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ABSTRACT
Features with rare states, such as rare genetic variants, pose a signif-
icant challenge for both statistical and machine learning analyses
due to limited detection power and uncertainty surrounding the
nature of their role (e.g., additive, heterogeneous, or epistatic) in
predicting outcomes such as disease phenotype. Rare variant ‘bins’
(RVBs) hold the potential to increase association detection power.
However, previously proposed binning approaches relied on prior-
knowledge assumptions, instead of data-driven techniques, and
ignored the potential for multivariate interactions. We present the
Relevant Association Rare-variant-bin Evolver (RARE), the first evo-
lutionary algorithm for automatically constructing and evaluating
RVBs with either univariate or epistatic associations. We evaluate
RARE’s ability to correctly bin simulated rare-variant associations
over a variety of algorithmic and dataset scenarios. Specifically, we
examine (1) ability to detect RVBs of univariate effect (with or with-
out noise), (2) using fixed vs. adaptable bins sizes, (3) employing
expert knowledge to initialize bins, and (4) ability to detect RVBs
interacting with a separate common variant. We present prelimi-
nary results demonstrating the feasibility, efficacy, and limitations
of this proposed rare-variant feature engineering algorithm.
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1 INTRODUCTION
In scientific fields such as genetics, features with rare variant states
present considerable difficulty for association analysis. For example,
despite genome-wide association studies (GWAS) elucidating the
role of ‘common’ genetic variants in disease associations [26, 28],
uncertainty surrounding the contribution of rare genetic variation
in complex diseases persists [13, 38]. Rare genetic variants, typically
defined as having a minor allele frequency (MAF) less than 0.05
[16], likely play a significant role in explaining missing heritability
in complex diseases [39]. However, traditional methods such as
GWAS and other univariate association testing are underpowered
for the detection of rare variant associations as a result of the
low frequency of rare variants [15]. Univariate testing also fails to
detect gene-gene interactions (e.g., epistasis), which are recognized
as contributors to complex disease heritability [17, 20].

To date, a variety of methods have been proposed to try and
address rare variant association analysis challenges. First, burden
testing methods, such as the cohort allelic sum test (CAST) de-
scribed in [22], combine all rare variants within a single genetic
region into a single variable (i.e., bin), that is subsequently evaluated
with a univariate association test with a class outcome (e.g., healthy
vs. disease). Several other rare variant association analysis methods
expand upon burden testing, including the combined multivariate
and collapsing method, which prevents inclusion of noncausal fea-
tures [15], and the nonparametric weighted sum test (WST), which
adds weights to each rare variant in the bin [19]. One complication
is that individual rare variants can have different directions of effect
(i.e., protective vs. increasing disease risk). Because of this, burden
testing experiences a significant loss of predictive ability when rare
variants in the same genetic region hold differing effects on class
value [23]. An ideal binning strategy might adapt bins to separate
rare variants with different effect directions.

Non-burden testing methods include the sequence kernel as-
sociation test (SKAT) and its optimized form (SKAT-O) [14, 35].
These utilize a multiple regression model to determine regression
coefficients for each rare variant in a genetic region, with the goal
of optimizing association to class value while detecting epistatic
effects between individual variants. SKAT and SKAT-O improve
upon burden testing by eliminating the assumption that every rare
variant in a genetic region is causal and enabling modeling of both
risk-increasing and protective rare variants [35]. Yet both burden
tests and non-burden tests rely upon the assumption that only rare
variants from the same genetic region should be binned, so they are
unable to flexibly group rare variants from different genetic regions,
potentially missing optimally predictive, combinations of rare vari-
ants across genetic regions. Another tool for rare variant bin (RVB)
discovery is BioBin, which adopts a biological knowledge-guided
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approach to binning rare variants [21]. In BioBin, candidate bins
can be based on a variety of biological annotations including pre-
defined genomic elements such as gene, intergenic region, exon,
intron, enhancer, promoter, etc.

All previous methods for RVB discovery rely on some form
of prior knowledge, limiting the discovery of novel predictive
RVBs not defined by existing knowledge. Also, these methods have
not taken bin-interactions into account, i.e., potential interactions
among unique RVBs or between a RVB and common variant. Fur-
thermore, these methods have focused specifically on RVB in ge-
netics applications with little applicability to outside fields and
problem domains that may also struggle with the uncertainty sur-
rounding use of features with rare states, despite the promise of
feature binning as a method for generalized feature engineering
[6].

