
An efficient fault-tolerant communication algorithm for
population-based metaheuristics

Amanda S. Dufek
National Laboratory for Scientific

Computing
Petrópolis-RJ, Brazil

Lawrence Berkeley National
Laboratory

Berkeley-CA, USA
asdufek@lbl.gov

Douglas A. Augusto
Oswaldo Cruz Foundation
Rio de Janeiro-RJ, Brazil

daa@fiocruz.br

Helio J. C. Barbosa
National Laboratory for Scientific

Computing
Petrópolis-RJ, Brazil

hcbm@lncc.br

Pedro L. S. Dias
University of São Paulo – IAG

São Paulo-SP, Brazil
pedro.dias@iag.usp.br

Jack R. Deslippe
Lawrence Berkeley National

Laboratory
Berkeley-CA, USA
jrdeslippe@lbl.gov

ABSTRACT
Parallel and distributed computing systems have been seeing rapid
growth in the number of processing cores as progress on single-core
performance has stagnated. The larger the system, the greater the
challenge for application scalability and system stability. Aiming at
addressing both challenges in the context of distributed metaheuris-
tic optimization algorithms, in this work, we propose a scalable
and fault-tolerant peer-to-peer communication algorithm tailored
for population-based metaheuristics. In the algorithm, messages
exchanging are carried out by multiple threads asynchronously
in background and the minimal algorithm’s overhead can be en-
tirely hidden by overlapping communication with computation.
Results from controlled benchmarks corroborate the efficiency of
the algorithm and also hint that thread oversubscription can fur-
ther improve scalability thanks to the high degree of idleness of
communication operations. The proposed algorithm contributes to
the important yet not sufficiently explored performance aspects of
distributed metaheuristics.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; •
Theory of computation → Optimization with randomized search
heuristics; • Computer systems organization → Peer-to-peer
architectures; Fault-tolerant network topologies;

KEYWORDS
Metaheuristics, Distributed communication algorithm, Asynchro-
nous, Scalable, Fault-tolerant

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3463144

ACM Reference Format:
Amanda S. Dufek, Douglas A. Augusto, Helio J. C. Barbosa, Pedro L. S.
Dias, and Jack R. Deslippe. 2021. An efficient fault-tolerant communica-
tion algorithm for population-based metaheuristics. In 2021 Genetic and
Evolutionary Computation Conference Companion (GECCO ’21 Compan-
ion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3449726.3463144

1 INTRODUCTION
Metaheuristics define general-purpose high-level strategies to guide
the development of heuristic optimization algorithms [27, 29] and
are usually capable of performing global search. They can be based
on a single solution — S-metaheuristics — or on a population of
solutions — P-metaheuristics. Well-known examples of metaheuris-
tics include the family of Evolutionary Algorithms, Simulated An-
nealing, Ant Colony Optimization, Particle Swarm Optimization,
Tabu Search, Variable Neighborhood Search, Iterated Local Search,
among others [29].

Upon solving a problem, particularly complex real-world prob-
lems, a common approach to improve the efficiency of metaheuris-
tics is to distribute the search among algorithm instances in a cooper-
ative way, with each instance possibly having different parameters
(homogeneous) or even being different metaheuristics (heteroge-
neous) [29]. This decomposition, known as algorithmic-level paral-
lel model, is conceptually simple and relatively easy to implement
atop existing metaheuristics; however, its main benefits entail the
improvement of effectiveness, scalability and robustness [5, 6, 29, 32].

In this context, the design and implementation of the layer that
performs the communication for exchanging messages among algo-
rithm instances is a major determinant of the overall performance
of algorithmic-level parallel metaheuristics, especially concerning
scalability and robustness. Here is where our proposed communi-
cation algorithm tailored for P-metaheuristics comes in.

Unlike other parallel models in which some computationally
costly procedures in P-metaheuristics (e.g. evaluation phase) are
parallelized, the algorithmic-level parallel model accelerates the

1290

https://doi.org/10.1145/3449726.3463144
https://doi.org/10.1145/3449726.3463144

GECCO ’21 Companion, July 10–14, 2021, Lille, France A.S. Dufek et al.

execution of a P-metaheuristic by dividing its population of |𝑃 | can-
didate solutions into 𝑝 independent runs of the algorithm, each one
with a population size of |𝑃 |/𝑝 ; that is, a single and costly run of the
algorithm is replaced by 𝑝 faster ones executed in a parallel coopera-
tive way. Here we will concentrate on the algorithmic-level parallel
model, although P-metaheuristics can be further decomposed into
multiple complementary parallel models, thereby achieving a high
degree of parallelism and scalability [4, 10, 26, 29].

There have been several researchers interested in the develop-
ment of parallel and distributed models for P-metaheuristics. Most
of their research focus on studying how the model’s parameter
settings and implementation strategies can contribute to popula-
tion diversity, quality of solutions, and the time required to obtain
them [3, 21, 22]. However, implementation and infrastructure de-
tails of the communication models as well as their behavior in terms
of efficiency, scalability and robustness have not been much studied
by researchers.

One of the major issues concerning the design of a robust parallel
and distributed system is its ability to continue operating properly
in case of a fault on a processor or on the communication channel.
In fact, that is a particularly serious problem for grid computing
systems, which are inherently unreliable due to their volatility.
Indeed, in non-dedicated distributed computing environment fail-
ures are inevitable since volunteers’ machines can be turned off
at any moment and even when running they are usually available
only while they are in an idle state [14]. Unfortunately, a large
number of publications in this area have not taken into account
the problems arising from the emergence of faults that may break
down all algorithm instances. Message Passing Interface (MPI) is
an example of a communication interface that does not provide an
inherent fault-tolerance support by default.1 For such cases, there
are some recovery techniques from which a state of the running
instances prior to the failure is restored [13, 25, 30, 31]. However,
such techniques have important shortcomings. In addition to losing
the failed messages and the progress since the last checkpoint, the
periodical storage of state data makes the approaches much more
complex and computationally costly. On the other hand, when us-
ing an inherently fault-tolerant communication interface — like the
socket-based peer-to-peer model [28] — connection failures may
lead to lost messages but the remaining instances continue to run
seamlessly; also, there is evidence that message exchange failures
by themselves do not adversely affect the quality of solutions in
algorithmic-level parallel models [16].

