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ABSTRACT
This paper introduces a novel hybrid optimisation algorithm that
combines elements of both metaheuristic search and integer pro-
gramming. This new matheuristic combines elements of Benders
decomposition and the Bees Algorithm, to create the Bee-Benders
Hybrid Algorithm (BBHA) which retains many of the advantages of
both methods. Specifically, it is designed to be easily parallelisable,
to produce good solutions quickly while still retaining a guarantee
of optimality when run for a sufficiently long time. The algorithm is
tested using a transmission network expansion and energy storage
planning model, a challenging and very large scale mixed integer
linear programming problem. The BBHA is shown to be a highly
effective hybrid matheuristic algorithm for this challenging com-
binatorial optimisation problem that performs at least as well as
either Benders decomposition or the Bees Algorithm on their own,
and significantly improves upon the individual approaches in many
instances. While the paper demonstrates the effectiveness on an
electricity network planning problem, the algorithm could be read-
ily applied to any mixed integer linear program, and is expected
to work particularly well whenever this has a structure that is
amenable to Benders decomposition.
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1 INTRODUCTION
The need to solve large scale mixed integer programming problems
arises in many applications. As the size increases, these problems
become quickly too difficult to solve in a reasonable amount of
time. In such cases it is common to use metaheuristics or to attempt
decomposition approaches in order to obtain good quality solutions.
In this paper we propose a new hybrid approach that draws both on
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the Bees Algorithm [23] and Benders Decomposition [4]. This paper
uses the planning of electricity networks to cope with renewable
generation as an example to bothmotivate the need for the proposed
new algorithm and to evaluate its effectiveness.

Integrating renewable energy generation, especially variable
generators such as wind and solar, into the electrical transmission
network is a considerable design challenge currently facing net-
work planners. For example, a recent blackout in South Australia
saw 315MW of wind generation disconnect from the grid amid volt-
age dips and loss of load [5]. As a consequence a 100MW battery
was installed by Tesla to prevent this from happening again [16].
Correspondingly, there has been a renewed interest in electricity
network planning problems [7]. One such problem is the transmis-
sion expansion planning problem (TEP). Here the objective is to
minimise the investment and operational costs of the network while
meeting a set of operational constraints, for example, generation,
demand, geographical, and environmental constraints [18]. This
leads to very large scale combinatorial optimisation problems that
require making expensive long-term capital investment decisions
(building transmission lines or installing energy storage facilities)
while considering the use of these to meet variable demand. For a
recent review of this application area see [7].

The TEP and related problems are often modeled as Mixed In-
teger Programs (MIPs) with either non-linear constraints or more
commonly a linear approximation. Advances in MIP solvers mean
small to medium sized instances can generally be solved to optimal-
ity within a few minutes. However, a considerable body of research
is dedicated to solving larger or more complicated instances. Novel
approaches to these problems include branch and bound with a
GRASP meta-heuristic [3], Projection-Adapted Cross Entropy [12],
particle swarm optimisation [1], and a hybrid with a variant of the
bat algorithm [21]. Of particular interest for this paper is that often
TEP problems can be decomposed into investment and operational
subproblems. Benders decomposition, with alternately continuous
or discrete decision variables in the master (investment) problem
and DC approximation or transportation operational subproblems,
has been shown to be very effective for many variants of TEP prob-
lems over many years, for some examples see [8, 14, 20]. A survey
of the literature on optimisation methods for TEP is given in [27].

Where the models become larger and more complex MIP solvers
can struggle to find good solutions and metaheuristic methods are
often employed. Some recent examples, include constructive heuris-
tics [2], the social spider algorithm [10] and bat algorithm [21].
However, as noted by the recent survey paper of metaheuristics
used in this area, at least for single-objective models pure meta-
heuristic approaches published in this area often fail to out-perform
mathematical programming based methods [6]. Hence in this paper
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we explore a novelmatheuristic that combines the strengths of both
matehmatical (integer) programming and metaheuristics.

Of interest here are methods that combine Benders decomposi-
tion with metaheuristic algorithms. Benders decomposition breaks
large MIPs into a master problem and subproblems. The subprob-
lems are used to evaluate and test the feasibility of solutions pro-
posed by an optimisation process solving the master problem. Infor-
mation from the subproblems is also fed back to the master in terms
of additional constraints (cuts) generated from the subproblem solu-
tions. While the original idea of Benders decomposition algorithm
goes back to 1962 [4], there have been a lot of advances in recent
years that improved the effectiveness of the approach in practice.
For a recent review see [25]. There have also been a limited number
of attempts to combine Benders decomposition with metaheuristic
approaches. Poojari and Beasley [24] created a method based on
Benders decomposition where the master problem is always solved
with a Genetic Algorithm (GA) while the subproblem is solved us-
ing Linear Programming (LP) as in the standard Benders approach.
When tested on general MIPs, this proved to be more effective than
using the Benders method on its own but often less effective than
simply using an MIP solver without any decomposition. A little ear-
lier Sirikum et al. [26] independently developed a nearly identical
GA-Benders hybrid and applied it to a problem in power generation
expansion planning, a similar problem to the one considered here
but only looking at power generation investment without network
transmission or energy storage.

In this paper, we present a hybrid exact/metaheuristic algorithm
that melds Benders decomposition and a Bees Algorithm (BA) [23]
inspired approach. Unlike most other matheuristics, this method
retains the ability to generate provably optimal solutions. The ideas
of multiple bees that have different functions, scouts and workers,
is used to balance diversification and intensification in the solution
of the master problem. Multiple parallel optimisation processes are
used to speed up the search, that learn from each other not just
through the exchange of good feasible solutions but also by sharing
dual (cut) information obtained when solving Benders subproblems.
Using the transmission network expansion and energy storage plan-
ning model (TESP) to test the model, we show the Bee-Benders
hybrid algorithm (BBHA) to be an effective hybrid algorithm that
exhibits equivalent performance to its component parts in the seg-
ments of the problem domain where those parts are strongest, and
significantly improves upon the individual approaches where nei-
ther component part has a pronounced advantage.

