
Generating Combinations on the GPU and its Application to the
K-Subset Sum

Victor Parque

Department of Modern Mechanical Engineering

Waseda University, Japan

parque@aoni.waseda.jp

ABSTRACT
Efficiently representing and generating combinations can allow

the seamless visualization, sampling, and evaluation of combinato-

rial architectures. In this paper, being relevant to tackle resource

allocation problems ubiquitously, we address the subset sum prob-

lem by (1) using gradient-free optimization with a number-based

representation of the combinatorial search space and by (2) gen-

erating combinations with minimal change order through parallel

reductions in the GPU.

Our computational experiments consisting of a relevant set of

problem instances and gradient-free optimization algorithms show

that (1) it is possible to generate combinations in the GPU efficiently,

with quasi-linear complexity, (2) it is possible to tackle instances

of the subset sum problem within a reasonable number of func-

tion evaluations, and (3) Particle Swarm Optimization with Fitness

Euclidean Ratio converges faster.

Since the search space of number-based representations is one-

dimensional and amenable to parallelization schemes (e.g., GPU),

we believe our work opens the door to tackle further combinatorial

problems.

CCS CONCEPTS
• Computing methodologies → Search methodologies; • Ap-
plied computing → Operations research;

KEYWORDS
Subset Sum, Knapsack Problem, Number Representation, Enumera-

tive Encoding, Combinations, Gradient-Free, Differential Evolution,

Particle Swarm, Optimization, GPUs, Parallel Reduction

ACM Reference Format:
Victor Parque. 2021. Generating Combinations on the GPU and its Applica-

tion to the K-Subset Sum. In 2021 Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3449726.3463226

1 INTRODUCTION
The research of combinatorial problems allows designing com-

plex behaviors and systems ubiquitously, particularly in Reliability

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00

https://doi.org/10.1145/3449726.3463226

Engineering[1], in Decision Sciences[2], in Operations Research[3],

in Graph Theory[4], in Cryptography[5], in Database Management

Systems[6], in Network Design[7–9], in Material Science[10], in

Chemistry[11], in Logic Systems [12] and in LanguageModeling[13].

The subset-sum problem aims to find a subset from a superset

meeting a user-defined aggregation value, such as the sum of its

elements. This problem is relevant to resource allocation problems,

and its study is particularly important to discrete design, operations

research and management fields. This paper tackles a class of the

subset-sum problem where the subset is of fixed size. This problem

instance is a particular case of the more general, widely-studied

Knapsack Problem (KP) and the Subset-Sum Problem (SSP)[14]

which are known to be NP-hard problems[15].

The subset-sumproblem is anNP-hard problem as no polynomial-

time algorithm exists to solve it [16, 17]. Dynamic Programming[18–

20] and exact algorithms extending the Bellman’s recursion exists

for small-scale instances of the subset-sum problem[21]. Moreover,

the 3/4 approximation ratio is a well-known worst-case guaran-

tee [14, 22]. As such, heuristics search methods[23, 24], as well

as local search methods[25] are the usual preference. The reason

behind this choice is the compelling approximation benefits and

the fast response time. Also, parallel computing often improves

time and space bounds wherever feasible; for instance, the parallel

version of the branch and bound algorithm[27] and the efficient

implementations of the parallel-random machine model[28].

Branch and bound[29] and genetic algorithms [30, 31] are well-

established global search methods tackling the subset-sum problem.

The appealing nature of being gradient-free and flexible allows

for tailored selection, particular data structures, and local search

schemes. For instance, evolutionary computing with the penalty

selection method[32], genetic algorithms using the rejection of in-

feasible offsprings [33], and a tailored penalty method [34]. For

instance, the dynamic evolutionary optimization of the subset-sum

problem [35], the dynamic multi-objective optimization with a ge-

netic algorithm and the external archive, and a hybrid between a

Pareto dominance and aggregated fitness [36], and the (1+1) evolu-

tionary algorithms with the superiority of feasible point selection

and the binary representation[37].

Methods for sampling, mutation, and selection tailored to the

subset-sum problem received relevant attention in the community.

Often, the binary and the tuple representations are the usual choices.

For a superset of size 𝑛 and a subset of size 𝑘 , the binary representa-

tion is an 𝑛-dimensional binary vector space with 𝑘 ones and 𝑛 − 𝑘
zeros; and the tuple representation is a 𝑘-dimensional vector related

to a combination element out of the

(𝑛
𝑘

)
. The subset-sum with fixed

size under rather distinct representation than the binary and the

tuple representation has been elusive in the literature. The essential

1308

https://doi.org/10.1145/3449726.3463226
https://doi.org/10.1145/3449726.3463226

GECCO ’21 Companion, July 10–14, 2021, Lille, France Victor Parque

role of effectively representing the search space in the subset-sum

problem has been discussed in [35, 38]. Moreover, [39] discussed

the possibility of using the number-based representation and Dif-

ferential Evolution with the global and local neighborhood, and

[40] compared the feasibility of using nature-inspired algorithms.

This paper extends [39] and [40] by enabling parallel reductions

in the GPU to generate associated combinations from numbers;

thus, gradient-free optimization algorithms can sample the number

search space more efficiently, allowing further scalability on 𝑛. In

particular, our contributions are as follows:

• We tackle the subset sum problem with fixed size over the

integer search space, rendering a one-dimensional combi-

natorial search space. Compared to the conventional rep-

resentations, our approach is amenable to parallelization

schemes.

• We evaluate the generation of combinations from numbers

using a decoding algorithm based on revolving door order

through a Graphics Processing Unit. Our theoretical obser-

vations and experiments show the efficiency quasi-linear

complexity, which is good due to its implications for scala-

bility.

