
Improving the Scalability of Distributed Neuroevolution Using
Modular Congruence Class Generated Innovation Numbers

Joshua Karns

Rochester Institute of Technology

Rochester, New York, USA

josh@mail.rit.edu

Travis Desell

Rochester Institute of Technology

Rochester, New York, USA

tjdvse@rit.edu

ABSTRACT
The asynchronous master-worker model is a classic method used to

distribute evolutionary algorithms, as it can allow for decoupling of

population size from the number of available processors while at the

same time being naturally load balanced. While easy to implement,

it suffers from an unavoidable choke point: the master process,

which must process all results and generate tasks for workers. This

work investigates a method for improving the performance of dis-

tributed neuroevolution algorithms, which commonly use such a

model, that involves offloading costly crossover and mutation oper-

ations to the worker processes. To accomplish this, a novel modular

congruence class based strategy for generating unique innovation

numbers was developed, which requires no additional communi-

cation overhead. Experimental results designed to stress test the

master process were generated using the Evolutionary eXploration

of Augmenting Memory Models (EXAMM) neuroevolution algo-

rithm, after discovering in preliminary results that it suffered from

a bottleneck preventing scalability past 432 cores in a high perfor-

mance computing environment. The results show a statistically

significant improvement in throughput (genome evaluations per

second) and scalability past 864 cores using this offloading method.

Further, this methodology is generic and could be applied to any

neuroevolution algorithm which utilize NEAT-inspired innovation

numbers.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
Parallel algorithms.

KEYWORDS
neuroevolution, scalability, distributed computing

ACM Reference Format:
Joshua Karns and Travis Desell. 2021. Improving the Scalability of Dis-

tributed Neuroevolution Using Modular Congruence Class Generated Inno-

vation Numbers. In 2021 Genetic and Evolutionary Computation Conference
Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3449726.3463202

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00

https://doi.org/10.1145/3449726.3463202

1 INTRODUCTION
Evolutionary algorithms are a class of optimization algorithms

which have been successfully applied to a wide variety of problems

in many domains. EAs lend themselves well to parallelization, and

the topic of distributed evolutionary algorithms has seen a resur-

gence in recent years. Gong et al. attribute this boom of interest to

the rise of big data which has increased the size and complexity of

real world optimization problems, necessitating scalable EAs [6].

Given their ease of use, flexibility, and good track record it should

be no surprise that they have also been applied to the domain of

neural architecture search (NAS). Often called neuroevolution (NE),

evolutionary NAS algorithms search for optimal artificial neural

network (ANN) architectures and their associated weights. NE

presents a particularly difficult challenge as the search space of

ANNs is potentially unbounded. Additionally, NE algorithms tend

to be computationally expensive as evaluating genomes typically

requires training the generated neural networks for a number of

epochs, or at least performing a number of forward passes in order

to estimate their performance [2, 3]. Due to this, having scalable

distributed computing strategies to perform NE becomes especially

important to generate results in a reasonable amount of time.

Still, NE is an active field of study that has found significant suc-

cess. Much of the current work in the field stems from a landmark

neuroevolution algorithm known as Neuroevolution of Augmenting

Topologies (NEAT) [15]. One such example is an algorithm called

CoDeepNEAT [11]. CoDeepNEAT simultaneously evolves a popu-

lation of small module ANNs along with a population of blueprints

which are graphs where the nodes point to one of the module ANNs.

Combined with evolution of hyperparameters, CoDeepNEAT has

achieved performance comparable with state of the art human de-

signed models in image recognition tasks and natural language

processing tasks [11]. A genetic algorithm that is not a relative

of NEAT can be found with NSGA-Net, a multi-objective genetic

NAS algorithm [8]. By optimizing for minimal error in addition to

minimizing computational complexity, Lu et al. were able to find
networks that are on par with the state of the art while producing

networks that use significantly less computational resources [8].

Other NAS algorithms have found success without the use of evo-

lutionary methods. Liu et al. used a differentiable parameterization

of the neural architecture search space in their so that it can be

explored using gradient descent, calling their algorithm DARTS [7].

Their approach achieved high performance on benchmark datasets

while also taking significantly less time than other state of the art

approaches to NAS.

