDG-3

Table 2: Decomposition Method Parameters

Number of Parameters Methods

1 DG, XDG, RDG-3

2 GDG, RDG

4 FII

Parameter-Free DG-2, RDG-2

Decomposition methods are best suited to handle large-scale

optimization problems, consisting of a combination of independent

subproblems. In order to analyze the accuracy of the decomposition

methods in finding these subproblems, we run them in the best-

known set of large-scale problems [13].

The parameters used for the computational experiments are

proposed in related works, such as (i) DG, 𝜖 = 0.1 [20]; (ii) XDG,

𝜖 = 0.1 [24], (iii) FII, 𝜖1 = 𝜖2 = 0.01 and 𝜎 = 𝛿 = 10 [12], (iv) GDG,

𝑘 = 10 and 𝛼 = 1 × 10
−10

[16], (v) RDG, 𝑘 = 10 and 𝛼 = 1 × 10
−12

[25], and (vi) RDG-3, 𝜖𝑛 = 50 [26].

In addition to comparing the number of function evaluations

spent to analyze each optimization problem, we also compare the

grouping identification accuracy according to the ratio defined in

Equation 21. The accuracy ratio is based on 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛_

𝑔𝑟𝑜𝑢𝑝𝑠 and 𝑖𝑑𝑒𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 , which represents the number of subprob-

lems correctly identified and the number of real groups, respec-

tively.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑔𝑟𝑜𝑢𝑝𝑠

𝑖𝑑𝑒𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠
(21)

Table 3 presents the computational experiment results of decom-

position methods on the CEC’2013 benchmark functions. These

results compare the accuracy, and the number of function evalua-

tions spent to analyze the optimization problems.

RDG-2 was the most accurate, 79.3%, and second in the average

number of function evaluations, 14612. Its success can be explained

by the adaptive 𝜖 selection mechanism and the recursive decom-

position procedure, which saves several function evaluations. The

RDG-3 has similar mechanisms, but its linkage breaking mechanism

tends to over-decompose the problems, as seen in problems 𝑓12, 𝑓13,

and 𝑓14.

From the methods which produce a VIG, important in gray-box

optimizers, DG-2 presented the highest accuracy, 72.7%. Its success

can be explained again by the adaptive 𝜖 selection mechanism

shared with RDG-2 and RDG-3.

Nevertheless, the comparative performance of the decomposition

methods can be influence by the choice of parameters and the set of

benchmark problems. Having this in mind, it is possible to see the

relevance of a decomposition methods library to the development

of related studies.

6 SUMMARY AND CONCLUSIONS
In this paper, we have presented a C++ library called ContinuousOp-

timization Problem Decomposition. The decomposition strategies

try to break the optimization problem into independent subprob-

lems that the optimizer can solve separately. This paper focuses

only on decomposition methods, commonly used to find the sub-

components from a problem before the optimization process starts.

Our library allows users to easily describe continuous optimiza-

tion problems and analyze their structure through the main de-

composition methods found in the literature. Furthermore, it facil-

itates the application of decomposition, providing the user with

implementations of the main methods speeding up the solution of

complex optimization problems.

To improve the library and promote its use for both designing

new decomposition techniques and benchmarking large-scale opti-

mization algorithms, in the future, it should provide a more natural

interface for the exportation of the performance metrics computed

over the search course.

ACKNOWLEDGMENTS
This work has been supported by the Brazilian Agencies State of

Minas Gerais Research Foundation - FAPEMIG (APQ-00040- 14);

Coordination for the Improvement of Higher Level Personnel -

CAPES, Brazil; National Council of Scientific and Technological

Development - CNPq, Brazil (402956/2016-8); and UFOP, Brazil.

REFERENCES
[1] A. Banitalebi, M. Aziz, and Z. Aziz. 2016. A self-adaptive binary differential

evolution algorithm for large scale binary optimization problems. Information
Sciences 367-368 (2016), 487–511.