• We evaluate a relevant set of nature-inspired optimization

algorithms considering distinct forms of gradient-free sam-

pling, selection pressure, the balance of exploration-exploitation,

and the multimodality considerations. Our computational

experiments show the attainability of obtaining optimal so-

lutions within a reasonable number of evaluations (10
4
).

2 PROPOSED APPROACH
2.1 The Subset-Sum Problem
Let a superset be S = [𝑛] = {1, 2, 3, ..., 𝑛}, a 𝑘-subset of [𝑛] is the
tuple 𝑐 = (𝑐1, 𝑐2, ..., 𝑐𝑘), with 𝑐𝑖 ∈ [𝑛].

The subset-sum problem with a fixed size aims to

Find 𝑐 such that

𝑘∑
𝑖=1

𝑐𝑖 = 𝑠, (1)

where 𝑐𝑖 is the 𝑖th element of the tuple 𝑐 , 𝑘 is the size of the combi-

nation object and 𝑠 is a user-defined aggregation value.

Generalizing (1) for variable size 𝑘 leads to the widely-studied

Knapsack Problem. And when (1) is a weighted sum, the above

formulation becomes the balanced subset-sum[41].

The reader may note that S refers to the set of integer numbers

up to 𝑛. By studying the possible values of combination elements, it

is possible to compute the feasible limits in the user-defined sum 𝑠 .

The combination with the smallest integers is 𝑐 = (1, 2, 3, ..., 𝑘), thus
the lower bound of the sum 𝑠 becomes the sum of such numbers

𝑠𝑙 =
𝑘 (𝑘 + 1)

2

. (2)

Conversely, the combination with the largest integer numbers

from the set S is 𝑐 = (𝑛 −𝑘 + 1, 𝑛 −𝑘 + 2, ..., 𝑛 − 2, 𝑛 − 1, 𝑛), then the

upper bound of the sum 𝑠 is the sum

𝑠𝑢 = 𝑛.𝑘 − 𝑘 (𝑘 − 1)
2

. (3)

Let

C =

{
𝐶1,𝐶2, ...,𝐶(𝑛𝑘)

}
(4)

be the

(𝑛
𝑘

)
different 𝑘 combinations of the set [𝑛], with 𝑛 ≥ 𝑘 , and

𝑘 ≥ 1.

It is possible to represent general combinations by using the 𝑘-

tuple (𝑐1, 𝑐2, ..., 𝑐𝑘)[45] and by using the binary 𝑛-tuple (𝑏1, 𝑏2, ..., 𝑏𝑛)
in which 𝑘 ones and 𝑛 − 𝑘 zeros correspond to selected and unse-

lected elements of the set S.
In this paper, we use an alternative method to represent a com-

bination: by using the integer numbers. Here, each element of

the set C is associated with an integer number from the set I =
{0, 1, 2, ...,

(𝑛
𝑘

)
− 1}, thus there exists a bijection 𝑓 : I → C, that

generates a combination tuple 𝑐 given an integer number[42–44].

Accordingly, we tackle (1) by formulating the subset-sum prob-

lem with fixed size as an optimization problem over the integer

search space

Minimize
𝑥

𝐹 (𝑥) subject to 𝑥 ∈ I, (5)

in which the cost function 𝐹 is as follows (example in Fig. 1-(a)):

𝐹 (𝑥) =
���𝑔(𝑓 (𝑥)) − 𝑠 ��� (6)

𝑔(𝑐) =
𝑘∑
𝑖=1

𝑐𝑖 , (7)

where |...| in (6) denotes the absolute function, 𝑥 is the integer

representing the combination tuple 𝑐 , 𝑓 (𝑥) is the function which

generates the combination tuple given the integer number 𝑥 ∈ 𝐼 , 𝑠
is the user-defined subset-sum 𝑠 given the boundary ∈ [𝑠𝑙 , 𝑠𝑢]), and
𝑔(.) is the aggregation function of the elements of the combination

𝑐 .

Since searching over the integer search space 𝑥 ∈ 𝐼 implies

generating big numbers when 𝑛 and 𝑘 becomes relatively large, we

use the absolute value to avoid issues in bloating. The proposed

cost function 𝐹 in (6) is non-differentiable and multi-modal:

• Both the absolute value in (6) and the aggregation function 𝑔

imply non-differentiable terms, thus gradient-free optimiza-

tion algorithms over the search space 𝐼 are suitable to tackle

problem (5). For instance, Fig. 1-(a) shows and example of

the landscape of the cost function 𝐹 (𝑥) for all combinations

(by complete enumeration) associated to the particular case

𝑥 ∈ 𝐼 and 𝑛 = 20, 𝑘 = 10, 𝑠 = 80. The reader may easily the

non-convexity and the rugged fitness landscape.

• Also, both the absolute value in (6) and the aggregation

function 𝑔 imply multi-modality, that is the possibility to

find multiple optimal solutions 𝑥∗ ∈ 𝐼 that meet the criterion

𝐹 (𝑥∗) = 0. For example, Fig. 1-(b) shows the histogram

(frequency) of the count of the number of optimal solutions

fulfilling 𝐹 (𝑥∗) = 0 for all combinations within the particular

case 𝑛 = [1, 20], 𝑘 = [1, 𝑛/2], 𝑠 ∈ [𝑠𝑙 , 𝑠𝑢]. By looking at Fig.

1-(b), the bell-shaped distribution shows that it is possible

to find more than one optimal solution.