Another example of a NEAT inspired algorithm, which is also the

subject of this paper is an algorithm called Evolutionary eXploration

of AugmentingMemoryModels (EXAMM). EXAMM is a distributed

1299

https://doi.org/10.1145/3449726.3463202
https://doi.org/10.1145/3449726.3463202

GECCO ’21 Companion, July 10–14, 2021, Lille, France Karns et al.

Islands Pop/Island Cores Average Time (s) Average Evals/s

1 10 108 378.212200 0.106

1 10 216 571.062600 0.14

1 10 432 405.518000 0.395

1 10 864 507.160700 0.631

1 50 108 361.143200 0.111

1 50 216 417.388111 0.192

1 50 432 330.796444 0.484

1 50 864 427.459500 0.749

1 100 108 392.112900 0.102

1 100 216 376.900200 0.212

1 100 432 326.879800 0.489

1 100 864 484.685400 0.66

5 10 108 346.810200 0.115

5 10 216 395.542600 0.202

5 10 432 399.689900 0.4

5 10 864 450.462700 0.71

5 50 108 367.362600 0.109

5 50 216 405.988100 0.197

5 50 432 414.928800 0.386

5 50 864 862.423778 0.371

5 100 108 380.968667 0.105

5 100 216 510.093500 0.157

5 100 432 805.925100 0.199

5 100 864 1732.306900 0.185

Table 1: Previously unpublished results testing the scalabil-
ity of EXAMM. These results were never published because
EXAMM scaled poorly with population size. In these results,
candidate RNN genomes were each trained for 10 epochs,
highlighting the need to have a fastermaster process to scale
the algorithm.

neuroevolution algorithm used to evolve RNNs for time series data

prediction [12]. EXAMM uses an island based speciation strategy

[1, 12], which splits the population up into a fixed number of islands

each with a fixed population. The overall population size can be

increased by increasing either the number of islands or increasing

the population size on each island. This strategy is employed using

an asynchronous master-worker model: a single master process

distributes tasks to workers and processes the results, shown in

Figure 1.

Any algorithm that uses a master-worker model (which is the

case for most distributed NE algorithms) may be subject to a bottle-

neck caused by the master process. If the master cannot generate

tasks and process results at least as fast as the workers execute the

tasks, then the algorithm will experience a drop in both parallel

efficiency and speedup. Still, there are many works that explore

the benefits of using asynchronous master-worker models for EAs

[4, 5, 14, 16]. A preliminary examination of EXAMM’s scalability,

shown in Table 1, suggests that EXAMM suffers from a bottleneck

when scaled to a large number of cores which was compounded as

the size and number of islands was increased. The root cause of poor

scaling with respect to population was determined to be logging of

population statistics for each island that occurred every time the

master received a result from a worker. These statistics required

the master to look at every genome on every island, which explains

why increasing the number of islands or number of genomes on an

island was slowing things down.

When the population size remained somewhat small, these re-

sults show reasonable scalability as the number of cores is increased.

With a population of 1 island and 10 members per island, going

from 108 cores to 864 cores leads to a nearly 6x speedup. Although

not linear, a 6x speedup with 8x the cores is still good.

Turning off any unnecessary logging is an easy way to speed up

the master which improves scalability, however there was still room

for improvement in the algorithm itself. The process of generating

new genomes in EXAMM is relatively expensive compared to an

ordinary EA because the genome is an RNN - effectively a directed

acyclic graph (DAG). All genome operators (mutation and crossover)

are graph-based operations which are significantly more expensive

than typical mutation or crossover operations that would be found

in a standard genetic algorithm. The results in this paper found

that performing a mutation or crossover operation accounted for

around 30% of the time spent generating genomes for workers.

This work presents a novel way to delegate the computation

associated with performing a mutation or crossover operation to

the worker processes. Normally, this would be trivial, however

EXAMM employs system of innovation numbers (inspired by the

NeuroEvolution of Augmenting Topologies (NEAT) algorithm [15])

in its genome representation. Each time a new node or edge is

added to the network via mutation, that new component will be

associated with a unique number (an integer). This greatly sim-

plifies the process of performing crossover and reliably produces

more coherent child networks [15], but using this strategy makes

performing mutation operations on a worker node more challeng-

ing. Allowing workers to assign new innovation numbers during

mutation operations necessitates a method that will guarantee that

each integer uniquely used as an innovation number for a given

architectural innovation in a neural network.