Another issue of paramount importance regarding the design
and efficiency of communication models is the definition of the
message exchange pattern across the processes. Synchronous par-
allel strategies are easier to implement than their asynchronous
counterparts, but an obvious drawback of them is the time spent
by the processes waiting for each other so that all communication
is carried out at the same time. That leads to overall performance
degradation with respect to scalability, and an increase in commu-
nication overhead with the number of processes [1, 11]. In contrast,
the processes in asynchronous parallel strategies communicate

1To be fair, MPI can be made more fault-tolerant by adjusting its behavior regarding
error handling [15], but this approach is not straightforward and rarely adopted by
MPI programs.

independently, which is clearly advantageous when it comes to
performance.

In this work we present an asynchronous and fault-tolerant
peer-to-peer communication algorithm based on sockets for P-
metaheuristics, with emphasis on the effectiveness, scalability and
robustness, as well as on the design and implementation aspects.
Other research on asynchronous and fault-tolerant approaches to
some specific P-metaheuristics can be found in the literature [12, 17–
19, 33, 34]. The most important differences between them and
the current paper are: (i) it can be applied to any population-
based metaheuristic; (ii) it minimizes the algorithm’s overhead by
communication-computing overlapping; (iii) the parallel asynchro-
nous execution of multiple threads for messages exchanging takes
place in background; (iv) the effective time spent on synchronous
blocks is negligible; (v) it is optimized for modern heterogeneous
system architectures; (vi) it maximizes the effective use of comput-
ing power; (vii) messages are received continuously as soon as they
arrive and integrated into the population in the next iteration; and
(viii) the mechanism of sending messages is fine-grained, being
capable of carrying out the communication at every iteration.

2 PEER-TO-PEER COMMUNICATION
ALGORITHM

2.1 Peer-to-peer P-metaheuristics
In the cooperative algorithmic-level parallel model, many indepen-
dent runs of P-metaheuristics are launched simultaneously in a
parallel cooperative way, each of them assigned to a different local
or remote processor, in order to solve a given optimization problem.
It is also known as island model when dealing with a particular class
of P-metaheuristic called evolutionary algorithms [8, 9]. In terms of
implementation, it basically consists of a P-metaheuristic coupled
with a communication algorithm for exchanging messages, whose
implementation varies according to the parallel and distributed
architecture (clusters, networks of workstations, grids) and pro-
gramming environment (Message Passing Interface, Parallel Virtual
Machine, Sockets) [29].

A general scheme of the algorithm proposed here in pseudo-code
is outlined in Algorithm 1, and it will be explained in the following
paragraphs.

Algorithm 1: Peer-to-peer P-metaheuristics (adapted from [29])

11 𝑠𝑒𝑟𝑣𝑒𝑟 .start(); [async] // peer is ready to receive messages

𝑡 ← 0;
33 𝑃𝑡 ← initialize(); 𝑃 ′𝑡 ← ∅; // initialization of the population

evaluate(𝑃𝑡); // evaluate population

while stopping criteria not met do
66 𝑃

′
𝑡 ← 𝑃

′
𝑡∪ generate(𝑃𝑡); // generate next population

77 𝑒 ← evaluate(𝑃
′
𝑡); [async]

88 send(𝑃𝑡); // send selected solutions from 𝑃𝑡 to remote peers

99 𝑃
′
𝑡+1 ← receive(); // transfer the received solutions to 𝑃

′
𝑡+1

waitFor(𝑒); // wait until evaluate(𝑃
′
𝑡) has finished

1111 𝑃𝑡+1 ← select(𝑃𝑡 ∪ 𝑃
′
𝑡); // form next population

𝑡 ← 𝑡 + 1;
return the best solutions found

1291

An efficient fault-tolerant communication algorithm for P-metaheuristics GECCO ’21 Companion, July 10–14, 2021, Lille, France

P-metaheuristics begin with the generation of an initial popula-
tion of candidate solutions, 𝑃0 (line 3). The role of the population
is to hold candidate solutions to a problem. Each iteration of a P-
metaheuristic includes three main procedures: (i) the generation of
a new population of solutions, 𝑃

′
𝑡 (line 6); (ii) the evaluation of solu-

tions according to some objective function, which assigns a quality
measure to the solutions (line 7); and (iii) the replacement of the
current population, 𝑃𝑡 , by another one, 𝑃𝑡+1, composed of solutions
selected from the current, 𝑃𝑡 , and the new, 𝑃

′
𝑡 , populations (line 11).

This process iterates until a stopping criterion is satisfied [29].
We propose a peer-to-peer communication algorithm to incor-

porate the algorithmic-level parallelism into P-metaheuristics by
adding three procedures: (i) the continuous receipt of solutions
sent by remote peers (line 1 — Algorithm 2 in Section 2.4); (ii) the
sending of selected solutions from the previous population, 𝑃𝑡 , to
each remote peer (line 8 — Algorithm 4 in Section 2.5); and (iii) the
transfer of received solutions to the next population, 𝑃

′
𝑡+1 (line 9 —

Algorithm 3 in Section 2.4). In case 𝑃
′
𝑡 in line 6 already has some

solutions due to the execution of line 9 in the previous iteration,
the generate() function will be responsible for generating just
the remaining solutions into the next population; otherwise, it will
fully generate the next population. Note that each peer assumes
both server and client roles and there is no central agent. Here-
after, the term client will be used to refer to a given peer when it
is sending messages to (connecting to) remote peers, and the term
server will be used to refer to a peer when it is receiving messages
(listening to connections) from remote peers. Beware not to confuse
the terminology used with client-server communication model.

Given that the evaluation phase (line 7) is typically the most
computationally costly procedure in P-metaheuristics, it runs con-
currently with both the send() and receive() functions (lines 8
and 9). That is, the algorithm overlaps computation and communi-
cation, which in practice fully hides the communication effort. It
is worth noticing that the solutions sent to remote peers belong to
the previous population 𝑃𝑡 , i.e. they do not belong to the popula-
tion 𝑃

′
𝑡 , whose solutions are undergoing the process of evaluation.

Furthermore, after the multi-threaded server starts (line 1), when-
ever a client connects to it a thread is automatically spawned in
background to receive the message. The send() and receive()
functions in turn are executed every iteration. Hereafter, the algo-
rithm resulting from the union of P-metaheuristic and the peer-to-
peer communication algorithm will be referred to as peer-to-peer
P-metaheuristics (in short, P2P-metaheuristics).