Evolutionary algorithms (EAs) are stochastic computing meth-
ods inspired by natural selection that seek to optimize the fitness of
candidate solutions by repeatedly alternating between evaluation
of candidate solutions’ fitness and applying genetic operations on
parent candidate solutions to create offspring candidate solutions
[4, 29]. Many previous works have implemented EAs for feature
selection [1, 36], including the GARS algorithm presented in [2],
which was demonstrated to outperform other popular feature selec-
tion methods. EAs have also been used to group features in [6–8],
where features are clustered based on similarity.

Herein, we introduce the Relevant Association Rare-variant-bin
Evolver (RARE), an EA feature engineering approach for the flex-
ible discovery of candidate RVBs, particularly useful in datasets
with uncertainty surrounding the role of rare variants. Each RVB
constitutes a newly engineered feature that improves the power to
detect rare variant associations with a target class outcome, and can
be more effectively utilized in downstream machine learning pre-
dictive modeling than the original rare variants themselves. To the
best of our knowledge, RARE is the first ‘adaptive’ binning strategy,
uniquely designed to identify predictive rare variant combinations
with either a univariate or epistatic association with outcome. Since
RARE does not require experts to define which variants to include
in a candidate bin, this approach is generalizable to non-genetics
applications seeking to make better use of features with rare states,
such as near-zero variance predictors [12]. However, if expert de-
fined candidate bins are available, RARE has also been designed to
initialize its EA search using them. In this paper we seek to answer
the following questions about RARE: (1) can the algorithm cor-
rectly identify RVBs having a univariate association with outcome
(with or without noise), (2) what are the trade-offs between fixed
vs. adaptable bin sizes, (3) does expert knowledge bin initialization
improve bin discovery, and (4) can RARE correctly identify RVBs
that have an epistatic interaction with a separate common variant
that predicts outcome. Other contributions of this work include
two Rare Variant Data Simulators (RVDSs) that can be used to test
rare variant analysis tools like RARE.

In the following sections, we (1) describe the RARE algorithm
and the RVDSs, (2) discuss results evaluating RARE across simulated
data scenarios, and (3) draw conclusions with future directions.

2 METHODS
In this section, we detail the RARE algorithm as well as the rare
variant data simulators developed for this study. Further, we de-
scribe the simulation study design for evaluating the performance
of RARE. Open source code for RARE and the RVDSs can be found
at https://github.com/UrbsLab/RARE.

2.1 The RARE Algorithm
RARE is an EA that constructs bins i.e., candidate groups of features
with rare states, seeking to optimize the relevant bin association
with outcome. Figure 1 describes the main steps and components
of the RARE algorithm including: (1) preprocessing, (2) bin initial-
ization, (3) evolutionary cycles involving bin fitness evaluation and
genetic operators, (4) final bin evaluation, and (5) outputs and bin
summary. RARE was designed to identify one or more candidate
RVBs from the evolving bin population. To simplify analyses in this
study we focus on the top performing bin identified, however RARE
can also be applied to identify a set of candidate bins as engineered
features for further analysis.

2.1.1 Preprocessing. After loading the target dataset, RARE begins
by separating rare from common variant features. Rare state fea-
tures will later be considered for inclusion in bins, while common
state features are only utilized when evaluating bins for poten-
tial epistatic interactions. To separate rare variant from common
variant features, RARE first calculates the MAF of each feature. In
GWAS data, features are single nucleotide polymorphisms (SNPs)
encoded as (0,1,2) corresponding to (AA,Aa,aa) genotype states.
This study focuses on features encoded as SNPs, however many
other variable types and encodings are possible. Assuming this SNP
encoding, MAFs are calculated as the sum of feature values divided
by twice the number of instances, i.e., the frequency of the ‘a’ allele.
Rare variant features and common features are subsequently sepa-
rated based on a user-specified MAF cutoff, typically 0.05 in GWAS
[16]. Any feature with an MAF = 0 (e.g., zero variance predictors)
are removed because they offer no predictive ability [12]. For non-
genetic or non-SNP data, RARE assumes that MAF indicates each
feature’s frequency of nonzero values relative to other states. Given
this assumption, the same MAF calculation can be applied to other
feature types and datasets.