In line with the above, some of the relevant motivations to study

the number-based representation in tackling the subset-sum prob-

lem lies in the following notions

1309

Generating Combinations on the GPU and its Application to the K-Subset Sum GECCO ’21 Companion, July 10–14, 2021, Lille, France

(a) 𝐹 (𝑥)

(b) Histogram(𝑥∗)

Figure 1: (a) The cost function 𝐹 (𝑥) for all the combinations with 𝑛 = 20, 𝑘 = 10, 𝑠 = 80.
(b) Count of optimal solutions 𝑥∗ satisfying 𝐹 (𝑥) = 0 for all 𝑛 = [1, 20], 𝑘 = [1, 𝑛/2],
𝑠 ∈ [𝑠𝑙 , 𝑠𝑢].

• Since each integer number in the set I represents a unique
combination element of C, the number-based search space

defined by 𝑥 ∈ 𝐼 is complete, is information-theoretically

optimal, and is canonical.

• Rather than being 𝑘-dimensional or 𝑛-dimensional, search-

ing over the space of numbers𝑥 ∈ 𝐼 becomes a one-dimensional

problem, whose landscape is attractive for gradient-free op-

timization algorithms.

• It is also possible to sample the search space of the subset-

sum with equal probability: generating a combination from

a number is independent of the past generation history of

combinations.

• For large 𝑛, using the integer domain is preferable when it

is impossible to generate the full set of combinations[45–

52], and when it is impractical to generate combinations

randomly [53, 54] and sequentially [55].

Algorithm 1 Unranking Algorithm

1: procedure Unrank(𝑥, 𝑘)

2: Input 𝑥 ⊲ Rank Number

3: Output (𝑐1, 𝑐2, ..., 𝑐𝑘) ⊲ Combination Object

4: 𝑐𝑜
𝑘
← 𝑘 ⊲ Initial approximate solution

5: for 𝑖 ← 𝑘 downto 1 do

6: 𝑐𝑖 ← 1 +
⌊
Minimize |𝐽 (𝑐, 𝑖, 𝑥) | with 𝑐 ⩾ 𝑖

⌋
7: 𝑥 ←

(
𝑐𝑖

𝑖

)
− 𝑥 − 1

8: end for

9: return (𝑐1, 𝑐2, ..., 𝑐𝑚) ⊲ Combination object

10: end procedure

2.2 Generating Combinations on the GPU
To realize the function 𝑓 : I→ C being able to decode an integer

number to render a combination tuple 𝑐 , we use a decoding algo-

rithm based on the revolving door order as shown by Algorithm

1, in which the element 𝑐𝑖 is generated by minimizing the cost

function |𝐽 (𝑐, 𝑖, 𝑥) | for variable 𝑐 and constraint 𝑐 ≥ 𝑖 .

In algorithm 1,

𝐽 (𝑐, 𝑖, 𝑥) =
[

𝑖∑
𝑝=1

log𝑏

(𝑐 − 𝑖
𝑝
+ 1

)]
− log𝑏 (𝑥), (8)

where 𝑖 denotes the index in the for loop of Algorithm 1 (𝑖 = 𝑘 at

initial iteration), 𝑥 denotes the integer number representing the

combination, and the base 𝑏 in log𝑏 (.) is a user-defined constant

(the larger the coefficient

(𝑛
𝑘

)
is, the larger the constant 𝑏 to handle

big numbers accurately). For standard computing environments,

we use 𝑏 = 10 since it allows to compute log𝑏 (𝑔) in feasible range.

To find the minimal of |𝐽 | in 𝑐 ∈ [𝑖, +∞], we used a gradient-

based scheme, as follows:

𝑐𝑘+1𝑖 =

{
𝑐𝑘
𝑖
− 𝐽

𝐽 ′ , if 𝑐𝑘+1
𝑖
⩾ 𝑖

𝑖, otherwise

(9)

where 𝑖 ∈ [𝑚], 𝑘 denotes the iteration number, and the subscript

𝐽 ′ denotes the first derivative of the function 𝐽 with respect to 𝑐𝑘
𝑖
.

𝐽 ′(𝑐, 𝑖) = 1

ln(𝑏)

𝑖−1∑
𝑝=0

1

(𝑐 − 𝑝) (10)

Due to the concavity of the function 𝐽 in 𝑐 ∈ [𝑖, +∞], the initial
solutions 𝑐𝑜

𝑖
∈ [𝑖, +∞] ensure convergence to the root of 𝐽 , and are

initialized as follows:

𝑐𝑜𝑖 =

{
𝑚, if 𝑖 =𝑚

𝑐𝑖+1, otherwise

(11)

The above is based on the revolving door ordering principle:

𝑐1 < 𝑐2 < ... < 𝑐𝑚 , and the closeness of 𝑐𝑖 to 𝑐𝑖+1, which ensures ef-

ficient convergence to the global optima. Thus, the minimal change

1310

GECCO ’21 Companion, July 10–14, 2021, Lille, France Victor Parque

ordering is useful when sampling properties of consecutive com-

binations efficiently. It is possible to use different orderings, e.g.,

lexicographical ordering. However, the minimal change ordering is

preferable to preserve distance when sampling arbitrary solutions

in the integer search space: the phenotypic difference of combina-

tions associated with consecutive integer numbers is one.

As for termination criterion, we use the following criteria

|𝐽 ′ | < 𝛿, (12)

|𝑐𝑘+1 − 𝑐𝑘 |/|𝑐𝑘 | < 𝜀 (13)

in which 𝛿 and 𝜀 are threshold tolerances to avoid division and sam-

pling with very small numbers. Without loss of generality within

the context of standard desktop environments, we use 𝛿 = 𝜀 = 10
−8
.

Since both functions 𝐽 and 𝐽 ′ in Eq. 11 are parallelizable and com-

putable in𝑂 (𝑖) time by using a single processor, and in𝑂 (log 𝑖) time

by using at most 𝑂 (𝑖/log 𝑖) processors (to ensure work-efficiency

in parallel cores according to the Brent’s Theorem
1
), we used a

parallel reduction algorithm. As such, we reduce 𝑖 sums in multiple

elements per thread in a CUDA-enabled Graphics Processing Unit

(GPU).