The rest of this paper is organised as follows. The Bee-Benders
algorithm is introduced in Section 2. A MIP formulation of the
TEP with storage model is given in Section 3. Numerical results,
in which the algorithm is evaluated using the Brazilian 46-bus
and Colombian 93-bus test systems are discussed in Section 4. We
conclude in Section 5.

2 THE BEE-BENDERS HYBRID ALGORITHM
2.1 The Bees Algorithm
Here we present a hybrid exact/metaheuristic algorithm that com-
bines Benders decomposition with an approach inspired by the Bees
Algorithm. There are many variants of optimisation metaheuristics
inspired by the behaviour of bees (see for example [15] for a review

Algorithm 1: Bees Algorithm
Parameters : 𝑛𝑠: no. of scout bees

𝑛𝑟𝑒 ≥ 𝑛𝑟𝑏: no. of recruited bees per elite/best site
𝑛𝑒 ≤ 𝑛𝑏: no. of elite / best sites, 𝑛𝑏 ≤ 𝑛𝑠

𝑛𝑔ℎ, 𝑠𝑡𝑙𝑖𝑚: initial size of nghbhd. & stagnation limit
1 Generate initial sites 𝑆 = set of 𝑛𝑠 random solutions
2 while not stopping condition met do
3 Evaluate the fitness (objective) of all sites in 𝑆

4 Let 𝐸, 𝐵 ⊂ 𝑆 be the 𝑛𝑒 fittest & 𝑛𝑏 − 𝑛𝑒 next fittest sites
5 foreach solutions (sites) 𝑠 ∈ 𝐸 ∪ 𝐵 do
6 Evaluate 𝑛𝑟𝑒 (or 𝑛𝑟𝑏) neighbours of 𝑠 if 𝑠 ∈ 𝐸 (resp. 𝑠 ∈ 𝐵)
7 if better solution found then
8 Replace 𝑠 with the best solution found
9 else
10 Reduce the neighbourhood size 𝑛𝑔ℎ
11 Delete site 𝑠 if no improvement for 𝑠𝑡𝑙𝑖𝑚 iterations
12 Let 𝑆 := 𝐸 ∪ 𝐵 and add random solutions until |𝑆 | = 𝑛𝑠

of one of the alternatives, the Artificial Bee Colony optimisation).
Here we will follow the Bees Algorithm as proposed by [22, 23].

In the most basic form, the algorithm comprises two phases:
global search, and local search. A pseudo-code is given in Algo-
rithm 1. Each solution is referred to as a flower or site in the ter-
minology of the Bees Algorithm, and the local neighbourhood of a
solution is called a flower patch. In the initialisation phase, “scout”
bees leave the hive and fly to a random flower. The fitness of the
flower is evaluated and the scout bees return to the hive. During
the local search phase, the scouts who discover the 𝑛𝑒 elite and the
𝑛𝑏 best flowers (solutions) recruit “worker” bees to explore their re-
spective flower patches, that is, the flowers in the neighbourhood of
those the scouts discovered. Recruited worker bees fly to a random
flower within the flower patch and evaluate its fitness. The fittest
flower from the elite and best flower patches are combined with
the fittest new flowers discovered by scouts during the subsequent
global search phase to produce a new pool of elite and best solutions
for further local exploration. Stopping conditions may include time,
the number of iteration, or a test for convergence.

This can be thought as a multi-start local search algorithm which
always works on a subset of best known solutions, with more effort
expended in the neighbourhood of the elite solutions than the
remaining solutions. This algorithm can be parallelised in a fairly
straight forward manner by carrying out the search in each flower
patch (neighbourhood of an elite or best solution) in parallel. Also
the “scouting”, that is, generation of new random solutions, can be
carried out independently.

We have chosen to combine the BA with Benders decomposition
because it has been shown to perform at least as well as standard
evolutionary approaches, to be less sensitive to tuning parame-
ters than other swarm approaches such as PSO, and yet retains a
simplicity of implementation [23].

2.2 Benders Decomposition
Benders decomposition is a technique that allows a large, intractable
problem, such as the TESP model described in Section 3, to be di-
vided into more tractable component parts [4]. The first part is
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called the master problem and consists of a MIP that includes all of
the integer variables and any applicable continuous variables. The
second part consists of one or more subproblems that collectively
contain the remaining continuous variables. The master problem
yields a candidate solution of all of the integer variables. The sub-
problem(s) involving continuous variables only provide both an
evaluation of the objective (as in black-box optimisation), and using
the dual solution as a feasibility or optimality cut. In the problem
considered here only optimality cuts exist, which effectively create
a piece-wise linear surrogate function in the master problem. Par-
ticularly if 𝒚 is the vector of variables of the master problem with 𝑧
a variable representing the objective of the subproblem, then the
subproblem generates optimality cuts of the form 𝑧 ≥ 𝑟 − 𝒃𝑇𝒚, i.e.
the surrogate function is 𝑧𝐶 (𝒚) = max𝑐∈𝐶 {𝑟𝑐 − 𝒃𝑇𝑐 𝒚} where 𝐶 is
the set of cuts. Typically this is done using a branch-&-cut approach
where a single branch and bound tree of the master MIP is solved,
with subproblems at each node of the tree solved to dynamically
add cuts to the master problem (see [20] for details).

2.3 The hybrid method
The Bee-Benders hybrid algorithm (BBHA) is a hybrid of Benders
decomposition and a local search phase that is largely based on the
Bees Algorithm. The algorithm operates on a large MIP that has
been decomposed in a manner suitable for Benders decomposition.
The master problem contains binary variables representing certain
investment decisions, and an LP subproblem containing continuous
variables and largely operational constraints. The particulars of the
mathematical model detailed in Section 3.