2.1.2 Bin Initialization. RARE offers both random initialization
and the capability to import expert knowledge (EK) derived bins
as an evolutionary starting point. By default, random initialization
generates bins with different sizes to promote diversity of discovery
and avoid assumptions about optimal bin size. Initialization with a
fixed bin size will be discussed later in section 2.1.7. Random initial-
ization is carried out based on the number of rare features in the
dataset (𝐹 ) and the following user-specified parameters: the maxi-
mum number of bins in the population (𝐵), the minimum number
of features per bin (𝑀), and the maximum number of bins that can
contain each rare feature (𝐶𝑚𝑎𝑥 ), specified to promote bin diversity.
First, RARE randomly selects a number 𝐶𝑛 ∈ [1,𝐶𝑚𝑎𝑥 ], inclusive,
for each of 𝐹 rare features to select the number of bins containing
each feature. Next 𝑀 features are assigned to each bin. Then the
remaining

∑𝐹
𝑛=1𝐶𝑛 −𝑀 × 𝐵 rare features are randomly distributed

to bins. Lastly, any feature duplicates are deleted from respective
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Figure 1: Schematic diagram of RARE algorithm including (1) data preprocessing, (2) bin initialization, (3) evolutionary cycles
consisting of bin fitness evaluation, genetic operations, and creation of the next generation, (4) final bin evaluation, and (5)
summary of the top bins.

bins and replaced with randomly chosen replacement features. The
following formula can be used to calculate the expected value of
average bin size:

𝐸 (average bin size) =
𝐹 × 1+𝐶𝑚𝑎𝑥

2
𝐵

(1)

As an alternative to random initialization, EK bins, i.e., predeter-
mined rare variant bins that are believed or known to be informa-
tive, can be imported to form the initial bin population. Notably,
regardless of the initialization method, each bin represents a candi-
date engineered feature. Thus, for downstream bin evaluation, each
bin’s rare features’ values for an instance are summed to determine
the engineered feature’s state for that instance. In this way, the
population of candidate bins is transformed into a new dataset for
the bin fitness evaluation phase.

2.1.3 Evolutionary Cycles. Following bin initialization, RARE com-
mences a user-specified number of evolutionary cycles, (i.e., learn-
ing iterations), including bin fitness evaluation, genetic operations,
and establishment of the next generation of candidate bins. A larger
number of cycles generally improves EA performance, but typi-
cally, the number of cycles is selected based on time constraints
and available computing resources [33].

2.1.4 Bin Fitness Evaluation. At the start of each evolutionary cycle,
the fitness of each candidate bin in the population is evaluated.
RARE presents two options for fitness evaluation: univariate scoring
and Relief-based scoring.

Univariate Fitness. RARE implements univariate fitness evalua-
tion using the chi-square test, a popular filter-based feature selec-
tion method in machine learning [9, 25]. This is in line with how
RVBs have been evaluated within existing binning methods. Here,
the chi-square test statistic serves directly as bin fitness as a myopic
quantifier of bin association with outcome.

Relief-based Fitness. Alternatively, RARE can evaluate bin fit-
ness using the MultiSURF algorithm. MultiSURF was implemented
within the ReBATE software, a scikit-learn compatible suite of
Relief-based feature importance algorithms that are effective at
detecting features involved with both univariate and epistatic asso-
ciations [31, 32]. MultiSURF was previously demonstrated to be the
most reliable and effective Relief-based algorithm to date [32]. Dur-
ing each cycle of RARE, MultiSURF is applied at the rule-population
level, i.e., the candidate bin population is converted to a dataset of
newly engineered features. MultiSURF thus evaluates a given bin
in the context of all other bins as well as (optionally) any common
variants available. This gives RARE the capability to evaluate bins
for not only univariate associations but inter-bin or bin-common
variant interactions associated with outcome. While MultiSURF
is regarded as being a computationally efficient strategy to detect
feature interactions, it scales quadratically with the number of train-
ing instances. This necessitates an option in RARE for bin fitness
evaluation to take place with a subset of instances.