Therefore, a P2P-metaheuristic minimizes the impact of the com-
munication operations on the total execution time while maximiz-
ing the effective use of computing power. Although we focus on
population-based metaheuristics, the communication algorithm
can also be applied to metaheuristics based on a single solution
with minor adaptations in line 6. For instance, we can replace it by
𝑃
′
𝑡 ← generate(𝑃𝑡 ,𝑃

′
𝑡), in which a new single solution is obtained

from two previous ones.

2.2 Illustrative scheme
This section aims at presenting a general view of the execution of
the described P2P-metaheuristics through illustrative schemes to
facilitate the understanding of its overall functioning.

Figure 1 shows a hypothetical communication topology between
three processes: P1, P2 and P3. For the given topology, the processes

send

server

receive

P1

P3
send

server

receive

P2
send

server

receive

Figure 1: Hypothetical communication topology with three pro-
cesses: P1, P2 and P3. Each process P is represented by a multi-
threaded server and by the send() and receive() functions.

P1 and P3 send messages to the other two processes, while P2 sends
messages only to P1. Therefore, P1 and P2 receivemessages from the
other two processes, while P3 receives messages only from P1. The
connection between server and receive() describes the transfer
of received solutions to the population. It is worth mentioning
that there are no restrictions with regard to the communication
topology, i.e. it does not necessarily have to follow a well-known
graph structure such as ring, star and mesh topologies.

Figure 2 depicts an illustrative execution timeline of the compu-
tation and communication tasks of P2P-metaheuristic executed by
P1; they are: (i) the incoming message processing (server’s run()
and receive()); (ii) the generation of a new population of solu-
tions (generate()); (iii) the evaluation of solutions according to
some objective function (evaluate()); (iv) the outgoing message
processing (send()); and (v) the formation of a new population of
solutions (select()). The asynchronous message exchanges be-
tween P1 and the other two processes, P2 and P3, are assigned to
sending threads, Ts1 and Ts2 , and receiving threads, Tr1 and Tr2 ,
running in background. The server’s run() is automatically ex-

T
s
2

T
s
1

P3

P2

T
s
2

T
s
1

P3

P2

1st Iteration 2nd Iteration

select

 T
r
2

T
r
1

P3

P2

generate

send

receive

server's
 run

evaluate

Figure 2: Illustrative execution timeline visualization of the compu-
tation and communication tasks of a P2P-metaheuristic executed by
process P1. Vertical dashed lines indicate the beginning of an itera-
tion. Note that only the first two iterations were reproduced here.

ecuted by a receiving thread whenever P2 and P3 connect to P1.
The scheme of Figure 2 highlights a particular case where the com-
pletion of sending a message to the process P2, initialized in the
first iteration by the thread Ts1 , occurs only in the next iteration. It
shows that the message exchange operations do not interfere with
the execution of the P-metaheuristic, both running concurrently.
Moreover, the communication overhead relative to the send() and
receive() functions is reduced or even completely hidden by over-
lapping them with evaluate().

1292

GECCO ’21 Companion, July 10–14, 2021, Lille, France A.S. Dufek et al.

2.3 Peer-to-peer communication model
The communication among P-metaheuristics follows the peer-to-
peer model based on sockets [28], and they exchange some infor-
mation during the iterative search through message passing within
a node or via a network (cluster, network of workstations, grid).
Each P-metaheuristic instance has its own socket and multi-threads
responsible for sending and receiving messages, and assumes both
server and client roles. Each socket in turn is associated with an
Internet Protocol (IP) address and a port number.

The most important features of the proposed communication
algorithm are as follows:

(i) Efficiency and scalability: the algorithm aims at maximiz-
ing the overlap between computation and communication
tasks as well as the effective use of computing power, and
minimizing the synchronous operations.

(ii) Fault tolerance: given that we are using an inherently fault-
tolerant communication interface, failures on processors or
on the communication channels are ignored in the sense that
incomplete messages are lost but the remaining processes
keep operating correctly. Furthermore, if/when the failed pro-
cesses come back, their respective exchanges of messages are
automatically reestablished.

(iii) Asynchronous: there is no synchronization barrier among
the algorithm instances preceding the communication opera-
tions. Themessage exchanges are executed bymultiple threads
in a parallel asynchronous way, running in background.

(iv) Topology: the communication topology can follow any graph
structure. Moreover, the initial topology can be dynamically
modified by adding or removing processes or connections. It
is also possible to modify the parameters of P-metaheuristics
on-the-fly.

(v) Message exchanged: although we have been systematically
referring to messages as solutions, there is nothing in the pro-
posed algorithm that prevents exchanging other types of infor-
mation, such as parameters, search memory, similarity mea-
sures, among others [2, 20].

(vi) Architecture: there are no restrictions with regard to the par-
allel and distributed architectures neither the latency, band-
width and reliability of the communication channel. However,
as the algorithm is based on sockets, which by design are not
optimized for low-latency high-throughput networks, these
networks will not contribute substantially performance-wise.

Therefore, the peer-to-peer communication model based on sock-
ets seems to be the most suitable proposal for incorporating the
algorithmic-level parallelism into P-metaheuristics when the mes-
sage exchanging follows the pattern shown in Algorithm 1. In this
context, the socket-based approach brings an obvious advantage
over MPI: it works satisfactorily on every network architecture,
even on slow and unreliable ones such as grid computing. De-
spite that, MPI would be definitely preferred for communication-
intensive applications that demand high-performance interconnects
(i.e. low-latency and high-bandwidth), and may afford access to
dedicated and fully reliable network.

2.4 Incoming message processing
Whenever a client connects to a server, the server’s run() function,
shown in Algorithm 2, is automatically executed by a thread, with
the maximum number of receiving threads defined a priori. Us-
ing the rcvMessage() function (line 5), the multi-threaded server
receives the solution sent by the client, and temporarily stores it
into buffer vector — called 𝑏𝑢𝑓 — in an asynchronous way. The
buffer vector consists of a vector of pointers to characters of size
𝑏𝑢𝑓𝑚𝑎𝑥_𝑠𝑖𝑧𝑒 . It is shared by all receiving threads. The set of state-
ments within an indented block of code by the lock directive — a
critical section — is executed by only one thread at time, i.e. the
receiving threads perform in a synchronous way. The access control
of receiving threads to critical sections follows the FIFO system
(First in, first out).