As with the BA, the algorithm comprises global search and local
search phases. The global search phase commences as a conven-
tional Benders decomposition using a “single tree” master approach.
Lazy constraint callbacks are used to separate Benders cuts, as op-
posed to solving the master problem to optimality at each iteration.
This single tree branch and bound search fulfills the role of the
“scout” bee in the BA algorithm, ensuring that eventually the whole
solution space is searched and the method can never remain stuck
in a local optimum. It is assumed that the scout bee run in parallel
to the other bees. Meanwhile, an initial set of random solutions is
generated for exploration during the local search phase.

During the local search phase, “worker” bees (henceforth known
as “workers”) explore the local neighbourhood (subsequently re-
ferred to as a “site”) of each solution, by estimating the fitness a
subset of solutions using a surrogate function based on the set of
known Benders cuts. The most heuristically promising solution
discovered at the site is selected for full evaluation requiring so-
lution of the subproblem LP. These worker bees can also run in
parallel. As in the BA, the fittest solution from both the elite and
best sites are combined with the incumbent solution of the scout
bee to produce a new pool of solutions for further local search. The
algorithm iterates in this way until stopping condition is met, or
the Benders decomposition finds and proves the optimal solution.
A pseudo-code description of the BBHA is given in Algorithm 2.

2.3.1 Initialisation. The algorithm is initialised with a population
of 𝑛𝑟𝑒 + 𝑛𝑟𝑏 sites, which are distributed randomly with a uniform
spread over the solution space. The fitness of each is evaluated
exactly by solving the LP subproblem. Each LP subproblem also

Algorithm 2: Bee-Benders hybrid algorithm
Parameters : 𝑛𝑒 ≤ 𝑛𝑏: no. of elite / best sites
𝑛𝑟𝑒 ≥ 𝑛𝑟𝑏: no. of recruited bees per elite/best sites
𝑛𝑔ℎ > 0: max. Hamming distance defining a neighbourhood

1 Generate initial sites 𝑆 = set of 𝑛𝑟𝑒 + 𝑛𝑟𝑏 random solutions
2 Let 𝐶 be the set of Benders cuts
3 Start solving Benders decomposition with branch-&-cut,

separating Benders cuts 𝑐 at each node, 𝐶 := 𝐶 ∪ {𝑐}
4 foreach solutions (sites) 𝑠 ∈ 𝑆 do
5 Evaluate the fitness of 𝑠 by solving the subproblem(s)
6 Separate a Benders cut 𝑐 and let 𝐶 := 𝐶 ∪ {𝑐}
7 while not stopping condition met do
8 Let 𝐸, 𝐵 ⊂ 𝑆 be the 𝑛𝑒 fittest & 𝑛𝑏 − 𝑛𝑒 next fittest sites
9 foreach solutions (sites) 𝑠 ∈ 𝐸 ∪ 𝐵 do
10 Heuristically evaluate 𝑛𝑟𝑒 solutions 𝑠 ′ within distance 𝑛𝑔ℎ

of 𝑠 if 𝑠 ∈ 𝐸 (or 𝑛𝑟𝑏 solns if 𝑠 ∈ 𝐵) using surrogate 𝑧𝐶 (𝑠 ′)
11 if solution 𝑠 ′ with (heuristic) fitness less than 𝑠 then
12 Evaluate the fitness of 𝑠 ′ by solving the subproblem(s)
13 Separate a Benders cut 𝑐 and let 𝐶 := 𝐶 ∪ {𝑐}
14 Append 𝑠 ′ to 𝐸 (or 𝐵)
15 Let 𝑆 := 𝐸 ∪ 𝐵 ∪ {𝑏} where 𝑏 is the incumbent solution of

the branch-&-cut

produces a Benders cut which is stored in a shared pool of cuts. The
𝑛𝑏 best sites are selected for neighbourhood search. Simultaneously,
the algorithm commences solving the Benders decomposition using
the “single tree”master problem approach: Lazy constraint callbacks
are used to solve the LP subproblem and separate the cuts. This
means that the master problem need only be solved to optimality
once as opposed to once per iteration. Any generated cuts are added
to the shared pool of cuts.

2.3.2 The main loop. The main loop consists of two main phases:
neighbourhood search and cut sharing. The neighbourhood search
is carried out by each process independently, while the cut sharing
represents a communication step between the processes. The cuts
discovered by all processes are also shared at this point.

2.3.3 Neighbourhood search. At each iteration, the workers that
discovered the 𝑛𝑒 elite solutions, each recruit 𝑛𝑟𝑒 workers for neigh-
bourhood search. Likewise, the workers who discovered the remain-
ing 𝑛𝑏 − 𝑛𝑒 best solutions each recruit 𝑛𝑟𝑏 workers for neighbour-
hood search.

Neighbourhood search at a given site is performed by each
worker producing a pool of candidate solutions using a Hamming
distance function which randomly selects at most 𝑛𝑔ℎ binary vari-
ables to alter. For arbitrary MIPs with binary variables 𝑥𝑖 for 𝑖 ∈ 𝑁

and current solution 𝑠𝑖 , this effectively imposes the constraint∑︁
𝑖∈𝑁 :𝑠𝑖=0

𝑥𝑖 +
∑︁

𝑖∈𝑁 :𝑠𝑖=1
(1 − 𝑥𝑖 ) ≤ 𝑛𝑔ℎ.

In our application, a more specialised neighbourhood move can
be defined based on the structure of the problem. We have binary
variables that represent a unit increment in transmission capacity
between two locations (a right of way). Each right of way has 𝑝
binary variables denoting the installation of an equivalent line.
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This means that individually installing the 1𝑠𝑡 line is equivalent to
installing the 2𝑛𝑑 . . . 𝑝𝑡ℎ line. Clearly there is no point in randomly
replacing the installation of one line on a right of way with another.
For this reason the neighbourhood move operates on groups of
binary variables representing a single right of way and either adds
or subtracts one or more lines.