2.1.5 Genetic Operations. During each evolutionary cycle of RARE,
genetic operations take place after bin fitness evaluation. A gener-
ation of candidate bins is replaced by the next generation in two
ways: preservation of elite bins and creation of offspring bins.
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Figure 2: Illustration of RARE’s uniform crossover op-
eration. Letters represent rare variant features. During
crossover, features in each parent bin are chosen for
crossover based on a user-specified crossover probability
(these features are outlined in red in the figure). Features
chosen for crossover in an offspring bin switch to its paired
offspring bin.

Preserving Elite Bins. Elitism is an established addition to the
traditional genetic algorithm that preserves a proportion of the
highest-scoring solutions of a generation for the next generation
[27]. In RARE, the user specifies an elitism parameter, 𝐸 ∈ [0, 1)
where it is recommended that 𝐸 ≤ 0.5, that dictates the proportion
of high-scoring bins that are preserved for the next evolutionary
cycle. Both elite and non-elite bins are available for parent selection
in the next step.

Creating Offspring Bins. Based on the maximum bin population
size (𝐵) and the elitism parameter (𝐸), a total of ⌊𝐵 × (1 − 𝐸)⌋ off-
spring bins must be created for the next generation. Offspring bins
are discovered using the genetic operations of parent selection,
mutation, and crossover. A total of

⌊
𝐵×(1−𝐸)

2

⌋
pairs of parent bins

are chosen using tournament selection, a probabilistic approach
where bins with high fitness are more likely to be chosen as parents,
and bins with lower fitness still have an opportunity to serve as
parents and potentially lead to new fit offspring bins [11].

Each parent bin pair undergoes crossover and mutation to cre-
ate a corresponding pair of offspring bins. RARE utilizes uniform
crossover, as illustrated in Figure 2, where each pair of parent bins is
initially copied to create a pair of offspring bins. Then, each feature
in each of the two paired offspring bins has a chance to swap be-
tween bins with a given user-specified probability. After crossover,
a standard mutation operation [3] is applied to each offspring bin,
such that each feature in the offspring bin has a user-specified
probability of being removed and each feature outside the bin has a
proportionate mutation probability of being added to the bin. Since
uniform crossover and mutation place no limits on the resulting
size of offspring bins, RARE prevents drastic changes in bin size
by checking if an offspring bin is over 50% larger than its paired
offspring case and redistributing features in such a case.

Offspring bin pairs, created via parent selection, mutation, and
crossover, are added to the elite bins to form the next generation.
‘Clean up’ operations are carried out on this new generation of bins
to (1) delete any within bin feature duplicates (replacing any with a
randomly selected alternative feature) and (2) delete any candidate
bin duplicates (replacing any with a new randomly generated bin).
Lastly, the new bins are engineered as features in an evaluation

dataset to prepare for bin fitness evaluation at the start of the next
evolutionary cycle.

2.1.6 Output and Bins Summary. After the user-specified number
of evolutionary cycles are complete, RARE evaluates and outputs
the final bins of rare variant features, along with the chi-square or
MultiSURF value of each bin. RARE also presents a final engineered
feature matrix, where each column represents a bin, to facilitate
downstreammachine learning. Further, a ‘top bins’ summary prints
a list of features contained in each bin along with the the chi-square
or MultiSURF value for each. The top bins summary also reports
pertinent information related to each rare variant feature in the
bins, such as the feature’s MAF and its original chi-square value,
which is useful for assessing improved association post-binning.

2.1.7 RARE with Constant Bin Size. In certain problems, the user
may know the bin size of the optimal bin solution or the user
may want to find the optimal solution for bins of a certain size.
Hence, we develop an alternate version of RARE with constant bin
size, which differs from the standard version of RARE because (1)
all bins are initialized with the same number of features, (2) bin
size is held constant throughout the evolutionary cycles, and (3)
RARE with constant bin size lacks the ability to discover optimal
bin size during evolutionary cycles. To maintain a constant bin
size throughout the evolutionary cycles, the uniform crossover
operation is modified such that an equal number of features cross
over from each offspring in the pair. The mutation operations is
modified such that the number of features mutated inside the bin
(i.e., features removed) is equal to the number of features mutated
outside the bin (i.e., features added).

2.2 Experimental Evaluation of RARE
In order to conduct testing to evaluate RARE, we developed two
Rare Variant Data Simulators (RVDSs): functions that create syn-
thetic datasets to simulate different types of relationships in fea-
tures with rare variant states based on user-specified parameters.
RVDSs are applied to simulate datasets with underlying sets of
rare-variants that are maximally predictive when combined into an
optimal bin. We simulate clean vs. noisy signal, as well as univariate
vs. epistatic bin relationships.