Algorithm 2: Server’s run()

11 if 𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒.empty() then return();
lock

if 𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒.empty() then return();
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒.pop();

55 rcvMessage(𝑏𝑢𝑓 [𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛]) ;
lock

𝑟𝑒𝑎𝑑𝑄𝑢𝑒𝑢𝑒.push(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) ;

Let𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒 and 𝑟𝑒𝑎𝑑𝑄𝑢𝑒𝑢𝑒 be queues shared by all receiving
threads, and composed of available positions of the buffer vector
for writing and reading operations, respectively. Thus, an element
of𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒 represents an available position of the buffer vector
for temporarily storing the solution coming from a client; while
an element of 𝑟𝑒𝑎𝑑𝑄𝑢𝑒𝑢𝑒 is a position of the buffer vector whose
solution is ready to be included in the server’s population. The
queue 𝑟𝑒𝑎𝑑𝑄𝑢𝑒𝑢𝑒 is initially empty while the queue 𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒
contains all the 𝑏𝑢𝑓𝑚𝑎𝑥_𝑠𝑖𝑧𝑒 positions of the buffer vector.

According to line 1 in Algorithm 2, if the𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒 is empty,
the incoming message processing by the thread in question is in-
terrupted. However, it can be easily replaced by a while loop that
will wait until the buffer vector is available for a write operation.

At the end of each iteration of the P-metaheuristic, receive(),
shown in Algorithm 3, is executed until a stopping criterion is sat-
isfied: a maximum number of arriving solutions 𝑏𝑢𝑓𝑚𝑎𝑥_𝑠𝑖𝑧𝑒 in the
population is reached or 𝑟𝑒𝑎𝑑𝑄𝑢𝑒𝑢𝑒 is empty (line 1). The solution,
whose position in the buffer vector is given by the first element
of 𝑟𝑒𝑎𝑑𝑄𝑢𝑒𝑢𝑒 (line 3), is transferred to the server’s population by
copyToPopulation() (line 4). Once the solution transference is
finished, its position in the buffer vector is released (line 7) in order
to store a new solution by the server’s run() function.

Note that the read and write operations are exclusive, thus
𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒 and 𝑟𝑒𝑎𝑑𝑄𝑢𝑒𝑢𝑒 have no elements in common, and the
element removed from a queue is inserted into the other queue after
the completion of the tasks: rcvMessage() (line 5 of Algorithm 2)
and copyToPopulation() (line 4 of Algorithm 3).

Since the server’s run() and receive() functions are indepen-
dent and the first one is executed by multiple threads, the pop()
and push() operations on the two queues are synchronous by using
the lock directive. As a result, a queue cannot be assigned to two
or more threads simultaneously. The server’s run() function and

1293

An efficient fault-tolerant communication algorithm for P-metaheuristics GECCO ’21 Companion, July 10–14, 2021, Lille, France

Algorithm 3: receive()

11 while not 𝑟𝑒𝑎𝑑𝑄𝑢𝑒𝑢𝑒.empty() and 𝑏𝑢𝑓𝑠𝑖𝑧𝑒 < 𝑏𝑢𝑓𝑚𝑎𝑥_𝑠𝑖𝑧𝑒 do
lock

33 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑟𝑒𝑎𝑑𝑄𝑢𝑒𝑢𝑒.pop();

44 copyToPopulation(𝑏𝑢𝑓 [𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛]) ;
𝑏𝑢𝑓𝑠𝑖𝑧𝑒 ← 𝑏𝑢𝑓𝑠𝑖𝑧𝑒 + 1;
lock

77 𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒.push(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) ;

receive() aim at minimizing the number of locks as well as the
number of statements within the critical sections.

2.5 Outgoing message processing
Let 𝑘 + 1 be the number of processes and 𝐾 be the set containing
all the 𝑘 servers, 𝑠1, 𝑠2, . . . , 𝑠𝑘 , available for each client. At first,
a client can connect to any server. However, depending on the
communication topology adopted, a client will connect to a subset
of 𝐾 — called 𝑆 — where 2𝑘 is the number of possible subsets.
The communication between a client and its subset of servers 𝑆
is done concurrently, with the number of sending threads equal
to the size of 𝑆 , given by |𝑆 |. Each pair client-server is associated
with a sending frequency — called 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 — that represents the
probability that the client will send a solution to the server. For
instance, if the sending frequency of a given pair client-server is
equal to one, then it has 100% probability.

At the end of each iteration of the P-metaheuristic, the process
of sending a solution from the client’s population — called 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
— to the server 𝑠𝑖 , 𝑖 = 1, . . . , |𝑆 |, is initiated by the send() function,
shown in Algorithm 4.

Algorithm 4: send()

11 for 𝑖 ← 1 to |𝑆 | do
22 if [probabilistically] 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑖] then
33 if 𝑡ℎ𝑟𝑒𝑎𝑑 [𝑖] .isRunning() then continue();
44 𝑡ℎ𝑟𝑒𝑎𝑑 [𝑖] .𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← selection();
55 𝑡ℎ𝑟𝑒𝑎𝑑 [𝑖] .run(); [async]

At each iteration 𝑖 of the 𝑓 𝑜𝑟 loop (line 1), if the conditional
statement is true (line 2), the client’s run() function (line 5) is exe-
cuted by the thread 𝑖 that sends 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, selected from the client’s
population (line 4), to the server 𝑠𝑖 . The line 3 checks whether the
thread 𝑖 , run in the previous iteration, is still running. If that is the
case, the sending of a new solution to the server 𝑠𝑖 is interrupted
until the previous one ends.

The client’s run() function, shown in Algorithm 5, contains
just one statement. Using the sndMessage() function, the client

Algorithm 5: Client’s run()
sndMessage() ;

requests a connection to the server, sends a solution and disconnects.
In case the connection between client-server is not established in a

predefined period of time, the outgoing message processing by the
thread in question is interrupted.

Note that because of the complete loop independence in Algo-
rithm 4, with just a simple OpenMP parallel for directive [7] it is
possible to parallelize the loop inside the send() function (line 1),
and so distribute the |𝑆 | iterations of the for loop among OpenMP
threads.

3 BENCHMARKS
The communication behavior of the algorithm presented in the
previous section is evaluated in terms of efficiency and scalabil-
ity on three benchmarks, which carry out a separate analysis of
each communication operation as well as both of them working
together. The benchmark discussed in Section 3.1 takes into account
only the incoming message processing, while the one addressed
in Section 3.2 considers solely the outgoing message processing.
Thereafter, the entire process of exchanging messages is shown in
Section 3.3.

The proposed communication algorithm has been implemented
in the C/C++ programming language using the API provided by the
portable POCO C++ Libraries [23]. POCO offers a variety of conve-
nient routines for peer-to-peer communication andmulti-threading,
such as: (i) network socket, (ii) multi-threaded server that listens for
connections in background and spawns worker threads accordingly,
(iii) thread pools, and (iv) thread synchronization mechanisms.