In this paper, a modification to EXAMM which performs mu-

tation operations on workers (rather than on the master) while

ensuring unique usage of innovation numbers among all workers

is investigated. In order to accomplish this, this work presents a

novel strategy based on modular congruence classes which allows

workers to independently generate unique non-conflicting inno-

vation numbers without requiring any communication overhead.

The method is tested on EXAMM and performance is compared

to the vanilla version of EXAMM. Further, the hyperparameters of

EXAMM used in the experiments are set to minimize the amount

of computation done by workers thus requiring fewer workers to

bottleneck.

2 METHODOLOGY
2.1 Evolutionary eXploration of Augmenting

Memory Models
Evolutionary eXploration of Augmenting Memory Models (EX-

AMM) is a distributed asynchronous neuroevolution algorithm,

which is distributed using the Message Passing Interface (MPI) [10]

for use on high performance computing systems. EXAMM is par-

allelized using a master-worker model, which is summarized by

Figure 1. The master process maintains a population of genomes

1300

Improving the Scalability of a Distributed Neuroevolution Algorithm GECCO ’21 Companion, July 10–14, 2021, Lille, France

organized using an island speciation strategy [1]. It will generate

new genomes for workers upon request via a mutation or crossover

operation, selecting genomes to be modified with a round-robin

schedule. Once a genome has been evaluated, it will be sent back

to the master who will attempt to insert it into the population.

Workers repeatedly request a new genome from the master, train it

(using backpropagation), evaluate it, then finally send the genome

back to the master along with its fitness value. More information

about the specifics of EXAMM, including the mutations it performs

and the method of crossover it uses, can found in the paper by

Desell et al. where EXAMM was conceived [12].

Inspired by NEAT, EXAMMuses a system of innovation numbers

in its genome representation to preserve innovation and overall

structure. Innovation numbers were conceived to solve the com-

peting conventions problem, which is illustrated in Figure 2. Inno-

vation numbers solve this problem by assigning a unique number

to all nodes and edges in the network, including those added to a

genome through mutation. This way, when performing crossover

network components with the same innovation numbers can be

Figure 1: High level overview of the asynchronous model of
distributed computation used by EXAMM, for some number
of workers𝑤 .

Figure 2: A basic case of the competing conventions problem,
as originally illustrated in the paper detailing NEAT [15].
Two parent networks [𝑎, 𝑏, 𝑐] and [𝑐, 𝑏, 𝑎] are shown along
with four possible child networks. Both parents represent
the same underlying functionality in a different way, yet
some of their children lose some of that information due
to node ordering.

treated as the same component. However, this genome representa-

tion presents a key challenge to delegatingmutations to theworkers,

as it necessitates a strategy to prevent workers from assigning the

same innovation number to different components, preferably with

no communication with the master process. If two workers were

to assign the same innovation number to two (or more) different

nodes (or edges), the genome encoding used by EXAMM would

be broken - innovation numbers are supposed to refer to unique

components, and many of the genome operations done by EXAMM

rely on this property to execute correctly and would break if it were

not upheld.

2.2 Proposed Method

Figure 3: High level overview of EXAMMwith the proposed
modifications, for some number of workers 𝑤 . Rather than
performing the operation (mutation or crossover), the mas-
ter just selects which operation to perform and the workers
execute it. In the case of a crossover, the master will send
two genomes to the worker.

Moving the crossover to the workers is fairly straightforward.

The master can select and send the two parent genomes, and the

worker can perform the crossover. Since crossover doesn’t involve

creating new nodes or edges, it really is as simple as change the

location of a function call. However, since mutation involves the

creation of new components and thus the creation of new innova-

tion numbers, this must also be paired with a strategy to ensure

unique innovation numbers are used. Modular arithmetic offers

an elegant method to “allocate” different innovation numbers to

workers at the start of the program.