2.2.1 RVDS for a Univariate Association Bin. A univariate asso-
ciation RVDS was designed to generate a dataset containing rare
variant features such that no single feature can independently pre-
dict class value, but a certain combination of features results in
a fully penetrant bin, meaning the class label of an instance is
completely dependent on the bin value at the instance. The user
specifies the number of instances, the total number of rare variant
features, the number of rare variant features that belong in the
predictive bin, and the minor allele frequency cutoff defining a rare
variant feature (e.g., 0.05). Based on these parameters, RVDS for
Univariate Association Bin starts by randomly generating values
(zero, one, or two) for each of the rare variant features that belong
in the predictive bin. The bin value at each instance is calculated
by summing the bin’s features’ values at each instance. Based on
the user-specified cutoff metric, either mean or median of bin value
across instances, instances with a bin value below the cutoff receive
a class value of zero, while other instances receive a class value of
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Figure 3: RVDS for a Univariate Association Bin.

one. The remainder of the features, random features that do not be-
long in the bin, are randomly generated. This process is illustrated
in Figure 3. After all feature values are assigned, a user specified
endpoint variation probability, a method of introducing noise, is
applied to probabilistically switch the class value of each instance.
RVDS for a Univariate Association Bin produces a feature matrix
where a certain, user-known combination of rare variant features
can be binned for optimal univariate association to class value.

2.2.2 RVDS for an Epistatic Interaction Bin. The second data sim-
ulator, RVDS for an Epistatic Interaction Bin, generates a dataset
containing rare variant features and one common feature, such
that there exists an epistatic interaction between a bin of rare vari-
ant features and the common feature. This RVDS is inspired by
the GAMETES software, which generates simulated SNP datasets
with user-specified forms of epistatic interactions [30]. This RVDS
starts by randomly generating values (zero, one, or two) for each of
the rare variant features belonging in the epistatic interaction bin.
Bin values at each instance are calculated by summing the bins’
feature’s values at the instance, and bin values of the instances
are categorized into three groups to assign one of three bin ‘geno-
types’ (AA, Aa, aa) to each instance. Similarly, a common feature
value of zero, one, or two is assigned to each instance; a common
feature value of zero corresponds to a BB common feature ‘geno-
type’, one corresponds to a Bb common feature genotype, and two
corresponds to a bb common feature genotype. The user also se-
lects which of the nine multi-locus genotypes (MLGs) out of AABB,
AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb should cor-
respond to disease status. For each of the instances whose bin value
and common feature value matches an MLG of disease status, the
class value will be one, while all other instances are assigned a class
value of zero. Similar to the univariate RVDS above, random rare
variant features, which do not belong in the bin, have their values
randomly generated. The resulting dataset is generated in the form
of a feature matrix where certain, user-known rare variant features
can be additively grouped in a bin that holds an epistatic interaction
with the common feature to predict class. The function also outputs

the penetrance and frequency of each of the genotypes and MLGs,
where penetrance is defined as an instance’s probability of having
class value of one (i.e., disease status) [30]. A schematic of RVDS
for an Epistatic Interaction Bin is illustrated in Figure 4. This RVDS
offers the user flexibility, as the user’s choice of which MLGs should
correspond to disease status determines the type of relationship
between the bin of rare variant features and the common feature.
Certain combinations of disease status MLGs result in impure, strict
epistatic relationships between the bin and common feature. On
the other hand, other choices of disease status MLGs results in no
bin value genotype and no common feature genotype being fully
penetrant, which is an example of pure, strict epistasis.