[2] Thomas Bartz-Beielstein, Carola Doerr, Jakob Bossek, Sowmya Chandrasekaran,

Tome Eftimov, Andreas Fischbach, Pascal Kerschke, Manuel López-Ibáñez, Kather-

ine Mary Malan, Jason H. Moore, Boris Naujoks, Patryk Orzechowski, Vanessa

Volz, Markus Wagner, and Thomas Weise. 2020. Benchmarking in Optimization:

Best Practice and Open Issues. CoRR abs/2007.03488 (2020). arXiv:2007.03488

https://arxiv.org/abs/2007.03488

[3] J. Brest, B. Bošković, S. Greiner, V. Žumer, and M. Maučec. 2007. Performance

comparison of self-adaptive and adaptive differential evolution algorithms. Soft
Computing 11 (2007), 617–629.

[4] A. Cano and C. García-Martínez. 2016. 100 Million dimensions large-scale global

optimization using distributed GPU computing. In 2016 IEEE Congress on Evolu-
tionary Computation (CEC). IEEE – Institute of Electrical and Electronic Engineers,
Vancouver, BC, Canada, 3566–3573.

[5] S. Das and P. N. Suganthan. 2011. Differential Evolution: A Survey of the State-

of-the-Art. IEEE Transactions on Evolutionary Computation 15, 1 (2011), 4–31.

[6] W. Gao, S. Liu, and L. Huang. 2012. Particle swarm optimization with chaotic

opposition-based population initialization and stochastic search technique. Com-
munications in Nonlinear Science and Numerical Simulation 17, 11 (2012), 4316 –

4327.

[7] T. M. Gomes, A. R. R. de Freitas, and R. A. Lopes. 2019. Multi-Heap Constraint

Handling in Gray Box Evolutionary Algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference (Prague, Czech Republic). Association for

Computing Machinery, New York, NY, USA, 829–836.

[8] P. Guo, W. Cheng, and Y. Wang. 2016. Hybrid evolutionary algorithm with

extreme machine learning fitness function evaluation for two-stage capacitated

facility location problem. Expert Systems with Applications 71 (2016), 57–68.
[9] R. Haftka, D. Villanueva, and A. Chaudhuri. 2016. Parallel surrogate-assisted

global optimization with expensive functions – a survey. Structural and Multidis-
ciplinary Optimization 54 (2016), 3–13.

[10] N. Hansen. 2006. The CMA Evolution Strategy: A Comparing Review. Springer
Berlin Heidelberg, Berlin, Heidelberg, 75–102.

[11] W. E. Hart, N. Krasnogor, and J. E. Smith. 2005. Memetic Evolutionary Algorithms.
Springer Berlin Heidelberg, Berlin, Heidelberg, 3–27.

1273

https://arxiv.org/abs/2007.03488
https://arxiv.org/abs/2007.03488

GECCO ’21 Companion, July 10–14, 2021, Lille, France R. A. Lopes, et al.

Table 3: Comparison of the Decomposition Results on CEC’2013 Benchmark Functions

Seps Non-Seps Groups Accuracy (%) Function Evaluations

DG / DG-2 / XDG / FII / GDG / RDG / RDG-2 / RDG-3

𝑓1 1000 0 1000 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 1998000 / 500501 / 1001000 / 3001 / 501511 / 3008 / 2998 / 2998

𝑓2 1000 0 1000 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 1998000 / 500501 / 1001000 / 3001 / 501511 / 3008 / 2998 / 2998

𝑓3 1000 0 1000 100 / 0 / 100 / 100 / 0.1 / 0 / 0 / 0 1998000 / 500501 / 1001000 / 3001 / 501511 / 6005 / 5992 / 5992

𝑓4 700 300 707 5.94 / 100 / 1.27 / 62.6 / 100 / 100 / 100 / 100 31640 / 500501 / 1001000 / 4523 / 501511 / 9842 / 9832 / 9823

𝑓5 700 300 707 99.7 / 100 / 99.8 / 99.8 / 99.8 / 100 / 100 / 99.8 1323408 / 500501 / 1001000 / 4216 / 501511 / 10145 / 9895 / 9814