The fitness of each candidate solution in the pool is estimated
using the surrogate approach as shown in Algorithm 3. This is com-
putationally very cheap, avoiding even the matrix multiplication
for the case where the base cost in the master is already too high.
Step 3 is simply computing the function 𝑧𝐶 (𝒚̂) from Section 2.2.

Each worker then solves the LP subproblem for the most promis-
ing heuristically determined solution in their solution pool, and
the generated Benders cuts are added to the shared pool of known
cuts. The fitness scores of the solutions found by the workers are
combined with the incumbent solution of the Benders decomposi-
tion and are ranked from best to worst. The 𝑛𝑏 best solutions are
selected for neighbourhood search during the next iteration.

2.3.4 Cut sharing. At the conclusion of the neighbourhood search
phase any Benders cuts produced by worker or scout bees are added
to the shared pool of cuts. These may be added to the MIP solver
via the lazy constraint call-back in the branch-&-cut. The effect
of the cut sharing is that each of the bees has a more accurate
approximation of the objective function. With this approximation
the scout bee avoids searching any solution that is not at least
potentially better than the best found so far. The worker bees use
the approximation to quickly evaluate solutions and to identify the
most promising solution for which a full LP is solved.

2.3.5 Termination. The algorithm may terminate in several ways:
After 𝑛𝑚𝑎𝑥 iterations, 𝑡𝑚𝑎𝑥 seconds, or if the Benders decomposi-
tion identifies and proves the optimal solution. Note that even if the
time or iteration limit does not allow a provably optimal solution to
be found, we are still able to extract a lower bound from the branch
and bound tree that the scout bee has been searching. Thus even in
the case where the method is only a heuristic, we have an estimate
of the maximum gap to the globally optimal solution.

3 MATHEMATICAL MODEL OF TESP
We consider a electricity network consisting of nodes and arcs
(referred to as “rights of way” in the literature or as a link in this
paper). The ability to generate power and demand for power occurs
at the nodes over a number of time periods. The objective of the
complete TESP model is the is to minimise the investment cost of
expanding the transmission network while simultaneously min-
imising a penalty for load curtailment at nodes with net demand. A
discrete number of new or reinforcing circuits may be installed on

Algorithm 3: Heuristic fitness evaluation
Data: 𝒚̂: candidate solution with costs 𝒄 in the master
𝐵, 𝒓 : coefficient matrix & constants vector of the Benders cuts

1 Let 𝑧 := 𝒄𝑇 𝒚̂

2 if 𝑧 < fitness of the current incumbent then
3 Let 𝒗 := 𝑟 − 𝐵𝑦 and let 𝑧 := 𝑧 + max𝑖 {𝑣𝑖 }
4 return 𝑧

each link, and the size of any Energy Storage System (ESS) at the
nodes are determined.

Cyclic discrete time is used to model the period of operation, and
therefore the state of any installed ESS in the last time interval must
be identical to the state in the initial time interval. This might model
the typical power use over a day with the end of one day matching
the start of the next. Generation is re-dispatchable and demand may
vary between time intervals. Despite the introduction of time to
the model, the planning is static, and only a single final expansion
plan is produced. More complex models, for example with multiple
scenarios for demand and renewable power generation capacity, are
possible but not considered in this paper. The model determines the
network expansion plan in the master problem and the operational
characteristics (power flows, phase angles, energy storage) in the
subproblem. We follow the common practice of modelling power
flows using a DC approximation [17, p.36].

The mathematical model presented here and alternative mod-
elling approaches in the literature, are discussed in detail in [19, 20].
As such, only an abridged discussion of the decomposed model
follows. The key point to note here is that the main integer (binary)
variables to be determined relate to the links to be installed, while
a very large number of continuous variables and associated con-
straints have to be considered to determine the optimal generation,
storage and power flows for any choice of network expansion.

The following notation will be used throughout this paper to
define the TESP:
Sets: Γ the set of indices for buses;

Ω0 the set of rights of way for existing circuits;
Ω𝑐 the set of rights of way for candidate circuits;
Ψ the set of uniform time intervals {1, 2, . . . ,𝑇 };

Parameters:
𝛼𝑡𝑘 cost of curtailment at time 𝑡 at bus 𝑘 ;
𝑏𝑘 cost of installing storage at bus 𝑘 ;
𝑐𝑖 𝑗 cost of installing a circuit on link 𝑖 𝑗 ;
𝑑𝑡𝑘 demand at time 𝑡 at bus 𝑘 ;
𝑓𝑖 𝑗 maximum possible power flow on link 𝑖 𝑗 ;
𝑔𝑘 maximum possible generation at bus 𝑘 ;
𝛾𝑖 𝑗 susceptance of circuits installed on link 𝑖 𝑗 ;
𝑀𝑖 𝑗 the disjunctive parameter for link 𝑖 𝑗
𝑛0
𝑖 𝑗

number of existing circuits on link 𝑖 𝑗 ;
𝑛𝑖 𝑗 maximum installable circuits on link 𝑖 𝑗 ;
𝑥𝑘 maximum installable storage capacity at bus 𝑘 ;
𝑦
𝑝

𝑖 𝑗
master solution = 1 if the 𝑝th circuit is installed on 𝑖 𝑗 ;

Decision variables:
𝛽𝑡𝑘 power flow to storage at bus 𝑘 at time 𝑡 ;
𝑔𝑡𝑘 generation at time 𝑡 at bus 𝑘 ;
𝑓 0
𝑡𝑖 𝑗

power flow for existing circuits at time 𝑡 on link 𝑖 𝑗 ;
𝑓
𝑝

𝑡𝑖 𝑗
power flow for the 𝑝th circuit at time 𝑡 on link 𝑖 𝑗 ;