Each worker process is assigned a congruence class in modulo

𝑤 , where𝑤 is the number of workers. A congruence class modulo

𝑤 is a set of integers that are all equivalent mod𝑤 , specifically the

congruence class of an integer 𝑎 is the set {𝑎 +𝑤𝑘 |∀𝑘 ∈ Z}. Since
all of the congruence classes modulo𝑤 are mutually exclusive from

one another (i.e., the union of all of them is the empty set), and

there are exactly𝑤 different congruence classes mod𝑤 , restricting

each worker to a different congruence class for innovation number

assignment will guarantee there is no overlap. Thus, all a worker

has to do in order to obtain the next innovation number is add𝑤

to its previously generated innovation number.

Figure 3 illustrates the proposed modifications to EXAMM. The

number of communication steps is the same as in vanilla EXAMM

1301

GECCO ’21 Companion, July 10–14, 2021, Lille, France Karns et al.

(shown in Figure 1), but the potentially costly step of performing

a mutation or crossover operation has been moved to the worker.

Reducing the amount of work the master has to do each time it

generates a genome should improve the maximum throughput of

the master (i.e. how many genomes it can generate and process per

second) and therefore the scalability of the algorithm.

3 EXPERIMENTS
In order to compare the scalability of the original version of EX-

AMM and EXAMM with the proposed modifications, experiments

were ran for both versions on Rochester Institute of Technology’s

high performance research computing cluster using varying num-

bers of processors [13]. Each experiment was also ran with a range

of population sizes. Experiments each used 108, 216, 432, or 864

cores, corresponding to 3, 6, 12, and 24 cluster nodes of 36 cores

each. Each number of cores was ran with a population of 1, 4, 16,

and 64 islands where each island had 64 members, for a total of 32

experiments which were each repeated 10 times.

The hyperparameters given to EXAMM were chosen to max-

imize susceptibility to a bottleneck. In particular, the number of

epochs of backpropagation used to train the genomes was 0. Nor-

mally, the workers in EXAMM use backpropagation to optimize the

genome weights before calculating the fitness; this is also where

workers tend to spend most of their computational resources. While

removing backpropagation will result in generated networks with

poor accuracy, it also means workers evaluate genomes as fast as

possible to stress test the performance of the master process. This

means the algorithm will experience a bottleneck sooner than it

would under normal circumstances, since the workers will be re-

questing genomes from the master much more frequently. As this

bottleneck was already found in preliminary results, as presented

in Figure 1, where genomes were being trained for 10 backpropaga-

tion epochs, optimizing the speed of the master process has become

important for current use cases, and would also be important for

smaller data sets which can train faster.

In each experiment, a total of 10, 000 genomes were evaluated

on a data set consisting of 10 days worth of per-minute readings of

12 different sensors from a coal fired power plant. The data is split

amongst 12 time series, each of which has 14, 402 rows.

Since backpropagation was effectively disabled, only the valida-

tioning portion of the data set is looked at, as this is what EXAMM

uses to determine the genome fitness and backpropagation is never

used which is the only time training data is used. The validationing

dataset here makes up two of the 12 files for a total of 28, 804 rows,

and the training dataset is composed of the remaining 10 files for

a total of 144, 020 rows. So for this work, with backpropagation

disabled, workers only performed a forward pass to evaluation the

fitness of the genome on the validationing dataset. As an interesting

aside, due to EXAMM’s Lamarckian weight inheritance strategy [9],

EXAMM can actually evolve fairly well performing RNNs without

any backpropagation, which is another justification for needing

faster master performance.

That being said, in an actual use case of EXAMM where back-

propagation is enabled, for each specified epoch of candidate RNN

training (a user defined hyperparameter), at least one forward pass

and one packward pass needs to be done for every epoch on the

training data. Additionally, EXAMM will evaluate the RNN on the

validation data for every epoch, as it selects fitness and weights

for the network returned from the master from the epoch which

performed best on the validation data. Due to using momentum

and the noisy nature of stochastic backpropagation, a monotonic

decrease of RNN fitness is not guaranteed during backpropagation,

so this will return the best version of the RNN found. Assuming

a forward pass and backward pass take roughly the same amount

of time, workers perform at least 𝐵 · (2 ·𝑇 +𝑉)x more work when

performing backpropagation where 𝐸 is the number of backpropa-

gation epochs being done, and 𝑇 and 𝑉 are the time to perform a

forward pass on the training and validation datasets, respectively.