𝑓6 700 300 707 99.2 / 0.99 / 99.4 / 99.4 / 99.7 / 4.38 / 0.99 / 1.13 1471716 / 500501 / 1001000 / 3599 / 501511 / 13574 / 11587 / 12019

𝑓7 700 300 707 9.05 / 100 / 0.70 / 79.6 / 100 / 95.1 / 100 / 100 22852 / 500501 / 1001000 / 4432 / 501511 / 8219 / 9814 / 9805

𝑓8 0 1000 20 70.0 / 90.0 / 0 / 80.0 / 55.0 / 75.0 / 90.0 / 85.0 45248 / 500501 / 1001000 / 25360 / 501511 / 19412 / 19405 / 19342

𝑓9 0 1000 20 75.0 / 100 / 90.0 / 95.0 / 85.0 / 100 / 100 / 100 36560 / 500501 / 1001000 / 21442 / 501511 / 19247 / 19156 / 19126

𝑓10 0 1000 20 25.0 / 100 / 60.0 / 55.0 / 85.0 / 85.0 / 100 / 95.0 220408 / 500501 / 1001000 / 15419 / 501511 / 19142 / 19879 / 19735

𝑓11 0 1000 20 30.0 / 100 / 0 / 50.0 / 40.0 / 0 / 100 / 100 22124 / 500501 / 1001000 / 14409 / 501511 / 11078 / 19429 / 19399

𝑓12 0 1000 1 0 / 100 / 100 / 100 / 100 / 100 / 100 / 0 1000000 / 500501 / 1001000 / 503500 / 501511 / 50876 / 50866/49891

𝑓13 0 905 1 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 12412 / 409966 / 819930 / 6786 / 410881 / 8315 / 15187 / 15988

𝑓14 0 905 1 0 / 0 / 0 / 0 / 0 / 100 / 100 / 0 26620 / 409966 / 819930 / 8467 / 410881 / 9272 / 16150 / 16288

𝑓15 0 1000 1 100 / 100 / 100 / 100 / 0 / 100 / 100 / 100 3996 / 500501 / 1001000 / 4001 / 501511 / 6071 / 5992 / 5992

Mean 54.2 / 72.7 / 56.7 / 74.7 / 64.3 / 70.6 / 79.3 / 72.0 680732 / 488429 / 976857 / 74844 / 489427 / 13147 / 14612 / 14614

[12] X. Hu, F. He, W. Chen, and J. Zhang. 2017. Cooperation coevolution with fast

interdependency identification for large scale optimization. Information Sciences
381 (2017), 142–160.

[13] Xiaodong Li, Ke Tang, Mohammmad Nabi Omidvar, Zhenyu Yang, and Kai Qin.

2013. Benchmark Functions for the CEC’2013 Special Session and Competition

on Large-Scale Global Optimization. (01 2013).

[14] D. Lim, Y. Ong, Y. Jin, and B. Sendhoff. 2007. A Study onMetamodeling Techniques,

Ensembles, and Multi-Surrogates in Evolutionary Computation. In Proceedings
of the 9th Annual Conference on Genetic and Evolutionary Computation (London,

England). Association for ComputingMachinery, New York, NY, USA, 1288–1295.

[15] S. Mahdavi, M. Shiri, and S. Rahnamayan. 2015. Metaheuristics in Large-Scale

Global Continues Optimization. Information. Sciences 295 (2015), 407–428.
[16] Y. Mei, M. Omidvar, X. Li, and X. Yao. 2016. A Competitive Divide-and-Conquer

Algorithm for Unconstrained Large-Scale Black-Box Optimization. ACM Trans.
Math. Softw. 42, 2 (2016), 24 pages.

[17] V. Melo and A. Delbem. 2012. Investigating Smart Sampling as a population ini-

tialization method for Differential Evolution in continuous problems. Information
Sciences 193 (2012), 36–53.