2.3 Complexity of Decoding Combinations
To evaluate the computational efficiency of generating combina-

tions, we define the asymptotic complexity behavior as the function:

𝑇 (𝑘) ≈
𝑘∑
𝑙=1

𝑡𝑙∑
𝑗=1

𝛼 (𝑙)︸ ︷︷ ︸
𝐹 (𝑘)

+
𝑘∑
𝑙=1

𝛽 (𝑙)︸ ︷︷ ︸
𝐺 (𝑘)

, (14)

where 𝑙 is the order of the for loop in Algorithm 1
2
; 𝑡𝑙 represents the

number of iterations used to solve the minimization problem (in line

6 of algorithm 1) in the 𝑙-th for loop; 𝛼 (𝑙) denotes the complexity of

evaluating the objective function 𝐽 and its gradient 𝐽 ′ during the 𝑙-

th for loop; and 𝛽 (𝑙) denotes the time complexity of evaluating the

binomial coefficient of line 7. Basically,𝑇 (𝑘) computes the expected

complexity to solve the 𝑘 minimization problems and 𝑘 binomial

coefficients, denoted by 𝐹 (𝑘) and 𝐺 (𝑘), respectively.
• In case of using a single processor, the time complexity of

both 𝛼 (𝑙) and 𝛽 (𝑙) is 𝑂 (𝑖). Then,

𝐹 (𝑘) ≈ 𝑘𝑡1 + (𝑘 − 1)𝑡2 + (𝑘 − 2)𝑡3 + ... + 𝑡𝑘 (15)

𝐺 (𝑘) ≈ 𝑘2 (16)

• In case of using at most 𝑂 (𝑘/log𝑘) processors, the time

complexity of both 𝛼 (𝑙) and 𝛽 (𝑙) is 𝑂 (log 𝑖). Then,

𝐹 (𝑘) ≈ log(𝑘)𝑡1 + log(𝑘 − 1)𝑡2 + ... + log(1)𝑡𝑘 (17)

𝐺 (𝑘) ≈ 𝑘 log(𝑘) (18)

1
assuming algebraic operations with numbers in𝑂 (1)

2𝑙 = 1 when 𝑖 = 𝑘 , and 𝑙 = 𝑘 when 𝑖 = 1

3 COMPUTATIONAL EXPERIMENTS
This section describes our experiments and results evaluating the

feasibility of our proposed approach.

3.1 Generating Combinations
To evaluate the feasibility to generate combinations in the GPU,

we implemented the algorithm 1 in CUDA, and experimentally

investigated the complexity behaviour and the number of iterations

𝑡𝑙 used for decoding combinations from given integer numbers. Our

computing environment consisted of an Intel i7-4930K @ 3.4GHz,

and algorithms were implemented in Matlab.

We generated combinations from the first billion group from

values of 𝑛 ∈ {100, 200, ..., 1000} and 𝑘 ∈ {100, 200, ..., 1000} in our

computing environment. The main reason behind using values of

𝑛 up to 1000 is due to the fact of having computational restrictions

on the allowable representation of integer numbers (the maximum

number being able to be represented in a standard computing envi-

ronment in Matlab is defined by realmax, which is 1.7977 × 10308).
However, we argue that it is possible to overcome this limit by

numerical precision libraries and extend the memory capacity of

our computing environment, which is out of the scope of this paper.

Naturally, since our approach is useful for applications involving ar-

bitrary (non-sequential) sampling without repetition, compression

efficiency, and concurrency (parallelization), our future work would

aim at evaluating the accuracy and feasibility of using advanced

computing environments (e.g., multi CPU-GPU devices).

Fig. 2 portrays the total number of iterations for all 𝑛 and 𝑘 , and

Fig. 3 estimates complexity metrics with respect to the value of 𝑘 .

The reason we evaluate both Fig. 2 and Fig. 3 as a function of 𝑘 is

due to algorithm 1 is a function of 𝑘 for a given 𝑥 . As we can observe

from Fig. 2, the number of iterations 𝑡𝑙 is constant, in the worst

case, and the average number of iterations decreases as a function

of 𝑘 . Thus, assuming that 𝑡1 = 𝑡2 = ... = 𝑡𝑙 = ... = 𝑡𝑘 = 𝑡 in (15)-(17),

the time complexity is expected to be bounded by 𝑂 (𝑚2), when
using a single processor (from Eq. 15), and bounded by 𝑂 (𝑘 log𝑘),
when using at most 𝑂 (𝑘/log𝑘) processors (from Eq. 17).

The above-mentioned observations agree with our empirical

estimations of Fig. 3 which shows the complexity metrics 𝑇 (𝑘)
when using a single and multiple processors. In Fig. 3 - Fig. 4,

we can observe that a quasi-quadratic function is obtained when

using one processor, and a quasi-linear behaviour is achieved when

using more than one processor. Furthermore, the above attained

complexity is independent of the number of elements 𝑛, which is

scalable when 𝑛 is large, or time-varying.

3.2 Gradient-free Optimization Algorithms
We used the following heuristics:

• Particle Swarm Optimization with Fitness Euclidean Ratio

(FERPSO)[56],

• Differential Evolution with Successful Parents (DESPS)[57],

• Dividing Rectangles Algorithm (DIRECT)[58, 59],

• Rank-Based Differential Evolution (RBDE)[60],

• Success-History Based Parameter Adaptation Differential

Evolution (SHADE)[61],

• Differential Evolution with Global and Local Neighborhoods

(DEGL)[62],

1311

Generating Combinations on the GPU and its Application to the K-Subset Sum GECCO ’21 Companion, July 10–14, 2021, Lille, France

(a) Number of iterations (b) Average number of iterations

Figure 2: Number of iterations when generating combinations in 𝑛,𝑘 ∈ [100, 1000].