2.2.3 Data Simulation Scenarios. Table 1 summarizes the various
experimental simulation scenarios applied to test and evaluate
RARE. Included is the experiment ID, RVDS association type (i.e.,
univariate or epistatic with a common variant), magnitude of noise,
RARE initialization strategy used, fitness scoring used (i.e., Relief or
univariate chi-square), total rare variants simulated in each dataset,
the predictive rare variants simulated in each dataset, the MAF cut-
off separating rare variant features from common variant features,
and the number of instances in the simulated dataset. Experiments
1-4 examine RARE’s basic ability to identify RVBs from a randomly
initialized population given different degrees of noise, specifically
0, 0.05, 0.1, and 0.5. Experiment 4 (noise = 0.5) has eliminated all
associations and serves as our negative control. Experiment 5 (in
comparison with 1) compares univariate association RVB detection
performance using the more computationally efficient chi-square
test fitness. Experiment 6 (in comparison with 1) examines the use
of a constant bin size (assuming the optimal bin size is known).
Here, the optimal bin size of 10 is applied. Experiment 7 (in compar-
ison with 1) examines how utilization of EK bins (when available)
can improve efficiency of bin discovery. We simulate this here by
initializing the bins such that they randomly include 50-80 % of the
10 predictive rare variants, and at least 4 non-predictive features. In
Experiments 1-7, all simulated datasets contain 1000 instances, 50
total rare variant features, and 10 predictive rare variant features,
that should be binned together for optimal univariate association
with outcome.

Experiments 8 and 9 use the epistatic RVDS to create simulated
datasets with 1000 instances, where 5 rare variant features, out of
15 total rare variant features, belong in a bin modeling a pure, strict
epistatic interaction with a single common variable predictive of
outcome. In the simulated datasets, AABB, AAbb, AaBb, aaBB, and
aabb MLGs are denoted as having disease status and the common
feature genotype frequency values are 0.25 for BB, 0.5 for Bb, and
0.25 for bb, such that all bin genotypes have a penetrance of 0.5
(i.e., bin values alone have no univariate association with outcome).
Univariate fitness in Experiment 8 is compared to MultiSURF fitness
in Experiment 9 to demonstrate the importance of the MultiSURF
approach for detecting bin interactions.

Thirty replicates of each of the nine experiments are run (270
total trials). Univariate scoring is always carried out on all instances,
while Relief-based scoring is done on a sub-sample of 500 out of
the 1000 instances to reduce computational expense and evaluate
efficacy of simple subsampling. RARE hyperparameter settings:
maximum bin population size = 50, evolutionary cycles = 3000,
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Figure 4: RVDS for an Epistatic Interaction Bin.

Table 1: Experimental Data Simulation Scenarios for Evaluating RARE

ID RVDS Type Noise Initialization Fitness Total Rare Predictive MAF Instances
Variants Rare Variants Cutoff

1 Univariate 0 Random MultiSURF 50 10 0.05 1000
2 Univariate 0.05 Random MultiSURF 50 10 0.05 1000
3 Univariate 0.1 Random MultiSURF 50 10 0.05 1000
4 Negative Control 0.5 Random MultiSURF 50 10 0.05 1000
5 Univariate 0 Random Univariate 50 10 0.05 1000
6 Univariate 0 Random, Constant Size MultiSURF 50 10 0.05 1000
7 Univariate 0 Partial EK MultiSURF 50 10 0.05 1000
8 Epistatic 0 Random Univariate 15 5 0.05 1000
9 Epistatic 0 Random MultiSURF 15 5 0.05 1000

elitism parameter = 0.4, crossover probability = 0.8, mutation prob-
ability = 0.1, are held constant throughout all experiments. Both
population size and number of evolutionary cycles are set modestly
here to allow for evaluation of the 270 trials, but their increase
would be expected to further improve performance in the future
with a computational trade-off.

3 RESULTS AND DISCUSSION
Here we summarize the results of applying RARE to the various
RVDS datasets. All subsequent results are averages over 30 repli-
cate trials for each experiment. For each scenario we highlight
the average percent of ‘correct’ simulated predictive rare variants
appearing in the ‘best’ bin identified by RARE. The ‘best’ bin is
chosen based on the highest bin chi-square score for all univariate
Experiments (1-7), regardless of the fitness metric used. Given that
MultiSURF scores are calculated based on a sub-sample of instances,
for epistatic Experiments (8-9) the ‘best’ bin was chosen as the one
with the largest percentage of correct rare variant features, with
percentage of incorrect features as a tiebreaker. We also report

the percentage of incorrect rare variants from the data that were
included. Note, these do not sum to 100 since we are examining
bin composition with respect to features across the entire dataset.
Further, for relevant experiments we report the optimal average
chi-square scores obtained on respective RVDS datasets when all
10 user-known, correct rare variants (with no other variants) are
included and evaluated as a bin. We contrast this with the average
chi square scores of the best bin identified in each experiment with
RARE. All p-values were < 0.001 from chi-square test in the 30
replicates for each of Experiments 1-3 and 5-7, while all p-values
were > 0.05 from chi-square test in the 30 replicates for Experiment
4 (negative control). The chi-square degrees of freedom depended
on the number of unique bin sums across all instances in the dataset.
This is why large chi-square values were observed in these analyses.