Both versions of EXAMM used in the experiments performed

some logging each time a evaluated genome was received from a

worker, including information about each island. Thus, the time it

takes to insert a genome should scale linearly with the number of

islands in the population. Due to this, we would also expect to see

a bottleneck sooner in experiments that have more islands.

4 RESULTS
Table 4 contains a summary of the findings. As expected, the time it

takes for the master to prepare a genome for a worker is greater in

the original version of EXAMM. In fact, the experimental version

of EXAMM took more than 30% less time on average. The time

required to insert a genome into the population appears to be quite

similar between the two versions of EXAMM, and also takes more

time as the number of islands increases which is also expected.

The actual throughput (Average Evals / s in the table) is also better

in the experimental group, especially as the number of cores is

increased. Highlighting scalability issues, the throughput for the

original version of EXAMMwhen using 432 cores is nearly identical

to throughput when using 864 cores – indicative of a bottleneck

limiting performance. Similarly, the amount of time required to run

the experiments went down as the number of cores was increased

but the effect was more significant in the experimental group.

Statistical significance tests for the throughput and genome

preparation time are shown in Table 2. These results were calcu-

lated using the Mann-Whitney U-Test, comparing the populations

of experiments for both versions of EXAMM. The tests found that

the difference in genome preparation time was strongly signifi-

cant in every case, where as the throughput results only begin

to be statistically significant when 432 cores are used, which was

where the original EXAMM implementation started to suffer from

a bottleneck.

The throughput is also visualized with box plots in Figures 5 and

4. In Figure 5 a roughly asymptotic trend can be seen - doubling

the number of cores sees diminishing returns. Further, the number

of islands seems to have a negative impact on the throughput,

particularly with more cores; this is to be expected though and was

mentioned in Section 3.

The variance of the throughput and time to run each experiment

is fairly large, as can be seen in the𝜎 (standard deviation) columns of

Table 4. Figures 5 and 4 provide a more in depth look at this, which

is shown by the high number of outliers and large interquartile

ranges. While the exact reasons for the high variance is not yet

known (and an area of futher examination), it is likely a combination

1302

Improving the Scalability of a Distributed Neuroevolution Algorithm GECCO ’21 Companion, July 10–14, 2021, Lille, France

of factors including but not limited to the low number of times the

experiments were repeated (only 10 each) and the fact that the high

performance computing cluster used to run the experiments is a

shared computing system, performance may be helped or hindered

based on what other activities are being ran on the cluster and

overall cluster utilization.

Cores Islands Genome p-value Throughput p-value
108 1 0.00009 0.06061

108 4 0.00009 0.13643

108 16 0.00009 0.42505

108 64 0.00009 0.26018

216 1 0.00009 0.45486

216 4 0.00009 0.06061

216 16 0.00009 0.33879

216 64 0.00009 0.23625

432 1 0.00009 0.00009
432 4 0.00009 0.20275

432 16 0.00009 0.28538

432 64 0.00009 0.00141
864 1 0.00009 0.00141
864 4 0.00009 0.00009
864 16 0.00009 0.03778
864 64 0.00009 0.00141

Table 2: P-values from statistical significance tests on the
results. The Mann-Whitney U test was used here, and sta-
tistical significance is determined using an 𝛼 value of 0.05;
statistically significant findings are in bold. The value being
tested in the "Genome" column is the amount of time it takes
for the master to create a genome to be sent to a worker.

5 DISCUSSION
This work presents an examination of the scalability and perfor-

mance of the Evolutionary eXploration of Augmenting Memory

Models (EXAMM) neuroevolution algorithm. After finding that EX-

AMM’s master process suffered from a bottleneck, a strategy was

developed to offload mutation and crossover operations to worker

processes. In order to accomplish this, a novel modular congruence

class based methodology for generating non-conflicting innovation

numbers across distributed worker processes was developed, which

requires no communication between the master or workers for

generation of new innovation numbers.