We introduced the communication algorithm into an existing
P-metaheuristic powered by an evolutionary algorithm known as
grammatical evolution [24], which searches — by means of princi-
ples of natural selection — for symbolic regression and classification
models that minimize the prediction error according to a training
dataset. The implementation is dubbed Parallel Program Induction
(PPI)2, and was specifically adapted to the benchmarks in order to
make the results general and valid for any P-metaheuristics.

All the experiments were conducted on a single node featuring
two 10-core Intel E5-2690v2 CPUs (Hyper-Threading was disabled
to ensure reliable analysis), totaling 20 physical cores, running a 64-
bit Debian GNU/Linux system. The implementation was compiled
with GNU GCC 6.3, with optimization flags enabled. Although the
benchmarks run on a single node, the latency and bandwidth of a
network are simulated therein, making such parameter controllable,
which would not be possible in a real-world scenario. A choice
of a single node does not impair the experiments since we are
assessing the efficiency and scalability of the algorithm in terms
of execution time, speedup and receiving rate. We are not worried
about experimentally evaluating the algorithm’s fault-tolerance
ability because (i) the algorithm is fault-tolerant by design; and (ii)
the socket-based peer-to-peer communication interface provides
an inherent fault-tolerance support by default (see Section 2.3 (ii)).

3.1 Incoming message processing
The benchmark reported in this section simulates the incoming
message processing in order to analyze the effects of varying (i) the
maximum number of receiving threads and (ii) the execution time
of the rcvMessage() function (line 5 of Algorithm 2) on the time

2PPI is a Free Software available at
http://github.com/daaugusto/ppi [10]

1294

GECCO ’21 Companion, July 10–14, 2021, Lille, France A.S. Dufek et al.

required by the server’s run() function to receive 1000 solutions,
each one of size 1000 bytes. The outgoing message processing is
switched off temporarily, allowing us to focus only on the incom-
ing message processing. Although in practice the communication
among P-metaheuristics is relatively low, the purpose of the current
experiment is to exhaust the receiving threads with an intense flow
of messages in order to evaluate the limiting behavior of the server’s
run() and receive() functions. The communication topology con-
sists of a central server that is connected to |𝑆 | = 5 remote clients, as
illustrated in Figure 3a. The central server receives messages from

(a) (b) (c)

Figure 3: (a) A central server and five remote clients (Section 3.1). (b)
A central client and eight remote servers (Section 3.2). (c) A central
peer and eight remote peers (Section 3.3).

all remote clients, and every remote client sends messages only
to the central server. The maximum number of receiving threads
was expressed as a power of 2 ranging from 1 to 64. The different
times to execute the rcvMessage() function draw an analogy to
some possible combinations between latency and bandwidth that
together dictate the speed and capacity of transferring data over
the local network or Internet as well as network problems. That
is achieved by including a sleep() function in the scope of the
rcvMessage() function, whose argument varied from 5 millisec-
onds to 1 second. For each combination between number of threads
and data transfer time, a total of ten independent runs were per-
formed, and the resulting median execution time and speedup over
them was used to provide a performance analysis.

Figure 4a-b shows a three-dimensional plot of the median execu-
tion time of the server’s run() and receive() as a function of the
number of receiving threads and the data transfer time set by the
sleep() function in the rcvMessage() function. It is observed that
the total execution time required by the server’s run() to receive
all solutions decreases as the number of threads increases, dropping
off rapidly for the domain between 1–16 threads and 500–1000 mil-
liseconds (see Figure 4a). Indeed, the process of incoming messages
exhibits a very good scalability, and even scale past the number of
physical threads due to the high degree of idleness of communi-
cation operations (see Figure 5a). The speedup is near-linear with
respect to the number of threads. It means that the impact of the
synchronous operations followed by the lock directive on the in-
coming message processing is negligible. In addition, the lower the
number of threads, the more pronounced is the slope relative to the
data transfer axis, as we can see in Figure 4a. In other words, the
total time taken to receive all solutions becomes less dependent on
the time spent by a single run as the number of threads increases.

The receiving rate of messages decreases proportionally to the
data transfer time over network. For instance, if server’s run()
runtime takes 1 second, just one solution has been received in this

time interval by a single thread. However, if server’s run() runtime
is 100 times faster, i.e. it takes 10 milliseconds, it is expected that
100 solutions have been received within 1 second by a single thread,
and so on. The server’s run() function receives messages at a rate
that varies from 1 to 196 solutions per second, depending on the
data transfer time (see Figure 5b). Given that the receiving rate
is worth 196 solutions per second when set up with a sleep()
time of 5 milliseconds, the time attributed to statements other than
rcvMessage() is about 0.1 millisecond, being the lock time around
0.04 millisecond. Note that the receiving rate is invariant with the
number of threads.

The median execution time of the startup tasks that precede the
execution of the server’s run() function is roughly 35 milliseconds,
independently of the number of threads (see Figure 5c 3). It is worth
mentioning that the startup tasks run only once at the beginning
of P2P-metaheuristic (line 1 of Algorithm 1), becoming irrelevant
with regard to its total execution time.

After the multi-threaded server receives all the 1000 solutions
of size 1000 bytes asynchronously in background, the receive()
function takes roughly 1 millisecond transferring them to the pop-
ulation sequentially, reaching 2.4 milliseconds in some runs (see
Figure 5d). It is worth mentioning that the server’s run() contin-
ues receiving solutions while receive() is running. Therefore, the
threads compete for the locks, which adds a slight delay to the end
of receive(). By consequence, receive() takes a slightly longer
time as the number of threads increases (see Figures 4b and 5d).
However, according to Figure 4b, the maximum median runtime
was 2.4 milliseconds when set up with one thread and transfer data
time of 1 second. It biased the mean and median from a sample of
10 runs×6 data transfer time relative to one thread, as shown in
Figure 5d. Unlike the other configurations, that can be seen as a
persistent behavior. Nevertheless, this configuration is unusual in
practice, besides being an isolated case. Furthermore, the aforemen-
tioned runtime is irrelevant in regard to the server’s run() runtime,
whose values varied from 0.10 to 1005.80 seconds (see Figure 4a).

According to Algorithm 1, receive() runs immediately after
send() launches the sending threads, and both run concurrently
with the evaluation of the objective function. Therefore, send()
and receive() do not introduce additional time into the
P-metaheuristics runtime when the execution time of evaluate()
is higher than that obtained by send() and receive() together.
The send() runtime will be discussed in the next section.