(a) One processor (b) Many processors

Figure 3: Complexity as a function of 𝑘 when generating combinations in 𝑛,𝑘 ∈ [100, 1000].

Our motivation for using the above set is to include distinct

forms of sampling, selection pressure, the balance of exploration-

exploitation, and multi-modality considerations. Although some

of the algorithms mentioned above perform in continuous search

spaces, the rounding function is a straightforward mechanism that

enables through comparisons across experiments. Devising a sam-

pling scheme tailored to integer numbers is potential to improve

convergence further and is left for future work in our agenda.

Some of the key parameters in the above-mentioned schemes

are inertia weight 𝜔 = 0.7, weight on the local best 𝑐1 = 0.5, weight

on the global best 𝑐2 = 1, population size 100. In Differential Evo-

lution algorithms, the crossover rate was 𝐶𝑅 = 0.5, the mutation

strategy was DE-current-to-best/1 mutation strategy with scaling

factors 𝐹 = 0.7. The neighborhood ratio in DEGL 𝜆 = | 𝑙𝑛 (𝑈 (0,1))
2

|.
The coefficient 𝛽 involved in the Whitley distribution scheme in

Rank-Based Differential Evolution (RBDE) was set as 𝛽 = 2. The

global/local weight parameter in DIRECT was set to 10
−4
. Fine

tuning of these parameters is out of the scope of this paper.

3.3 Tackling the Subset Sum
We used the following settings for subset sum problems: 𝑛 = 50,

and 𝑘 = 𝑛/2, in which

• Values of user-defined subset sum 𝑠 are defined as:

𝑠 = (1 − 𝑎) .𝑠𝑙 + 𝑎.𝑠𝑢 , (19)

for 𝑎 = {0.25, 0.75}.

1312

GECCO ’21 Companion, July 10–14, 2021, Lille, France Victor Parque

Figure 4: Comparison of complexity metric as a function of 𝑘 when generating combina-
tions in 𝑛,𝑘 ∈ [100, 1000].

• For each value 𝑎, 30 runs were performed to solve Eq. 5.

• For each run the maximum number of evaluations was 10
4
.

The principal motivation of using 10
4
evaluations is to evaluate

the efficiency of the proposed approach under a restrictive evalua-

tion budget. Moreover, using multiple independent runs allows fair

comparison over random initialization schemes. Also, by setting

𝑎 = {0.25, 0.75}, we enable to evaluate fitness landscapes distributed
in [𝑠𝑙 , 𝑠𝑢]. Using 𝑎 = 0 and 𝑎 = 1 are trivial, since they correspond

to the combinations (1, 2, ..., 𝑘) and (𝑛 − 𝑘 + 1, 𝑛 − 𝑘 + 2, ..., 𝑛 − 1, 𝑛),
respectively. Furthermore, for an extended search space, we set the

value of 𝑘 = 𝑛/2 for a wide search space. Since the solutions are

encoded by 𝑥 ∈ I, for I = {0, 1, 2, ...,
(𝑛
𝑘

)
− 1} and |I| =

(𝑛
𝑘

)
, then

𝑘 = 𝑛/2 allows |I| =
(𝑛
𝑛/2

)
to attain the largest size for any given

value of 𝑛. For example, when 𝑛 = 50 and 𝑘 = 25, the search space

consists of |I| = 1.26 × 1014 numbers, which is a challenging search

space.

3.4 Results and Discussion
Fig. 5 shows the mean convergence of the cost function 𝐹 (𝑥) across
the best solutions over independent runs, whereas Fig. 6 shows its

standard deviation. In these figures, the x-axis depicts the number

evaluations, and the y-axis shows the cost function 𝐹 . The global

optima relates to the criterion 𝐹 = 0. The reader may note that

in each plot of Fig. 5, there exists six convergence lines, each of

which related to a gradient-free optimization algorithm. Although,

some of the studied algorithms, such as FERPSO, are suitable for

multi-modal problems, we obtain the single/best optimal solution

for a fair comparison. By observing Fig. 5 and Fig. 6, we observe

note the following facts:

• Among the studied algorithms, DIRECT shows sudden de-

creases over a number of function evaluations. This is due to

DIRECT being a deterministic algorithm, thus the standard

deviation in Fig. 6 is zero across independent runs. Although

it is possible to a stochastic-like feature by allowing variable

grid formation, the study of such extensions is left for future

agenda.

• Among the studied algorithms, FERPSO shows the faster

average convergence (over 30 runs). We believe this obser-

vation occurs due to the sparsity-inducing mechanisms to

sample close and elite solutions within multiple (implicit)

neighborhoods. Since the fitness landscape is noisy and mul-

timodal, Fig. 1-(a) shows, FERPSO naturally suits to tackle the

global optima with faster convergence. As such, we observed

that FERPSO achieved the global optima in around 3000 func-

tion evaluations, whereas other algorithms required between

6000 and 9000 function evaluations, in the best cases.

• The search space is wide: it has more than 10
14

numbers.

Despite such a large space, most of the studied algorithms

converged to the global optima or close to it. Also, as the

standard deviation decreased with respect to the number of

evaluations, the population of nature-inspired algorithms

converged to the global optima, or close to it.

• The above observations imply the feasibility of using gradient-

free optimization algorithms over the integer space. The

fact of using an enumerative representation with a minimal

change order enables to generate a sparse fitness landscape

over the entire combinatorial search space. In some particular

situations, we also observed that random initialization was

sufficient to generate optimal or close to optimal solutions

to the subset sum problem. Investigating this phenomenon

for large 𝑛 is in our future agenda.