Experimental results support the idea that this method can im-

prove the scalability of a NEAT-like distributed neuroevolution

algorithms. The results show similar performance between the

original and the experimental versions of EXAMM for a small num-

ber of cores, but after scaling the number of cores to 432 they begin

to diverge, as this is when the original implementation began to

significantly suffer from a performance bottleneck. This divergence

is also reflected by statistical significance tests as all experiments

using 864 cores were found to be statistically significant but all

experiments using less than 432 cores were not. Figure 4 illustrates

this well: the performance of the original version of EXAMM is vir-

tually identical with 12 and 24 nodes (432 and 864 cores respectively)

Group Islands Cores Probe Time (ms) Recv. Time (ms)
Experimental 1 108 0.1024 0.0529

Experimental 1 216 0.0170 0.0492

Experimental 1 432 0.0022 0.0469

Experimental 1 864 0.0013 0.0466

Experimental 4 108 0.1319 0.0538

Experimental 4 216 0.0089 0.0473

Experimental 4 432 0.0022 0.0465

Experimental 4 864 0.0012 0.0452

Experimental 16 108 0.0743 0.0496

Experimental 16 216 0.0082 0.0493

Experimental 16 432 0.0023 0.0461

Experimental 16 864 0.0012 0.0461

Experimental 64 108 0.0367 0.0462

Experimental 64 216 0.0026 0.0446

Experimental 64 432 0.0020 0.0443

Experimental 64 864 0.0010 0.0466

Original 1 108 0.0649 0.0523

Original 1 216 0.0029 0.0481

Original 1 432 0.0003 0.2294

Original 1 864 0.0001 0.0485

Original 4 108 0.0895 0.0525

Original 4 216 0.0020 0.0485

Original 4 432 0.0006 0.0451

Original 4 864 0.0001 0.0477

Original 16 108 0.0478 0.0528

Original 16 216 0.0018 0.0477

Original 16 432 0.0004 0.0786

Original 16 864 0.0001 0.0466

Original 64 108 0.0231 0.0476

Original 64 216 0.0019 0.0438

Original 64 432 0.0007 0.0459

Original 64 864 0.0001 0.0463

Table 3: This table contains additional results investigating
the time spent sending and receiving genomes. The probe
time is the average amount of time spentwaiting by themas-
ter for either a result or a work request from a worker. The
receive time is the average amount of time it took to receive
an evaluated genome from a worker.

while the experimental version enjoys a performance bump, allow-

ing EXAMM to scale to a significantly larger number of worker

processes.

While this methodology provided a significant scalability in-

crease for EXAMM, there still remains room for improvement as

the speedup still had some distance from a linear improvement. For

example, going from 108 cores to 864 uses 8 times the cores yet only

yielded less than a 3 times increase throughput. However, this was

done with experiments that were designed to stress test the per-

formance of the master process, with the workers not performing

any computationally expensive backpropagation. A more realistic

usage of EXAMM will see an even more significant increase in

throughput, as each worker would be doing multiple epochs of

backpropagation for each genome evaluated. Adding in just one

epoch of backpropagation over the entire data set would signifi-

cantly increase the amount of time it would take for a worker to

process a genome from the master, which would in turn will allow

for even more scalability.

1303

GECCO ’21 Companion, July 10–14, 2021, Lille, France Karns et al.

Group Islands Cores Ins. Time (ms) Genome Time (ms) Average Time (s) Time (s) 𝜎 Average Evals / s Evals / s 𝜎
Experimental 1 108 0.0938 0.0866 5.1861 1.1386 2003.482 352.457