𝑙𝑡𝑘 level of storage at bus 𝑘 at time 𝑡 ;
𝑟𝑡𝑘 demand curtailment at time 𝑡 at bus 𝑘 ;
𝜃𝑡𝑘 phase angle at time 𝑡 at bus 𝑘 ;
𝑥𝑘 storage capacity installed at bus 𝑘 ;
𝑦
𝑝

𝑖 𝑗
binary variable = 1 if 𝑝th circuit installed on link 𝑖 𝑗 ;

𝑣 contribution of the subproblem to the master objective
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3.1 The master problem
The objective of the master problem is to minimize the function∑︁

(𝑖, 𝑗) ∈Ω𝑐

𝑐𝑖 𝑗𝑦
𝑝

𝑖 𝑗
+ 𝑧 (1)

where 𝑐𝑖 𝑗 is cost of installing a line on link 𝑖 𝑗 and𝑦
𝑝

𝑖 𝑗
is a binary vari-

able denoting the installation of the 𝑝th circuit on 𝑖 𝑗 . The estimated
cost of the subproblem is given by 𝑧. The master initially only has
symmetry breaking constraints (2) and basic variable bounds (3),
with additional Benders cuts added incrementally:

𝑦
𝑝

𝑖 𝑗
≥ 𝑦

𝑝+1
𝑖 𝑗

∀ (𝑖, 𝑗) ∈ Ω𝑐 , 𝑝 = 1 . . . 𝑛𝑖 𝑗 − 1 (2)

𝑧 ≥ 0, 𝑦
𝑝

𝑖 𝑗
∈ {0, 1} ∀ (𝑖, 𝑗) ∈ Ω𝑐 , 𝑝 = 1 . . . 𝑛𝑖 𝑗 (3)

3.2 The subproblem
Given a set of new circuit installations determined by the master
problem, the subproblem determines the cost of any installed ESS,
and a penalty for load curtailment.

The objective of the subproblem is to minimise the function

𝑧 =
∑︁
𝑘∈Γ

𝑏𝑘𝑥𝑘 +
∑︁
𝑡 ∈Ψ

∑︁
𝑘∈Γ

𝛼𝑡𝑘𝑟𝑡𝑘 (4)

where 𝑏𝑘 is the fixed cost of installing 𝑥𝑘 MW of storage at bus
𝑘 , and 𝛼𝑡𝑘 the cost of curtailing 𝑟𝑡𝑘 in each time interval 𝑡 . It is
assumed that the variable operating cost of ESS is low relative
to fixed costs, and these are therefore omitted from the objective
function.

The following technical constraints govern the operation of the
network. Nodal balance and power flow:
𝑑𝑡𝑘 = 𝜁 + 𝑔𝑡𝑘 + 𝑟𝑡𝑘 − 𝛽𝑡𝑘 ∀ 𝑡 ∈ Ψ, ∀ 𝑘 ∈ Γ (5)

𝜁 =
∑︁

(𝑖,𝑘) ∈Ω0

𝑓 0
𝑡𝑖𝑘

−
∑︁

(𝑘,𝑗) ∈Ω0

𝑓 0
𝑡𝑘 𝑗

+
𝑛̄𝑖 𝑗∑︁
𝑝=1

∑︁
(𝑖,𝑘) ∈Ω𝑐

𝑓
𝑝

𝑡𝑖𝑘
−

𝑛̄𝑖 𝑗∑︁
𝑝=1

∑︁
(𝑘,𝑗) ∈Ω𝑐

𝑓
𝑝

𝑡𝑘 𝑗

Nodal balance i.e. Kirchhoff’s current law is ensured for each time
interval by constraint (5). Power flows are modeled using a DC
approximation requiring that the phase angle at each bus be deter-
mined for each time interval:
𝑓 0
𝑡𝑖 𝑗 − 𝛾𝑖 𝑗𝑛

0
𝑖 𝑗

(
𝜃𝑡𝑖 − 𝜃𝑡 𝑗

)
= 0 ∀ 𝑡 ∈ Ψ, (𝑖, 𝑗) ∈ Ω0 (6)���𝑓 𝑝𝑡𝑖 𝑗 − 𝛾𝑖 𝑗 (𝜃𝑡𝑖 − 𝜃𝑡 𝑗 )

��� ≤𝑀 (1 − 𝑦
𝑝

𝑖 𝑗
) ∀𝑡 ∈ Ψ, (𝑖, 𝑗) ∈ Ω𝑐 , 𝑝 ≤ 𝑛𝑖 𝑗 (7)

Kirchhoff’s voltage law is implemented for existing and candi-
date circuits by (6), and (7). Here the absolute value function can
be linearised and𝑀 is simply a sufficiently large number. Thermal
limits on existing and candidate circuits are enforced by:���𝑓 0

𝑡𝑖 𝑗

��� ≤ 𝑛0
𝑖 𝑗 𝑓𝑖 𝑗 ∀ 𝑡 ∈ Ψ, ∀ (𝑖, 𝑗) ∈ Ω0 (8)���𝑓 𝑝𝑡𝑖 𝑗 ��� ≤ 𝑦
𝑝

𝑖 𝑗
𝑓𝑖 𝑗 ∀ 𝑡 ∈ Ψ, ∀ (𝑖, 𝑗) ∈ Ω𝑐 , ∀ 𝑝 = 1 . . . 𝑛𝑖 𝑗 (9)

Storage level and charge/discharge limits with “wrap around” are
implemented by the following constraints where 𝑙0𝑘 = 𝑙𝑇𝑘 :

𝑙𝑡𝑘 = 𝑙𝑡−1,𝑘 + 𝛽𝑡𝑘 ∀ 𝑡 ∈ Ψ, ∀ 𝑘 ∈ Γ (10)
0 ≤ 𝑙𝑡𝑘 ≤ 𝑥𝑘 ∀ 𝑡 ∈ Ψ, ∀ 𝑘 ∈ Γ (11)
0 ≤ 𝑥𝑘 ≤ 𝑥𝑘 ∀ 𝑘 ∈ Γ (12)

Constraint (12) establishes bounds on the installable storage capac-
ity at bus 𝑘 , while constraint (11) ensures the stored energy does
not exceed the installed capacity.