Furthermore, we compared the statistical difference in the con-

verged cost functions after 10
4
evaluations. Fig. 7 shows the sta-

tistical significance test over 30 independent runs based on the

Wilcoxon test at 5% significance level. In this figure, the symbols

with ’+/=/-’ denote situations in which an algorithm in the row

(vertical axis of the heat map) is significantly better/similar/worse

to an algorithm in the column (horizontal axis of the heat map).

By looking at the obtained results, we can confirm that, most algo-

rithms, with the exception of DEGL, perform similarly by achieving

comparatively similar performance.

The observationsmentioned above imply that the highly sparsity-

inducing mechanisms induced by neighborhood strategies such as

the Particle Swarm with Fitness Euclidean Ratio (FERPSO)[56] are

potential for fast convergence, in average. Moreover, most gradient-

free optimization algorithms studied in this paper converged to

optimal solutions, despite tackling a large search space consisting

of about 10
4
function evaluations. We believe the above-described

phenomenon is due to the integer search space and the minimal

change order tracking the potential solutions in the combinatorial

search space. The further study of tailored mutation strategies and

optimization algorithms is on our agenda.

We believe our results in this paper offer the building blocks to

extend the nature-inspired optimization algorithms using enumer-

ative encoding. Investigating the performance over a large number

of combinatorial optimization problems, based on the implications

of the subset sum problem and the GPU-based generation of com-

binatorial objects, is on our agenda.

4 CONCLUSIONS
We have presented a new approach for the subset sum problem us-

ing gradient-free optimization. Our approach samples the number

1313

Generating Combinations on the GPU and its Application to the K-Subset Sum GECCO ’21 Companion, July 10–14, 2021, Lille, France

(a) 𝑎 = 0.25 (b) 𝑎 = 0.75

Figure 5: Mean convergence behaviour of the evaluated algorithms over 30 independent runs for 𝑛 = 50.

(a) 𝑎 = 0.25 (b) 𝑎 = 0.75

Figure 6: Standard deviation of the convergence of the evaluated algorithms over 30 independent runs for 𝑛 = 50.

search space and generates combinations by the parallel reduc-

tion in the Graphics Processing Unit (GPU) based on the minimal

change order. Our computational experiments have shown (1) the

feasibility of generating combinations efficiently within a reason-

able computable range and (2) the feasibility of using gradient-free

optimization algorithms to find combination objects that meet the

user-defined aggregation values within a reasonable number of

evaluations. Our GPU approach aims to realize the practical ef-

ficiency for resource allocation problems, such as agents, space,

memory, time, throughput, and capital. We aim to study further

combinatorial problems and tailored search strategies to explore

the frontiers of the nature-inspired optimization algorithms aided

by enumerative encodings. When using numbers as representation,

the search space becomes one-dimensional and is amenable to par-

allelization schemes. We believe our work opens the door to tackle

combinatorial problems by GPU-based implementations.

ACKNOWLEDGEMENT
This research was supported by JSPS KAKENHI 20K11998.

REFERENCES
[1] A. F. Myers, "k-out-of-n: G System Reliability with Imperfect Fault Coverage."

IEEE Transactions on Reliability, Vol. 56. No. 3 pp. 464-473, 2007.

[2] Y. Tamada, S. Imoto and S. Miyano, "Parallel Algorithm for Learning Optimal

Bayesian Network Structure", The Journal of Machine Learning Research, Vol. 12,

pp. 2437-2459, 2011.

[3] M. Ventresca, "Global search algorithms using a combinatorial unranking-based

problem representation for the critical node detection problem", Computers &

Operations Research, Vol. 39, pp. 2763-2775, 2012.

[4] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, K. Makino, "Enumer-

ating spanning and connected subsets in graphs and matroids", J. Oper. Res. Soc.

Jpn., 50 (2007), pp. 325–338.

[5] K. Suzuki and M. Yokoo, "Secure combinatorial auctions by dynamic program-

ming with polynomial secret sharing", 6th International Conferene on Financial

Cryptography, Lecture Notes in Computer Science, Vol. 2357, pp. 44-56, 2003.

[6] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.I. Verkamo, "Fast discovery of

association rules", Advances in Knowledge Discovery and Data Mining (1996), pp.

307–328.

[7] V. Parque, T. Miyashita, "Bundling n-Stars in Polygonal Maps", International

Conference on Tools with Artificial Intellignce (ICTAI), pp. 358-365, 2017.

[8] V. Parque, T. Miyashita, "Obstacle-Avoiding Euclidean Steiner Trees by n-Star

Bundles", International Conference on Tools with Artificial Intellignce (ICTAI),

315-319, 2018.

[9] V. Parque, "On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles",

The 21st European Conference on Evolutionary Computation in Combinatorial

Optimisation (EvoCOP), pp. 120-135, 2021.

1314

GECCO ’21 Companion, July 10–14, 2021, Lille, France Victor Parque

=

=

=

-

-

=

=

=

=

-

=

=

=

-

-

=

=

=

-

-

+

=

+

+

=

+

+

+

+

=

(a) 𝑎 = 0.25

-

=

=

=

=

+

+

=

=

=

=

-

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

(b) 𝑎 = 0.75

Figure 7: Statistical significance based on theWilcoxon test at 5% significance level. Symbols with ’+/=/-’ denote instances where an algorithm in the row is significantly better/similar/worse
to an algorithm in the column.

[10] B. J. Chisholm, D. C. Webster, "The development of coatings using combinato-

rial/high throughput methods: a review of the current status", Journal of Coatings

Technology and Research, Vol. 4, No. 1, pp. 1-12, 2007.