Experimental 1 216 0.0688 0.0771 2.7025 0.4487 3808.620 660.444

Experimental 1 432 0.0569 0.0706 2.0547 0.1508 4893.533 363.886

Experimental 1 864 0.0613 0.0640 2.0269 0.3256 5037.771 658.523

Original 1 108 0.0780 0.1210 4.5136 0.6032 2252.037 274.058

Original 1 216 0.1056 0.1059 3.1714 1.3090 3533.893 945.502

Original 1 432 0.0955 2.0093 2.7397 0.6759 3820.363 690.999

Original 1 864 0.0500 0.0987 2.2849 0.0745 4381.045 137.715

Experimental 4 108 0.0676 0.0924 5.7141 1.2159 1843.706 447.010

Experimental 4 216 0.0667 0.0795 2.5292 0.4862 4080.393 667.042

Experimental 4 432 0.0962 0.0724 2.4361 0.5439 4269.469 752.692

Experimental 4 864 0.0477 0.0646 1.8678 0.1121 5372.972 318.601

Original 4 108 0.0717 0.1293 5.1239 0.4180 1964.180 154.472

Original 4 216 0.0619 0.1147 2.5621 0.1552 3916.380 220.662

Original 4 432 0.0802 0.1021 2.5477 0.7673 4138.950 717.466

Original 4 864 0.0659 0.0983 2.4146 0.3306 4202.267 446.514

Experimental 16 108 0.0847 0.0812 4.7145 1.1115 2235.575 492.414

Experimental 16 216 0.1031 0.0802 2.9785 0.7918 3529.944 666.991

Experimental 16 432 0.0880 0.0700 2.3257 0.3673 4411.264 710.381

Experimental 16 864 0.0893 0.0664 2.3087 0.4375 4458.710 681.007

Original 16 108 0.0842 0.1248 4.5715 0.4830 2214.325 255.534

Original 16 216 0.0762 0.1104 2.6399 0.1916 3807.890 274.927

Original 16 432 0.0981 0.4515 2.4445 0.1506 4104.361 219.994

Original 16 864 0.0649 0.0950 2.3516 0.1083 4261.752 203.003

Experimental 64 108 0.1396 0.0668 3.7038 0.4798 2745.740 358.732

Experimental 64 216 0.1220 0.0623 2.5333 0.3592 4025.903 558.467

Experimental 64 432 0.1064 0.0610 2.3660 0.2224 4258.120 337.258

Experimental 64 864 0.1054 0.0587 2.3881 0.2689 4237.215 447.744

Original 64 108 0.1430 0.0973 3.7680 0.7791 2733.082 386.833

Original 64 216 0.1066 0.0900 2.6443 0.2431 3810.400 313.027

Original 64 432 0.1030 0.0912 2.6446 0.0758 3784.411 108.946

Original 64 864 0.1068 0.0895 2.6892 0.2779 3752.108 325.245

Table 4: Results of each experiment. "Ins. Time" is the average amount of time it took for the master to insert a genome, and
"Genome Time" is the amount of time it takes for themaster to select a genome to be sent to theworker (and performmutation
or crossover in the case of the original group), this does not include the time it takes to send the genome(s).

5.1 Future Work
Table 1 contains results from previous experiments looking at how

EXAMM scaled with population size and core count. In addition

to showing that offloading mutation and crossover to worker pro-

cesses provided a strong improvement in scalability, an additional

area of slowdown has been identified (namely unnecessary logging).

Additional experiments should be run to investigate the scalabil-

ity of EXAMM on a real world dataset as well as the impact of

population size and core count on network performance, with-

out any logging, as well as methods to offload logging (perhaps

to a concurrent thread or process) to further reduce its impact.

Moreover, future experiments should include backpropagation: the

experiments here demonstrate improved performance of the mas-

ter process in a worst-case scenario (workers evaluate genomes

significantly quicker than they do in a normal use case), but demon-

strating material improvement in scalability during a more realistic

use case of EXAMM would make for significantly stronger results.

In addition to this, any algorithm that uses a master-worker

model is inevitably going to fall victim to a bottleneck caused by

the master. In the case of EXAMM, the next step for improving

performance is to separate the master (which currently manages

all island populations) into multiple processes, which of which

could manage a subset of islands, as well as one overall master

process operating in a hierarchical manner. This can be leveraged

to effectively distribute both the communication and computational

load of the master process to significantly raise the throughput

ceiling. Each island could be assigned to one of the multiple island

processes that will act as its manager, and each of these island

processes would have their own set of worker processors that train

and evaluate genomes. Each island process would only have to

communicate with the master process to send it new island-local

best genomes and to receive the best genomes from other islands.