3.2 Outgoing message processing
The benchmark conducted in this section provides a performance
analysis of the outgoing message processing as a function of two pa-
rameters: message size and number of remote servers. The incoming
message processing is switched off temporarily. The communica-
tion topology consists of a central client that is connected to |𝑆 |
remote servers, as illustrated in Figure 3b for |𝑆 | = 8. The central
client always sends one solution selected from a population of size

3A box plot presents a quick sketch of the distribution of a data set. The box is bounded
by the upper and lower quartiles, and thus locates the central 50% of the data. The bar
inside the box is the median. Open circles represent the sample mean. The whiskers
extend from the quartiles to the most extreme value that is within one-half times the
distance of the interquartile range away from the quartiles. Data beyond the end of
the whiskers are plotted individually [35].

1295

An efficient fault-tolerant communication algorithm for P-metaheuristics GECCO ’21 Companion, July 10–14, 2021, Lille, France

Number of Threads

10 20 30 40 50 60
Data Transfe

r (m
s)

200
400

600
800

1000

Ti
m

e
(s

)

−200
0

200
400
600
800
1000

(a) server’s run()

Number of Threads

10 20 30 40 50 60
Data Transfe

r (m
s)

200
400

600
800

1000

Ti
m

e
(m

s)

0.0

0.5

1.0

1.5

2.0

(b) receive()

Remote servers

2 4 6 8 10 12 14 16
Messa

ge Size
 (ki

lobyte
)

1
2

3
4

5

Ti
m

e
(m

s)

0
1
2
3
4
5
6
7

(c) send()

Figure 4: (a) Median execution time of (a) the server’s run() to receive 1000 solutions, each one of size 1000 bytes (Section 3.1); (b) receive() to
transfer them to the population as a function of two parameters: (i) the maximum number of receiving threads and (ii) the data transfer time
over network (Section 3.1); and (c) send() over ten runs as a function of two parameters: (i) message size and (ii) number of remote servers
(Section 3.2). Send()’s median runtime does not take into account the sndMessage() runtime.

0 10 20 30 40 50 60 70
Number of Threads

0

10

20

30

40

50

60

70

Sp
ee

du
p

(a)

0 10 20 30 40 50 60 70
Number of Threads

0

50

100

150

200

250

Re
ce

iv
in

g
Ra

te
 (

so
lu

ti
on

s/
se

co
nd

/t
hr

ea
d) Data Transfer:

(milliseconds)
5
10
50
100
500
1000

(b)

1 2 4 8 16 32 64
Number of Threads

10

15

20

25

30

35

40

45

50

St
ar

tu
p

Ru
nt

im
e

(m
s)

35.26 35.49 35.5 34.72 33.9 35.12 34.83

(c)

1 2 4 8 16 32 64
Number of Threads

0.5

1.0

1.5

2.0

2.5

3.0

Re
ce

iv
e

Ru
nt

im
e

(m
s)

0.96 0.9 0.93 0.97 0.99 1.07 1.12

(d)

Figure 5: (a) Median speedup and (b) receiving rate corresponding to the server’s run() as a function of the number of receiving threads for
values of data transfer time between 5 and 1000 milliseconds. The dashed black line depicts the ideal linear speedup. Box plots of (c) startup
tasks and (d) receive() runtime over a sample of 10 runs×6 data transfer time as a function of the number of receiving threads. Median values
are displayed at the top of the graph.

1000 to each remote server at each iteration. We measure the total
time required by the send() function to send messages, with sizes
ranging from 1000 to 5000 bytes, to all the |𝑆 | remote servers, with
|𝑆 | = 2, 4, 8, 16. Ten independent runs were performed for each
combination between message size and number of remote servers.
The send() runtime does not take into account the execution time
of sndMessage() (line 5 of Algorithm 4) since it is highly depen-
dent on the speed of transferring data over the local network or

Internet. Anyway, it does not interfere with the 3-D surface-shape
of Figure 4c.

Figure 4c shows a three-dimensional plot of the median execu-
tion time of the send() function as a function of message size and
number of remote servers. As expected, the send()’s median run-
time increases linearly with the message size at a rate of 0.20–1.41
milliseconds per 1000 bytes, whose values grow with the number of
remote servers. Analogously, the linear growth rate of the send()

1296

GECCO ’21 Companion, July 10–14, 2021, Lille, France A.S. Dufek et al.

runtime with respect to the number of remote servers varied from
0.10 to 0.48 milliseconds per server, depending on the message size.
Given that the send() and evaluate() functions run concurrently,
the send() effort is fully hidden when the effective time spent on
evaluating the solutions lies above the 3-D surface, whose values
ranged from 0.32 to 7.79 milliseconds.

In the next batch of experiments, we simulate sending mes-
sages over network using a sleep() function in the scope of the
sndMessage() function. Figure 6 depicts an execution timeline of
the iterative search of the P-metaheuristic coupled with the outgo-
ing message processing with eight remote servers. It shows how
sndMessage() behaves under different amounts of time it takes
for a message to travel from the client to the server. In Figure 6a,

0.03 0.04 0.05 0.06 0.07 0.08
Time (s)

iteration

send

(a) Random sending time

0.03 0.04 0.05 0.06 0.07 0.08
Time (s)

iteration

send

(b) Fixed sending time

Figure 6: Execution timeline visualization of the iterative search
of P-metaheuristic coupled with the outgoing message processing
with eight remote servers: (a) random and (b) fixed sending time.
The sending threads are displayed in ascending order of fixed send-
ing time. Vertical dashed lines indicate the beginning of an itera-
tion. The time spent by a single iterationwas roughly 6milliseconds.
Note that only the first ten iterations were reproduced here.

at each iteration of the for loop in Algorithm 4, the sending time
was randomly sampled over the interval from 0 to 10 milliseconds;
whereas in Figure 6b a different fixed sending time was assigned
to each of the eight sending threads, whose values varied from 3
to 10 milliseconds. As mentioned in the previous section, it draws
an analogy to some possible combinations between latency and
bandwidth of a network as well as network problems. Note that the
completion of sending some messages occurs only in the iteration
following that of submission. In that cases, the sending of a new
message is interrupted until the previous one ends.