[11] T. Imada, S. Ota, H. Nagamochi, T. Akutsu, "Efficient enumeration of stereoiso-

mers of outerplanar chemical graphs using dynamic programming", J. Chem. Inf.

Model., 51, pp. 2788–2807, 2011.

[12] T. Eiter, K. Makino, "On computing all abductive explanations from a proposi-

tional Horn theory", J. ACM, Vol. 5, No. 24, 2007.

[13] "Why is combinatorial communication rare in the natural world, and why is

language an exception to this trend?", Journal of the Royal Society Interface, Vol.

10, No. 88, 2013.

[14] S. Martello, P. Toth, "Knapsack Problems: Algorithms and Computer Implemen-

tations", Wiley, Chichester, UK, 1990.

[15] M.R. Garey, D.S. Jonson, "Computers and Intractability: A guide to the Theory of

NP-completeness", WH. Freeman & Co, San Francisco, 1979.

[16] A. Lobstein, "The hardness of solving subset sumwith preprocessing", IEEE Trans.

Inf. Theory 36 (4) pp. 943–946, 1990.

[17] J.C. Lagarias, A.M. Odlyzko, "Solving low density subset sum problems", 24th

Annual Symposium on Foundations of Computer Science, pp. 1–10, 1983.

[18] J.H. Ahrens, G. Finke, "Merging and sorting applied to the 0-1 knapsack problem",

Operations Research 23, pp. 1099-1109, 1975.

[19] B. Faaland, "Solution of the value-independent knapsack problem by partitioning",

Operations Research 21, pp. 332-337, 1973.

[20] D. Pisinger, "An O(nr) algorithm for the subset-sum problem, Report 95/6, DIKU,

University of Copenhagen, Denmark, 1995

[21] N. Y. Soma, P. Toth, "An exact algorithm for the subset sum problem", European

Journal of Operations Research, Vol. 136, pp. 57-66, 2002.

[22] H. Kellerer, R. Mansini, M. G. Speranza, "Two linear approximation algorithms

for the subset-sum problem", European Journal of Operations Research, Vol. 120,

pp. 289-296, 2000.

[23] W.L. Chang, et al., "Quantum algorithms of the subset-sum problem on a quantum

computer", WASE International Conference on Information Engineering, ICIE, pp.

54-57, 2009.

[24] T. Mine, Y. Murakami, "An implementation of space–time tradeoff method for

subset sum problem", Sixth International Conference on Computer Sciences and

Convergence Information Technology (ICCIT), pp. 618–621, 2011.

[25] D. Ghosh, N. Chakravarti, "A competitive local search heuristic for the subset

sum problem", Comput. Oper. Res. 26, Vol. 3, pp. 271 - 279, 1999.

[26] Shenshen Gu, Rui Cui, "An efficient algorithm for the subset sum problem based

on fi nite-time convergent recurrent neural network", Neurocomputing, Vol. 149,

pp. 13 - 21, pp. 13-21, 2015.

[27] L. Wan, K. Li, K. Li, "A novel cooperative accelerated parallel two-list algorithm

for solving the subset-sum problem on a hybrid CPU–GPU cluster", J. Parallel

Distrib. Computation, Vol. 97, pp. 112-123, 2016.

[28] C.A.A. Sanches, N.Y. Soma, H.H. Yanasse, "Parallel time and space upper-bounds

for the subset-sum problem", Theoretical Computer Science, Vol. 407, pp. 342-348,

2008.

[29] E. Horowitz, S. Sahni, "Computing partitions with applications to the knapsack

problem", Journal of the Association for Computing Machinery 21, pp. 277-292,

1974.

[30] R.L. Wang, "A Genetic Algorithm for Subset Sum Problem", Neurocomputing, pp.

463-468, 2004.

[31] Oberoi, A., Gupta, J.: On the applicability of genetic algorithms in subset sum

problem. Int. J. Comput. Appl. 145(9), 37–40 (2016)

[32] H. Wang, Z. Ma, I. Nakayama, "Effectiveness of penalty function in solving the

subset sum problem", Proceedings of IEEE International Conference on Evolution-

ary Computation, pp. 422-425, 1996.

[33] Thada, V., Shrivastava, U.: Solution of subset sum problem using genetic algorithm

with rejection of infeasible offspring method. Int. J. Emerg. Technol. Comput. Appl.

Sci. 10(3), 259–262 (2014)

[34] Saketh, G. Comparison of Dynamic Programming and Genetic Algorithm Ap-

proaches for Solving Subset Sum Problems. In Computational Vision and Bio-

Inspired Computing (pp. 472–479). Springer International Publishing, 2020

[35] Rohlfshagen, P., Yao, X. "Dynamic combinatorial optimisation problems: an

analysis of the subset sum problem". Soft Comput 15, 1723–1734 (2011).

https://doi.org/10.1007/s00500-010-0616-9

[36] I. M Comsa, C. Grosan, S. Yang, Dynamics in the Multi-objective Subset Sum:

Analysing the Behavior of Population Based Algorithms, Evolutionary Computa-

tion for Dynamic Optimization Problems pp 299-313, 2013

[37] Zhou, J. On the Running Time Analysis of the (1+1) Evolutionary Algorithm

for the Subset Sum Problem. In Bio-Inspired Computational Intelligence and

Applications (pp. 73–82). Springer Berlin Heidelberg, 2007.

[38] Branke J, Orbayi M, Uyar S The role of representations in dynamic knapsack

problem. In: Rothlauf F (ed) EvoWorkshops 2006. Springer, Berlin, pp 764–775

[39] V. Parque, T. Miyashita, ""On k-subset sum using enumerative encoding", IEEE

International Symposium on Signal Processing and Information Technology, pp.