[18] D. Molina. 2016. Evolutionary algorithms for large-scale global optimisation: a

snapshot, trends and challenges. Progress in Artificial Intelligence 5 (2016), 85–89.
[19] D. Molina and A. La Torre. 2020. IEE CEC 2019 - Special Session and Competition

on Large-Scale Global Optimization. https://www.tflsgo.org/special_sessions/

cec2019.html

[20] M. N. Omidvar, X. Li, Y. Mei, and X. Yao. 2014. Cooperative Co-Evolution

With Differential Grouping for Large Scale Optimization. IEEE Transactions on
Evolutionary Computation 18, 3 (2014), 378–393.

[21] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao. 2017. DG2: A Faster and More

Accurate Differential Grouping for Large-Scale Black-Box Optimization. IEEE
Transactions on Evolutionary Computation 21, 6 (2017), 929–942.

[22] R. C. P. Silva, R. A. Lopes, A. R. R. Freitas, and F. G. Guimaraes. 2014. A study on

self-configuration in the differential evolution algorithm. In 2014 IEEE Symposium
on Differential Evolution (SDE). IEEE Symposium on Differential Evolution (SDE),

Orlando, FL, USA, 1–8.

[23] R. Storn and K. Price. 1997. Differential Evolution – A Simple and Efficient

Heuristic for GloSbal Optimization over Continuous Spaces. Journal of Global
Optimization 11, 4 (1997), 341–359.

[24] Y. Sun, M. Kirley, and S. Halgamuge. 2015. Extended Differential Grouping for

Large Scale Global Optimization with Direct and Indirect Variable Interactions.

In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Com-
putation (Madrid, Spain). Association for Computing Machinery, New York, NY,

USA, 313–320.

[25] Y. Sun, M. Kirley, and S. K. Halgamuge. 2018. A Recursive Decomposition Method

for Large Scale Continuous Optimization. IEEE Transactions on Evolutionary
Computation 22, 5 (2018), 647–661.

[26] Y. Sun, X. Li, A. Ernst, and M. N. Omidvar. 2019. Decomposition for Large-scale

Optimization Problems with Overlapping Components. In 2019 IEEE Congress on
Evolutionary Computation (CEC). IEEE Congress on Evolutionary Computation

(CEC), Wellington, New Zealand, 326–333.

[27] Y. Sun, M. Omidvar, M. Kirley, and X. Li. 2018. Adaptive Threshold Parameter

Estimation with Recursive Differential Grouping for Problem Decomposition.

In Proceedings of the Genetic and Evolutionary Computation Conference (Kyoto,
Japan). Association for Computing Machinery, New York, NY, USA, 889–896.

[28] R. Tinós, D. Whitley, and F. Chicano. 2015. Partition Crossover for Pseudo-

Boolean Optimization. In Proceedings of ACM Conference on Foundations of Ge-
netic Algorithms (Aberystwyth, United Kingdom). Association for Computing

Machinery, New York, NY, USA, 137–149.

[29] D.Whitley andW. Chen. 2012. Constant Time Steepest Descent Local Search with

Lookahead for NK-Landscapes and MAX-KSAT. In Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation (Philadelphia, Pennsylvania,

USA). Association for Computing Machinery, New York, NY, USA, 1357–1364.

[30] Z. Yang, K. Tang, and X. Yao. 2008. Large scale evolutionary optimization using

cooperative coevolution. Information Sciences 178 (2008), 2985–2999.

1274

https://www.tflsgo.org/special_sessions/cec2019.html
https://www.tflsgo.org/special_sessions/cec2019.html

	Abstract
	1 Introduction
	2 Continuous Optimization
	2.1 Large-Scale Continuous Optimization Problems
	2.2 Optimization Separability
	2.3 Decomposition Strategies

	3 The Decomposition Library
	4 Decomposition Methods
	4.1 Differential Grouping
	4.2 Differential Grouping - 2
	4.3 Extended Differential Grouping
	4.4 Fast Interdependency Identification
	4.5 Global Differential Grouping
	4.6 Recursive Differential Grouping
	4.7 Recursive Differential Grouping - 2
	4.8 Recursive Differential Grouping - 3

	5 Comparison
	6 Summary and Conclusions
	Acknowledgments
	References