Bounds: Constraint (13) imposes bounds on generator dispatch,
while load curtailment is limited by demand. Note that the 𝑓 0

𝑡𝑖 𝑗
, 𝑓 𝑝
𝑡𝑖 𝑗

,
𝛽𝑡𝑘 and 𝜃𝑡𝑘 variables are unbounded.

0 ≤ 𝑔𝑡𝑘 ≤ 𝑔𝑘 ∀ 𝑡 ∈ Ψ, ∀ 𝑘 ∈ Γ (13)
0 ≤ 𝑟𝑡𝑘 ≤ 𝑑𝑡𝑘 ∀ 𝑡 ∈ Ψ, ∀ 𝑘 ∈ Γ (14)

3.3 Optimality cut
As noted above, load curtailment is permitted at any bus during
any time interval so long as it does not exceed demand at that bus
during the same time period. Therefore, the dual of the subproblem
remains bounded for any feasible solution to the master problem.
Accordingly, we only need to consider the following optimality cut:

𝑧 ≥
∑︁
𝑡 ∈Ψ

∑︁
(𝑖, 𝑗) ∈Ω𝑐

(
𝜋
𝛾
+𝑝
𝑡𝑖 𝑗

+ 𝜋
𝛾
−𝑝
𝑡𝑖 𝑗

) (
𝑀𝑖 𝑗 (1 − 𝑦

𝑝

𝑖 𝑗
)
)
+
∑︁
𝑡 ∈Ψ

∑︁
𝑘∈Γ

𝑑𝑡𝑘𝜋𝑟𝑡𝑘

+
∑︁
𝑡 ∈Ψ

∑︁
(𝑖, 𝑗) ∈Ω𝑐

[
𝜋
𝑓
+𝑝
𝑡𝑖 𝑗
𝑦
𝑝

𝑖 𝑗
¯𝑓𝑖 𝑗 + 𝜋

𝑓
−𝑝
𝑡𝑖 𝑗

𝑦
𝑝

𝑖 𝑗
¯𝑓𝑖 𝑗
]
+
∑︁
𝑡 ∈Ψ

∑︁
𝑘∈Γ

𝑑𝑡𝑘𝜋𝑑𝑡𝑘 (15)

+
∑︁
𝑡 ∈Ψ

∑︁
(𝑖, 𝑗) ∈Ω0

[
𝜋𝑓 +0

𝑡𝑖 𝑗
𝑛0
𝑖 𝑗

¯𝑓𝑖 𝑗 + 𝜋𝑓 −0
𝑡𝑖 𝑗
𝑛0
𝑖 𝑗

¯𝑓𝑖 𝑗
]
+
∑︁
𝑡 ∈Ψ

∑︁
𝑘∈Γ

𝑔𝑘𝜋𝑔𝑡𝑘 +
∑︁
𝑘∈Γ

𝑥𝑘𝜋𝑥𝑘

Here the dual variables 𝜋𝑑𝑡𝑘 correspond to constraint (5), 𝜋𝛾𝑡𝑖 𝑗 to (6),
𝜋
𝛾
+𝑝
𝑡𝑖 𝑗

& 𝜋
𝛾
−𝑝
𝑡𝑖 𝑗

to (7), 𝜋𝑓 +0
𝑡𝑖 𝑗

& 𝜋𝑓 −0
𝑡𝑖 𝑗

to (8), and 𝜋
𝑓
+𝑝
𝑡𝑖 𝑗

& 𝜋
𝑓
−𝑝
𝑡𝑖 𝑗

to (9). The
dual variables 𝜋𝑠𝑡𝑘 correspond to constraints (10). Lastly, duals 𝜋𝑙𝑘 ,
𝜋𝑔𝑡𝑘 , 𝜋𝑟𝑡𝑘 , and 𝜋𝑥𝑘 correspond to the bounds (11 - 14) respectively.

3.4 Limitations
The relative simplicity of this TESP formulation comes at the cost
of addressing certain features of a real world electrical transmis-
sion network. The most obvious limitation is that power flows are
modelled using a DC approximation to the AC power flow of most
transmission networks.

It is also assumed that the variable operating cost of ESS is neg-
ligible, at least relative to the fixed cost of installing and operating
the ESS over its lifetime, and that fixed costs increase linearly with
capacity. Power flow to and from ESS is limited only by the total
capacity and current level of the storage. The model allows that
the storage completely charge or discharge within a single time
interval. Furthermore, the model ignores losses during storage or
transmission of power. The model also assumes generator dispatch
does not incur costs, and that generators are not subject to technical
constraints such as ramp rate limits.

While it is possible to address these and other limitations of the
model with additional variables and constraints, these come at the
cost of significant complexity in both notation and implementation.
Here we have sought to balance to the realism of the modelling
with the intent to use the model simply to demonstrate the use of
the algorithmic approach.

4 NUMERICAL RESULTS
In each of the numerical experiments described in this section the
model is implemented in Python and CPLEX 12.6.3 is used as the
MIP solver. Parallelisation is achieved using multiple processes,
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not threading. The Benders decomposition is implemented with a
“single tree” master using lazy constraint callbacks. While the LP
solver may take advantage of multi-threading, the branch-&-cut is
single threaded.