For potentially further improvements, communication with the

master could be unnecessary all together, as seen in the taxonomy

of distributed EAs given by Gong et al. in their 2015 work which

1304

Improving the Scalability of a Distributed Neuroevolution Algorithm GECCO ’21 Companion, July 10–14, 2021, Lille, France

Figure 4: Throughput values separated by the number of nodes they used. The experimental group is shown in white, and the
original group in gray.

Figure 5: This table contains the same results as Table 4, but everything is lined up horizontally tomake the overall throughput
trend more clear.

discusses examples of such algorithms [6]: islands can directly

communicate with one another, rather than using a master process

as an intermediary.

In addition to these methods to improving scalability of EXAMM,

the effect of multiple islands and numbers of worker processes has

not been well studied for distributed neuroevolution algorithms.

1305

GECCO ’21 Companion, July 10–14, 2021, Lille, France Karns et al.

While it may be possible to greatly increase the throughput of

genome evaluation, this may not necessarily result in a correspond-

ing improvement in the convergence rate of the neuroevolution

algorithm. Studying this would help paint a more full picture of

how far neuroevolution algorithms can really scale.

1306

Improving the Scalability of a Distributed Neuroevolution Algorithm GECCO ’21 Companion, July 10–14, 2021, Lille, France

REFERENCES
[1] Alba, E., and Tomassini, M. Parallelism and evolutionary algorithms. IEEE

Transactions on Evolutionary Computation 6, 5 (2002), 443–462.
[2] Camero, A., Toutouh, J., and Alba, E. Random error sampling-based recurrent

neural network architecture optimization. Engineering Applications of Artificial
Intelligence 96 (2020), 103946.

[3] Camero, A., Wang, H., Alba, E., and Bäck, T. Bayesian neural architecture

search using a training-free performance metric. Applied Soft Computing (2021),

107356.

[4] Depolli, M., Trobec, R., and Filipič, B. Asynchronous master-slave paral-

lelization of differential evolution for multi-objective optimization. Evolutionary
computation 21, 2 (2013), 261–291.

[5] Desell, T. Asynchronous Global Optimization for Massive-Scale Computing. PhD
thesis, Rensselaer Polytechnic Institute, 2009.

[6] Gong, Y.-J., Chen, W.-N., Zhan, Z.-H., Zhang, J., Li, Y., Zhang, Q., and Li,

J.-J. Distributed evolutionary algorithms and their models: A survey of the

state-of-the-art. Applied Soft Computing 34 (2015), 286–300.
[7] Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable architecture search,

2019.

[8] Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., and Banzhaf,

W. Nsga-net: Neural architecture search using multi-objective genetic algorithm,

2019.

[9] Lyu, Z., ElSaid, A., Karns, J., Mkaouer, M., and Desell, T. An experimental

study of weight initialization and lamarckian inheritance on neuroevolution. The
24th International Conference on the Applications of Evolutionary Computation
(EvoStar: EvoApps) (2021).

[10] Message Passing Interface Forum. MPI: A message-passing interface standard.

The International Journal of Supercomputer Applications and High Performance
Computing 8, 3/4 (Fall/Winter 1994), 159–416.

[11] Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O.,

Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N., and Hodjat, B. Evolving

deep neural networks, 2017.

[12] Ororbia, A., Elsaid, A. A., andDesell, T. Investigating recurrent neural network

memory structures using neuro-evolution, 2019.

[13] Rochester Institute of Technology. Research computing services, 2019.

[14] Scott, E. O., and De Jong, K. A. Understanding simple asynchronous evolu-

tionary algorithms. In Proceedings of the 2015 ACM Conference on Foundations of
Genetic Algorithms XIII (2015), pp. 85–98.

[15] Stanley, K. O., and Miikkulainen, R. Evolving neural networks through

augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.
[16] Zăvoianu, A.-C., Lughofer, E., Koppelstätter, W., Weidenholzer, G., Am-

rhein,W., and Klement, E. P. On the performance of master-slave parallelization

methods for multi-objective evolutionary algorithms. In International Conference
on Artificial Intelligence and Soft Computing (2013), Springer, pp. 122–134.

1307

	Abstract
	1 Introduction
	2 Methodology
	2.1 Evolutionary eXploration of Augmenting Memory Models
	2.2 Proposed Method

	3 Experiments
	4 Results
	5 Discussion
	5.1 Future Work

	References