3.3 Incoming + outgoing message processing
In the current benchmark, both the incoming and outgoing message
processing are switched on in order to provide a complete view
of the P2P-metaheuristic. The experiment was carried out with
the following parameters: eight receiving threads, eight sending
threads, message size of 1000 bytes, and population of 1000 solutions.

The sending time was randomly sampled over the interval from 0 to
10milliseconds, and the receiving timewas set at 5milliseconds. The
communication topology consists of a central peer that is connected
to eight remote peers. The central peer receives messages from all
remote peers, and sends one solution to each remote peer at each
iteration, as illustrated in Figure 3c.

Figure 7 shows an execution timeline of the P2P-metaheuristic
with eight threads for each of the incoming and outgoing mes-
sage processing. It highlights the overlap between computation and

0.03 0.04 0.05 0.06 0.07 0.08
Time (s)

receive

send

iteration

server
(run)

Figure 7: Execution timeline visualization of the P2P-metaheuristic
with eight threads for each of the incoming and outgoing message
processing. The time spent by a single iteration was roughly 6 mil-
liseconds.

communication tasks, with up to eighteen threads running simul-
taneously, without interfering with each other. By consequence,
the impact of the communication operations on the total execution
time of the P-metaheuristic is minimal.

4 CONCLUSIONS
A communication algorithm based on sockets has been incorpo-
rated into P-metaheuristics, resulting in what we have termed P2P-
metaheuristics. Three main functions make up the communication
algorithm: server’s run(), in which the multi-threaded server lis-
tens to and receives the solutions sent by remote peers; receive(),
the transfer of received solutions to population; and send(), the
sending of selected solutions from population to remote peers.

P2P-metaheuristics aim at (i) reducing the communication over-
head by overlapping communication with computation; (ii) max-
imizing the use of processing cores available on the system; (iii)
minimizing the number of locks as well as statements within
critical sections on the incoming message processing. Moreover,
the communication algorithm is fault-tolerant, asynchronous and
orthogonal to topology.

Benchmarks that simulate the incoming and outgoing message
processing 4 have shown the efficiency and scalability of the com-
munication algorithm. Given that (i) the effective time spent on
synchronous blocks is small enough that it does not degrade per-
formance, (ii) send() and receive() run concurrently with the
evaluation of the objective function, (iii) evaluate() runtime is
typically greater than a few tens of milliseconds in practice, and (iv)
the parallel asynchronous execution of multiple threads for message
exchange takes place in the background, we can conclude that the
communication algorithm runs almost entirely in the background of
4To the best of our knowledge, there is no research on communication costs and multi-
threading scalability issues in the context of algorithmic-level parallel P-metaheuristics
in order to conduct a comparative analysis based on the three benchmarks presented
in Section 3.

1297

An efficient fault-tolerant communication algorithm for P-metaheuristics GECCO ’21 Companion, July 10–14, 2021, Lille, France

a P-metaheuristic. Put differently, the proposed P2P-metaheuristic
is in practice as fast as the corresponding P-metaheuristic, even
though it continuously communicates with an arbitrary topology
of peers whatever the communication reliability.

The proposed P2P-metaheuristic fits well into modern hetero-
geneous parallel computing, in which the metaheuristic tasks are
strategically partitioned among the available compute resources in
order to accelerate the execution of the algorithm considerably. For
instance, irregular workloads can be assigned to conventional CPUs
whereas accelerator devices handle more regular workloads such
as the evaluation phase. At the same time, some lightweight com-
munication processes are executed by CPU cores in background.

Finally, we believe that the asynchronous, efficient, scalable, and
fault-tolerant communication algorithm as proposed in this work
can contribute much to the overall performance of algorithmic-level
parallel P-metaheuristics. An immediate follow-up research would
be to implement and evaluate the parallelization of the outgoing
message processing. Another interesting study would be to evaluate
the performance of the algorithm on real-world problems as well
as its scalability to thousand of processes.

ACKNOWLEDGMENTS
The authors would like to thank the support provided by CNPq
(grants 310778/2013-1, 502836/2014-8 and 300458/2017-7),
FAPEMIG (grant APQ-03414-15), EU H2020 Programme and
MCTI/RNP–Brazil under the HPC4E Project (grant 689772), and
DOE U.S. Department of Energy (DE-AC02-05CH11231).

REFERENCES
[1] Enrique Alba and José Ma Troya. 1999. An analysis of synchronous and asynchro-

nous parallel distributed genetic algorithms with structured and panmictic Islands.
Springer Berlin Heidelberg, Berlin, Heidelberg, 248–256.

[2] Lourdes Araujo, Juan Julián Merelo Guervós, Carlos Cotta, and Francisco Fernán-
dez de Vega. 2008. MultiKulti Algorithm: Migrating the Most Different Genotypes
in an Island Model. CoRR abs/0806.2843 (2008).

[3] Lourdes Araujo, Juan Julian Merelo, Antonio Mora, and Carlos Cotta. 2009. Geno-
typic Differences and Migration Policies in an Island Model. In Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation (GECCO ’09).
ACM, New York, NY, USA, 1331–1338.

[4] D.A. Augusto andH.J.C. Barbosa. 2013. Accelerated Parallel Genetic Programming
Tree Evaluation with OpenCL. J. Parallel Distrib. Comput. 73, 1 (Jan. 2013), 86–
100.

[5] Erick Cantú-Paz andDavid E. Goldberg. 2000. Efficient parallel genetic algorithms:
theory and practice. Computer Methods in Applied Mechanics and Engineering
186 (June 2000), 221–238.

[6] Erick Cantú-Paz and David E. Goldberg. 2003. Are Multiple Runs of Genetic
Algorithms Better than One?. In Genetic and Evolutionary Computation - GECCO
2003, Genetic and Evolutionary Computation Conference, Chicago, IL, USA, July
12-16, 2003. Proceedings, Part I. 801–812.

[7] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. 2001. Par-
allel Programming in OpenMP. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[8] J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. Richards. 1987. Punctuated
Equilibria: A Parallel Genetic Algorithm. In Proceedings of the Second International
Conference on Genetic Algorithms on Genetic Algorithms and Their Application. L.
Erlbaum Associates Inc., Hillsdale, NJ, USA, 148–154.

[9] James P. Cohoon, Shailesh U. Hegde, Worthy N. Martin, and Dana S. Richards.
1991. Distributed genetic algorithms for the floorplan design problem. IEEE
Trans. on CAD of Integrated Circuits and Systems 10, 4 (1991), 483–492.