4.1 Parameter tuning
There are a number of parameters to the BBHA algorithm which
may be tuned to find a set of default values that empirically demon-
strate good performance. These are given in Table 1. The IEEE-25
bus test system is used to benchmark combinations of parameters
presumed likely to perform well. A schematic and tabulated data
are available in [9]. The system has 25 buses and 36 rights of way
(links) with a total demand of 2750 MW. Without storage, and per-
mitting a maximum of 4 new or reinforcing circuits on each link,
the cost of the optimal expansion plan is US$107.7 million. An arbi-
trary cost coefficient of US$2000/MWh is used for storage in each
network tested. Under the long peak scenario in Figure 1 the cost
of the optimal expansion plan is US$43.8 million. This result is the
benchmark objective for the parameter tuning.

In this tuning exercise, 34 sets of parameters are compared over
the first 1800 seconds (30 minutes) of the optimisation. Rather than
just comparing the final solution quality, we integrate the objective
along the time axis with a composite trapezoidal rule and then
rescale against the worst (largest) integral to obtain a scaled trapz
score. The best result is that with lowest value. Only 5 sets of pa-
rameters find the optimal solution within the 30 minute window
([ne,nb,nre,nrb] = [1,2,30,10], [1,2,30,15], [2,3,20,10], [3,4,10,5], and
[3,4,20,15]). Figure 2 plots the best objective against time to demon-
strate the sensitivity of BBHA to the choice of parameters.

The Benders scout ensures that the BBHA is guaranteed to find
the exact optimal solution to the problem given sufficient time to
run to completion. Of course this may take a significant amount

Table 1: Default Parameters for the BBHA.

Name Description Val.

ne number of elite sites 1
nb number of best sites 2
nre recruited bees for elite sites 10
nrb recruited bees for remaining best sites 5
ngh maximum size of neighbourhood for local search 8

Figure 1: Load profiles used for each case study. (48× 30 min).

of time. The objective of the BBHA is to discover high quality
solutions quickly, and as such we favour parameter sets which
rapidly converge to such solutions in the case studies that follow.We
explore the performance of three sets of [ne,nb,nre,nrb] parameters:

2,3,10, 5 : parameters with the smallest scaled trapz score.
1,2,30,10 : fastest convergence to the optimal solution.
1,2,10, 5 : parameters with the largest number of iterations.
The final parameter to consider is the size of the neighbourhood

for local search 𝑛𝑔ℎ (Section 2.3.3). Figure 3 shows the distribution
of the hamming distance over the range 1-10 required to produce
the best improved solution of using 14000 workers. A value of
2 accounts for the largest number of improved solutions. This is
unsurprising as it reflects a typical swap move of replacing one
circuit with another. Given that the long tail of larger hamming
distances mainly occurs at the beginning of the optimisation, the
value of 𝑛𝑔ℎ was kept at 8 for all case studies.

4.2 Results
The algorithms were tested on two larger networks, the Brazillian
network with 46 buses, 79 links, total demand 6880MW, 𝑛𝑖 𝑗 = 5
(see [13]) and the Colombian network with 93 buses, 155 links total
demand 14559MW, 𝑛𝑖 𝑗 = 4 (see [11]). Network expansion plans are
optimised for four scenarios over a 24 hour period (see Figure 1).

Figure 2: Best and worst parameter sets for IEEE 25-bus net-
work and long peak scenario. The “Best” produces the best
solution quality on average over the run, while “Best obj”
produces the optimal solution the fastest for this instance.

Figure 3: Histogram showing the hamming distance to best
improved solution.
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Figure 4: 46-bus SGSC Winter scenario, parameters:1,2,10,5

Each scenario is optimised 𝑁 = 5 times for both the BBHA and
Bees algorithm, and once using Benders decomposition which as a
deterministic method exhibits little variance. Each run is limited to
4 hours. Results are shown in Table 2.

For the 46-bus instances, the parameter set [1,2,10,5] typically
matches or exceeds the mean performance of the other parameter
sets under investigation for the BBHA, whereas the parameter set
[1,2,30,10] exhibits better performance for the BA. The BBHA finds
the optimal solution for the short peak and SGSC summer and
SGSC winter demand scenarios, and the Benders scout is able to
prove optimality (as does the branch-&-cut run). For the long peak
scenario none of the methods are able to prove optimality. The
range of incumbent solution values over time is shown in Figure 4
for the SGSC winter scenario, demonstrating the ability of BBHA
to converge more quickly than the pure Benders approach.

For the 93-bus test system the parameter set [1,2,10,5] exhibits
consistently good performance for both the BBHA and BA. The
BA achieves a lower mean for the long peak scenario. The Benders
decomposition tends to lag behind both approaches for all scenarios
except the SGSC winter demand profile. However, the [1,2,30,10]
parameter configuration also does well. Insight into typical conver-
gence behaviour is give in Figures 5 and 6.

Figure 5: 93-bus SGSC Summer scenario, parameters:1,2,10,5

In instances, which Benders decomposition terminates with an
optimal solution, the BBHA algorithm typically not only discovers
the optimal solution heuristically well in advance of the Benders
decomposition, but is also able to prove optimality prior. This is the
case for the 46-bus network with the summer and winter scenario.
However for the short-peak scenario BBHA, while still proving
optimality, takes slightly longer than the pure Benders approach

Figure 6: 93-bus SGSC Winter scenario, parameters:1,2,30,10

In other instances, where Benders struggles to find any good
solutions, BBHA sometimes performs comparable to BA. This is
the case for example with the 93-bus long-peak scenario in which
BA has a slightly better mean performance, though the differences
are relatively minor.

Like any other hybrid approach the BBHA is a compromise. A
straight Benders decomposition implementation running on the
same computing infrastructure will evaluate more of the search
tree than the BBHA scout. Likewise, without the continuously
running scout or the trade off between producing Benders cuts and
local search the BA approach can dedicate more cores to evaluating
candidate solutions. As a result, the straight Benders approach tends
to outperform the BBHA in terms of the lower bounds it produces.
However since these are generally of much less interest than finding
good feasible solutions, and because the Bees algorithm is unable
to produce any lower bounds, we have restricted ourselves to only
compare upper bound solution quality in this analysis.