3.1 Evolving Univariate Association Bins
Table 2 presents average results, along with standard deviation (SD)
of each metric across the 30 trials, for univariate bin association
Experiments 1-4. Here, RARE applies random initialization and
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MultiSURF fitness. With a clean signal, Experiment 1 achieves high
correct percentage and low incorrect percentage as well as a near
optimal chi-square for the ‘best’ discovered bin. This is in direct
contrast with Experiment 4 (negative control) where correct and
incorrect rare variants were almost equally likely to have been
included in the best discovered bin, which also yielded an expected
low chi-square value. Note that in Experiment 4, the average ‘opti-
mal bin’ chi-square value is lower than the average chi-square value
of RARE’s best bin since class values are randomly assigned when
noise = 0.5, so it is likely that a combination of randomly generated
features have a higher univariate association to outcome than the
bin of features that was optimal before noise was applied. Exper-
iments 2 and 3 illustrate RARE’s ability to successfully manage
a noisy association, despite expected reduced correct percentage
and chi-square value, and increased incorrect percentage as noise
increased in contrast with Experiment 1.

Table 3 offers a comparison of Experiment 1 to 5 and 6, where
different configurations of the RARE algorithm were tested. Specif-
ically, the adoption of the univariate chi-square value for RARE
fitness (Experiment 5) yielded optimal RVB discovery across all 30
replicates. The lower performance observed in Experiment 1 is the
result of only using half the training instances to reduce computa-
tional expense during MultiSURF fitness evaluation, rather than a
reflection of MultiSURF’s ability to detect univaraiate associations.
Next, utilizing a constant bin size (i.e., assumed optimum of 10) in
Experiment 6 again improved performance over Experiment 1. This
illustrates how precise or approximate knowledge of optimal bin
size can be applied to improve RARE performance when available.

Table 4, offers a comparison of Experiment 1 to 7, i.e., random
vs EK bin initialization. We observe improved overall performance
after all training cycles when adopting available EK bins to initialize
the RARE population. Furthermore when we compare the number
of evolutionary cycles RARE took to achieve an 80% solution, de-
fined as a bin containing 80% of correct rare variant features and
no more than 2 incorrect features, we found EK bin initialization to
have dramatically improved RARE efficiency in bin discovery. This
is consistent with the previous findings on improving EA efficiency
by inputting partial EK [18]. The average run time for 3000 evolu-
tionary cycles with Relief-based scoring in Experiments 1-4 and
6-7 was 24676.83 seconds and the average run time for univariate
scoring in Experiment 5 was 338.30 seconds. Clearly, univariate
fitness is much more computationally efficient when searching for
rare variants bins of univariate effect. However in the next section
we highlight the potential benefit of utilizing MultiSURF in RARE
fitness for the detection of bin interactions.

3.2 Evolving Epistatic Association Bins
Table 5 presents the percentages of correct and incorrect features
binned by RARE in the scenario involving a RVB having a pure
interaction with a separate common variable (i.e. Experiments 8
and 9). As a strict, pure epistatic association, the optimal bin chi-
square value is negligible (i.e. no univariate association). This was
confirmed in experiment 9 which yielded an average top bin chi-
square value of 0.68 (average p-value > 0.1). As onewould expect, for
experiment 8, univariate (chi-square) scoring failed to evolve bins
that were informative in combination with the separate common

variable since they do not consider multivariate interactions. This
was evidenced by the similar inclusion of correct and incorrect rare
variants in the best bins. Differently, RARE with MultiSURF (using
all bins and the common variant to evaluate fitness), was successful
in binning together correct rare variants and excluding incorrect
ones. This illustrates the potential for RARE to be applied not only
to detect RVBs with a univariate association, but also RVBs that
are only informative in the context of other common variants and
RVBs.