81-86, 2016

[40] V. Parque, "Tackling the Subset Sum Problem with Fixed Size using an Integer

Representation Scheme", IEEE Congress on Evolutionary Computation (CEC),

Krakow, Poland, 2021.

[41] Zhuo Li, Jiannong Cao, Zhongyu Yao, Wengen Li, Yu Yang, and Jia Wang. 2020.

Recursive Balanced k-Subset Sum Partition for Rule-constrained Resource Alloca-

tion. In Proceedings of the 29th ACM International Conference on Information &

Knowledge Management (CIKM ’20). Association for Computing Machinery, New

York, NY, USA, 2121–2124.

[42] V. Parque, M. Kobayashi, M. Higashi, "Bijections for the numeric representation of

labeled graphs", IEEE International Conference on Systems, Man and Cybernetics

(SMC), pp. 447-452, 2014.

[43] V. Parque, T. Miyashita, "On succinct representation of directed graphs", IEEE

International Conference on Big Data and Smart Computing (BigComp), 199-205,

2017.

[44] V. Parque, T. Miyashita, "On the Numerical Representation of Labeled Graphs

with Self-Loops", International Conference on Tools with Artificial Intellignce

(ICTAI), pp. 342-349, 2017.

[45] D. E. Knuth, "Generating All Combinations and Partitions", The Art of Computer

Programming, Fascicle 3, Addison-Wesley, pp. 5-6.

[46] C. J. Mifsud, "Algorithm 154: combination in lexicographical order", Communica-

tions of the ACM, Vol. 6, No. 3, pp. 103, 1963.

[47] P. J. Chase, "Algorithm 382: Combinations ofM out of N objects", Communications

of the ACM, Vol. 13 No. 6, pp. 368, 1970.

1315

Generating Combinations on the GPU and its Application to the K-Subset Sum GECCO ’21 Companion, July 10–14, 2021, Lille, France

[48] C. N. Liu and D. T. Tang, "Algorithm 452: enumerating combinations of m out of

n objects", Communications of the ACM, Vol. 16, No. 8, pp. 485, 1973.

[49] S. G. Akl, "A Comparison of Combination Generation Methods", ACM Transac-

tions on Mathematical Software, Vol. 7, No. 1, p.42-45, 1981.

[50] C. Martinez, X. Molinero, "An experimental study of unranking algorithms", C.C.

Ribeiro, S.L. Martins (Eds.), Experimental and efficient algorithms. Lecture notes

in computer science, vol. 3059 (2004), pp. 326–340.

[51] F. Ruskey and A. Williams, "The coolest way to generate combinations", Discrete

Mathematics, Vol. 309, pp. 5305-5320, 2009.

[52] L. Xiang and K. Ushijima, "On O(1) time algorithms for combinatorial generation",

The Computer Journal, Vol. 44, No. 4, 2001.

[53] P. Flajolet, P. Zimmerman, B. Van Cutsem, "A calculus for the random generation

of combinatorial structures", Theoretical Computer Science, 132 (1) (1994), pp.

1–35

[54] D. E. Knuth, "The Art of Computing Programming", Vol. 2 Seminumerical Algo-

rithms, Addison Wesley, Reading, Mass., 1968.

[55] J. Kurtzberg, "Algorithm 94: Combination", Communications of the ACM, Vol. 5,

No. 6, pp. 344, 1962.

[56] Xiaodong Li. A multimodal particle swarm optimizer based on fitness Euclidean-

distance ratio. In Proceedings of the 9th annual conference on Genetic and evolu-

tionary computation. Association for Computing Machinery, New York, NY, USA,

78–85. DOI:https://doi.org/10.1145/1276958.1276970

[57] S. Guo, C. Yang, P. Hsu and J. S. -. Tsai, "Improving Differential Evolution With a

Successful-Parent-Selecting Framework," in IEEE Transactions on Evolutionary

Computation, vol. 19, no. 5, pp. 717-730, Oct. 2015, doi: 10.1109/TEVC.2014.2375933.

[58] Jones D.R. (2001) Direct Global Optimization Algorithm. In: Floudas C.A.,

Pardalos P.M. (eds) Encyclopedia of Optimization. Springer, Boston, MA.

https://doi.org/10.1007/0-306-48332-7_93

[59] Jones, D.R., Martins, J.R.R.A. The DIRECT algorithm: 25 years Later. J Glob Optim

79, 521–566 (2021). https://doi.org/10.1007/s10898-020-00952-6

[60] Andrew M. Sutton, Monte Lunacek, and L. Darrell Whitley. 2007. Differential

evolution and non-separability: using selective pressure to focus search. In Pro-

ceedings of the 9th annual conference on Genetic and evolutionary computa-

tion, Association for Computing Machinery, New York, NY, USA, 1428–1435.

DOI:https://doi.org/10.1145/1276958.1277221

[61] R. Tanabe and A. Fukunaga, "Success-history based parameter adaptation for

Differential Evolution," 2013 IEEE Congress on Evolutionary Computation, Cancun,

Mexico, 2013, pp. 71-78, doi: 10.1109/CEC.2013.6557555.

[62] S. Das, A. Abraham, U. K. Chakraborty, A. Konar, "Differential Evolution using

a Neighborhood-Based Mutation Operator", IEEE Transactions on Evolutionary

Computation, Vol. 13, No. 3, pp. 526-553, 2009.

1316

	Abstract
	1 Introduction
	2 Proposed Approach
	2.1 The Subset-Sum Problem
	2.2 Generating Combinations on the GPU
	2.3 Complexity of Decoding Combinations

	3 Computational Experiments
	3.1 Generating Combinations
	3.2 Gradient-free Optimization Algorithms
	3.3 Tackling the Subset Sum
	3.4 Results and Discussion

	4 Conclusions
	References