[10] Amanda Sabatini Dufek, Douglas Adriano Augusto, Helio José Corrêa Barbosa,
and Pedro Leite da Silva Dias. 2018. Multi- and Many-Threaded Heterogeneous
Parallel Grammatical Evolution. Springer International Publishing, 219–244.

[11] Francisco Fernández, G. Galeano, and J.A. Gómez. 2002. Comparing Synchronous
and Asynchronous Parallel and Distributed Genetic Programming Models. Springer

Berlin Heidelberg, Berlin, Heidelberg, 326–335.
[12] Gianluigi Folino and Giandomenico Spezzano. 2006. P-CAGE: An Environment

for Evolutionary Computation in Peer-to-Peer Systems. In Genetic Programming,
Pierre Collet, Marco Tomassini, Marc Ebner, Steven Gustafson, and Anikó Ekárt
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 341–350.

[13] Christian Gagne, Marc Parizeau, and Marc Dubreuil. 2003. Distributed Beagle:
An Environment for Parallel and Distributed Evolutionary Computations. In
Proceedings of the 17 th Annual International Symposium on High Performance
Computing Systems and Applications (HPCS).

[14] Daniel Lombraña González, Francisco Fernández de Vega, and Henri Casanova.
2010. Characterizing fault tolerance in genetic programming. Future Generation
Computer Systems 26, 6 (2010), 847–856.

[15] William Gropp and Ewing Lusk. 2004. Fault Tolerance in Message Passing
Interface Programs. Int. J. High Perform. Comput. Appl. 18, 3 (Aug. 2004), 363–
372.

[16] J. Ignacio Hidalgo, Juan Lanchares, Francisco Fernández de Vega, and Daniel
Lombraña. 2007. Is the Island Model Fault Tolerant?. In Proceedings of the 9th
Annual Conference Companion on Genetic and Evolutionary Computation (GECCO
’07). ACM, New York, NY, USA, 2737–2744.

[17] J. L. J. Laredo, A. E. Eiben, M. van Steen, P. A. Castillo, A. M. Mora, and J. J. Merelo.
2008. P2P Evolutionary Algorithms: A Suitable Approach for Tackling Large
Instances in Hard Optimization Problems. In Euro-Par 2008 – Parallel Processing,
Emilio Luque, Tomàs Margalef, and Domingo Benítez (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 622–631.

[18] J. L. J. Laredo, A. E. Eiben, M. van Steen, and J. J. Merelo. 2010. EvAg: a scal-
able peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable
Machines 11, 2 (01 Jun 2010), 227–246.

[19] Wei-Po Lee. 2007. Parallelizing evolutionary computation: A mobile agent-based
approach. Expert Systems with Applications 32, 2 (2007), 318–328.

[20] T. T. Magalhães, Nascimento L. H. C., E. K. Silva, Augusto D. A., and H. J. C.
Barbosa. 2014. Hybrid metaheuristics for optimization using a parallel islands
model. XXXV CILAMCE – Ibero-Latin American Congress on Computational
Methods in Engineering.

[21] T. T. Magalhães, E. K. Silva, and H. J. C. Barbosa. 2015. Migration policies to
improve exploration in parallel island models for optimization via metaheuristics.
XXXVI CILAMCE – Ibero-Latin American Congress on Computational Methods
in Engineering.

[22] Andrea Mambrini and Dirk Sudholt. 2014. Design and Analysis of Adaptive
Migration Intervals in Parallel Evolutionary Algorithms. In Proceedings of the
2014 Annual Conference on Genetic and Evolutionary Computation (GECCO ’14).
ACM, New York, NY, USA, 1047–1054.

[23] Guenter Obiltschnig. 2004–2017. POrtable COmponents (POCO) C++ Libraries.
https://pocoproject.org/. (2004–2017).

[24] Michael O’Neill and Conor Ryan. 2003. Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers,
Norwell, MA, USA.

[25] B. Paechter, T. Back, M. Schoenauer, M. Sebag, A. E. Eiben, J. J. Merelo, and
T. C. Fogarty. 2000. A Distributed Resource Evolutionary Algorithm Machine
(DREAM). In Proceedings of the 2000 Congress on Evolutionary Computation.

[26] D. Robilliard, V. Marion-Poty, and C. Fonlupt. 2009. Genetic programming on
graphics processing units. Genetic Programming and Evolvable Machines 10, 4
(2009), 447.

[27] Kenneth Sörensen, Marc Sevaux, and Fred Glover. 2017. A History of Metaheuris-
tics. CoRR abs/1704.00853 (2017).

[28] W. Richard Stevens. 1990. UNIX Network Programming. Prentice Hall.
[29] E.-G. Talbi. 2009. Metaheuristics: From Design to Implementation. Wiley Publish-

ing.
[30] E-G. Talbi, J-M. Geib, Z. Hafidi, and D. Kebbal. 1998. A fault-tolerant parallel

heuristic for assignment problems. Springer Berlin Heidelberg, Berlin, Heidelberg,
306–314.

[31] Douglas Thain, Todd Tannenbaum, and Miron Livny. 2005. Distributed Comput-
ing in Practice: The Condor Experience: Research Articles. Concurr. Comput. :
Pract. Exper. 17, 2-4 (Feb. 2005), 323–356.

[32] Marco Tomassini. 2005. Spatially Structured Evolutionary Algorithms: Artificial
Evolution in Space and Time (Natural Computing Series). Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

[33] J. M. Whitacre, R. A. Sarker, and Q. T. Pham. 2008. The Self-Organization of
Interaction Networks for Nature-Inspired Optimization. Trans. Evol. Comp 12, 2
(April 2008), 220–230.

[34] W. R. M. U. K. Wickramasinghe, Maarten van Steen, and A. E. Eiben. 2007. Peer-
to-peer evolutionary algorithms with adaptive autonomous selection. In GECCO.
ACM, 1460–1467.

[35] D. S. Wilks. 2006. Statistical methods in the atmospheric sciences. 2nd Ed. Interna-
tional Geophysics Series, Vol. 59. Academic Press. 627 p.

1298

https://pocoproject.org/

	Abstract
	1 Introduction
	2 Peer-to-peer communication algorithm
	2.1 Peer-to-peer P-metaheuristics
	2.2 Illustrative scheme
	2.3 Peer-to-peer communication model
	2.4 Incoming message processing
	2.5 Outgoing message processing

	3 Benchmarks
	3.1 Incoming message processing
	3.2 Outgoing message processing
	3.3 Incoming + outgoing message processing

	4 Conclusions
	Acknowledgments
	References