4 CONCLUSIONS
This study introduces the RARE algorithm, the first EA approach for
engineering rare variant feature bins to improve power to detect
both univariate or epistatic associations with outcomes. Over a
variety of simulation studies, RARE reliably constructs (1) bins with
optimal or near-optimal univariate association to outcome and (2)
optimal or near-optimal bins involved in an epistatic interaction
with a common feature. While existing RVB tools can evaluate user-
inputted bins of rare variants, RARE engineers bins from the ground
up in a stochastic search for optimal bins. RARE can either discover
novel bins from scratch when EK bins are not available or RARE
offers the potential to improve upon existing EK bins that may be
sub-optimal. This is because, unlike burden and non-burden tests
used in genetics, RARE does not assume that solely rare variants
belonging to the same genetic region should be grouped. In this
work we have also presented two RVDSs that can be applied to
generate a variety of rare variant simulation scenarios for testing
or comparing other RVB methods in the future.

Conceived as a tool for rare variant association analysis, where
there is significant uncertainty surrounding the role of rare vari-
ants, RARE can be applied to evolve bins of rare genetic variants
to improve prediction of disease phenotypes and elucidate novel
associations and interactions between rare variants, potentially
contributing to the recognized missing heritability of complex dis-
eases [24, 37]. Beyond genetics, RARE could also be applied to
other biological data with rare variant states (e.g., HLA amino acid
mismatches for predicting graft failure in organ transplantation)
[5, 10, 34]. Similarly RARE could be applied to a variety of data
outside biology for binning features with rare feature states, such
as near-zero variance predictors [12].

A limitation of this prototype RARE algorithm is the compu-
tational expense of MultiSURF-based bin evaluation since Relief-
based algorithms scale quadratically with the number of instances.
Such algorithms were designed to be run a single time on a given
dataset rather than be run repeatedly once per evolutionary cy-
cle, as is done in RARE. Thus, future investigations will explore (1)
dual-scoring methods that integrate univariate scoring on the entire
dataset and Relief-based scoring on a sample of instances and (2)
parallelizable, intelligent instance sampling strategies for applying
MultiSURF in RARE. We also plan to greatly expand simulation
testing scenarios as well as real world biomedical applications with
the aim of discovering predictive bins that reveal novel relation-
ships among rare variants. Further, we expect to expand RARE
by evaluating alternative implementation options and ultimately
making it available as an open source scikit-learn Python package.
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Table 2: Univariate Association Bin Results with Noise

ID Noise Correct % (SD) Incorrect % (SD) Optimal Chi-square (SD) RARE Chi-square (SD)

1 0 94.22 (9.85) 0.17 (0.62) 875. (109.62) 855.76 (77.96)
2 0.05 91.56 (10.28) 0.33 (0.85) 690.89 (84.43) 655.17 (52.54)
3 0.1 86.11 (12.44) 0.50 (1.19) 538.25 (58.44) 511.76 (82)
4 0.5 9.00 (8.31) 12.08 (3.77) 1.18 (3.59) 2.53 (1.7)

Table 3: Univariate Association Bin Results with Different RARE Configurations

ID RARE Correct % (SD) Incorrect % (SD) Optimal Chi-square (SD) RARE Chi-square (SD)

1 MultiSURF 94.22 (9.85) 0.17 (0.62) 875. (109.62) 855.76 (77.96)
5 Univariate 100.00 (0) 0.00 (0) 889.16 (60.97) 889.16 (60.97)
6 MultiSURF, Constant Size 99.00 (3) 0.25 (0.75) 867.39 (79.14) 866.39 (77.21)

Table 4: Univariate Association Bin Results with Random Vs. Expert Knowledge Initialization

ID Initialization Correct % (SD) Incorrect % (SD) Optimal Chi-square (SD) RARE Chi-square (SD) Cycles (SD)

1 Random 94.22 (9.85) 0.17 (0.62) 875. (109.62) 855.76 (77.96) 286.48 (298.1)
7 Partial EK 99.00 (3.96) 0.08 (0.45) 864.47 (72.03) 862.84 (69.13) 21.57 (68.18)

Table 5: Epistatic Association Bin Results with Univariate vs.
MultiSURF Fitness

ID Fitness Evaluation Correct % (SD) Incorrect % (SD)

8 Univariate 33.00 (21.16) 32.33 (14.53)
9 MultiSURF 96.00 (8) 1.00 (3)
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