However, empirically we have found the benefits of cut sharing
largely negate any compromise. In the first instance, the cuts gen-
erated by the Benders scout improve the heuristic estimate of the
fitness of the candidate solutions in the worker solution pool. Like-
wise, the cuts generated in parallel by the elite workers are typically
in the neighbourhood of the incumbent solution they prove useful
to the Benders decomposition. Perhaps the clearest example of this
is shown in Figure 4. Here, by sharing cuts between workers and the
simultaneous Benders decomposition, the BBHA is able to prove
the optimal solution faster than Benders decomposition alone, even
though the Benders decomposition has a resource advantage on
the compute infrastructure.

5 CONCLUSION
In this paper, we introduced a hybrid exact/metaheuristic algo-
rithm that combines Benders decomposition and a Bees algorithm
inspired approach. To the best of our knowledge this is the first
such matheuristic based on Benders decomposition and the Bees
algorithm. The approach has been tested using the transmission
network expansion and energy storage planning model. This is a
very challenging problem that has been shown previously to be
intractable for standard MILP solvers [20]. The standard Benders
decomposition into investment and operational subproblems, is
able to solve some instances of our problem using branch-&-cut
while finding only very low quality solutions for others. On the
other hand the metaheuristic Bees Algorithm provides no proof of
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Table 2: Results for the BBHA compared with the basic Bee Algorithm and Benders Decomposition on their own. The BBHA &
Bee algorithm were run three times with different parameter settings for each instance.

Network Scenario Params BBHA worst BBHA mean BBHA best Bee worst Bee mean Bee best Benders
(US$103) (US$103) (US$103) (US$103) (US$103) (US$103) (US$103)

46-bus Long peak 1 2 10 5 121,394.82 107,205.36 100,110.63 216,458.67 170,644.48 144,749.27 111,840.23
46-bus Long peak 1 2 30 10 127,617.19 111,251.96 100,110.63 142,615.21 128,806.83 115,754.15 111,840.23
46-bus Long peak 2 3 10 5 119,453.01 113,597.68 110,321.02 241,328.47 201,617.23 180,162.04 111,840.23
46-bus Short peak 1 2 10 5 72,355.41 72,355.41 72,355.41 138,245.85 113,529.47 98,384.70 72,355.41
46-bus Short peak 1 2 30 10 72,355.41 72,355.41 72,355.41 116,960.58 108,905.22 102,433.18 72,355.41
46-bus Short peak 2 3 10 5 72,355.41 72,355.41 72,355.41 165,592.33 145,689.30 125,070.37 72,355.41
46-bus SGSC summer 1 2 10 5 46,434.71 46,434.71 46,434.71 72,356.25 65,746.02 52,702.91 46,434.71
46-bus SGSC summer 1 2 30 10 46,434.71 46,434.71 46,434.71 59,616.67 55,531.41 48,323.52 46,434.71
46-bus SGSC summer 2 3 10 5 46,434.71 46,434.71 46,434.71 108,743.60 93,496.44 78,362.36 46,434.71
46-bus SGSC winter 1 2 10 5 59,952.72 59,952.72 59,952.72 94,794.21 94,447.67 93,841.26 59,952.72
46-bus SGSC winter 1 2 30 10 59,952.72 59,952.72 59,952.72 85,922.72 77,248.63 68,314.38 59,952.72
46-bus SGSC winter 2 3 10 5 59,952.72 59,952.72 59,952.72 118,503.15 101,681.93 83,985.08 59,952.72
93-bus Long peak 1 2 10 5 1,834.13 1,743.23 1,581.22 1,977.77 1,705.92 1,429.31 9,537.89
93-bus Long peak 1 2 30 10 2,434.92 2,120.86 1,891.62 1,927.81 1,723.29 1,550.24 9,537.89
93-bus Long peak 2 3 10 5 2,391.34 2,258.85 2,137.23 1,882.27 1,832.58 1,740.81 9,537.89
93-bus Short peak 1 2 10 5 1,110.53 758.89 579.23 1,561.26 1,526.77 1,490.24 2,181.05
93-bus Short peak 1 2 30 10 960.64 835.98 704.98 1,707.68 1,539.22 1,286.71 2,181.05
93-bus Short peak 2 3 10 5 1,425.75 1,066.31 829.03 1,792.89 1,674.09 1,582.94 2,181.05
93-bus SGSC summer 1 2 10 5 1,076.99 928.03 848.93 1,519.32 1,403.26 1,266.19 2,592.20
93-bus SGSC summer 1 2 30 10 1,189.71 1,039.27 828.64 1,524.21 1,421.82 1,305.48 2,592.20
93-bus SGSC summer 2 3 10 5 1,093.63 1,078.31 1,059.19 1,733.61 1,639.30 1,530.99 2,592.20
93-bus SGSC winter 1 2 10 5 1,444.57 1,097.66 897.01 1,507.05 1,456.26 1,360.55 1,077.04
93-bus SGSC winter 1 2 30 10 904.47 812.52 738.34 1,636.75 1,558.55 1,474.41 1,077.04
93-bus SGSC winter 2 3 10 5 1,501.19 1,302.51 1,143.90 1,853.96 1,764.57 1,704.73 1,077.04

optimality and again is not able to reliably produce good solutions
for this problem.

The BBHA exhibits the essential characteristics of a hybrid opti-
misation method. Where the problem is readily solved by one of the
component optimisation methods the BBHA performs comparably
at minimum. Where each component optimisation method per-
forms similarly on a given problem, the hybrid approach exceeds
this individual performance. In short, the whole is greater than
the sum of its parts. The BBHA is general in nature and does not
require any special problem structure beyond the decomposition
required by the Benders decomposition method. Thus the approach
may be applied to any decomposable mixed integer program.
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