
A Divide and Conquer Approach for Web Services Location
Allocation Problem

Harshal Tupsamudre
∗

harshalcoep@gmail.com

Saket Saurabh
†

sk.saurabh@tcs.com

Arun Ramamurthy
†

ramamurthy.arun@tcs.com

Mangesh Gharote
†

mangesh.g@tcs.com

Sachin Lodha
†

sachin.lodha@tcs.com

ABSTRACT
The appropriate choice of locations for the deployment of web

services is of significant importance. The placement of a web ser-

vice closer to user centers minimizes the response time, however

deployment cost may increase. The placement becomes more chal-

lenging when multiple web services are involved. In this paper,

we address the problem of placing multiple web services with the

aim of simultaneously minimizing conflicting objectives of total

deployment cost and network latency. We solve the location alloca-

tion problem for each web service independently and combine the

resulting solutions using a novel merge algorithm. We demonstrate

through extensive experiments and simulations that the proposed

approach is not only computationally efficient but also produces

good quality solutions. Further, the proposed merge algorithm is

generic and could be easily adapted to tackle any bi-objective opti-

mization problem that can be decomposed into non-overlapping

sub-problems.

KEYWORDS
Web services; Multi-Objective Optimization; Location Allocation

Problem; Divide and Conquer

ACM Reference Format:
Harshal Tupsamudre, Saket Saurabh, Arun Ramamurthy, Mangesh Gharote,

and Sachin Lodha. 2021. A Divide and Conquer Approach for Web Services

Location Allocation Problem. In 2021 Genetic and Evolutionary Computation
Conference Companion (GECCO ’21 Companion), July 10–14, 2021, Lille,
France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3449726.

3463127

1 INTRODUCTION
Service-oriented computing using web services has emerged as

a new computing paradigm for developing software applications.

These web services provide a distributed computing infrastructure

for both intra- and cross-enterprise application integration and

∗
Work was done as a part of TCS Research and Innovation

†
TCS Research and Innovation, Tata Consultancy Services, India

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00

https://doi.org/10.1145/3449726.3463127

collaboration. As the number of functionally similar web services

is steadily increasing, Quality of Service (QoS) (such as response

time [1]) has become vital to gain a competitive advantage over

other service providers [2].

Choosing appropriate web service locations to serve geograph-

ically distributed user centers significantly impacts QoS and cus-

tomer satisfaction. Deploying a web service closer to each user

center improves the service response time; however, setting up a

web service at multiple locations invariably increases the deploy-

ment cost. There could also be multiple web services to be deployed.

This problem of placing multiple web services to simultaneously

minimize two conflicting objectives, namely total deployment cost

and network latency, is known as Web Services Location Allocation

Problem (WSLAP) [3].

WSLAP is a variant of a facility location problemwhich is proved

to be NP-hard [4] [5]. The search space of WSLAP is combinatorial.

If there are, say, 𝑠 web services and 𝑛 candidate locations, and each

service can be deployed at multiple locations, then the number

of solutions is 2
𝑠×𝑛

[3]. To find multiple Pareto-optimal solutions

using exact approaches such as Integer Linear Programming (ILP),

branch and bound algorithm etc., is challenging.

Therefore, researchers have explored various Multi-Objective

Evolutionary Algorithms (MOEAs) such as MOPSO [6], NSGAII [7]

and NSGA-II with a local search [8] in WSLAP. As MOEAs work

with a population of solutions, they can produce a set of trade-

off solutions in a few generations. Further, MOEAs scale much

better than ILPs due to the nature of heuristic search. Recently,

Tan et al. [3] proposed a Binary Multi-Objective Particle Swarm

Optimization with Crowding Distance (BMOPSOCD) algorithm to

solve WSLAP and showed that it produces better solutions than

NSGAII. Many a time, decomposing the problem into smaller sub-

problems, solving each sub-problem independently and merging is

an efficient way to solve the problem [9]. The main contribution

of this work is a novel merge algorithm to solve the WSLAP using

a Divide and Conquer (D&C) approach. Particularly, we solve the

location allocation problem for each web service using a MOEA

(NSGAII or BMOPSOCD) and efficiently merge the resulting non-

dominated solutions of each web service to obtain solutions for

WSLAP. The major benefits of D&C are:

• Problem size reduces significantly.

• Sub-problems being independent can be solved in parallel.

• Sub-problems that are similar (in terms of configuration and

requirements) need to be solved only once.

Further, the approach is incremental as it enables web service

providers to find deployment locations for a new web service and

1346

https://doi.org/10.1145/3449726.3463127
https://doi.org/10.1145/3449726.3463127
https://doi.org/10.1145/3449726.3463127

perform allocation of user centers without having to solve the entire

problem from scratch.

The merge algorithm takes non-dominated solutions of multi-

ple sub-problems (web services) and produces the solution to the

original problem (WSLAP). We conducted multiple experiments

with different WSLAP instance sizes to demonstrate that the D&C

approach is not only efficient but also produces better solutions in

terms of quality as well as diversity than the state-of-the-art [3].

The organization of this paper is as follows. First, we briefly

describe the multi-objectiveWSLAPmodel as given by Tan et al. [3].

Subsequently, we explain our D&C algorithm in detail. Later, we

compare the efficacy of our D&C approach with the state-of-the-art

MOEAs [3] on the original WSLAP model. Finally, we conclude the

paper and discuss the future work.

2 WSLAP DESCRIPTION
The location allocation problem involving multiple web services [3]

is described as follows. A set of 𝑠 web services𝑊 = {𝑊1,𝑊2, . . . ,𝑊𝑠 }
needs to be deployed at one or more of the 𝑛 candidate locations

𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛}. The locations could be the data centers of

the enterprise itself and/or one or more cloud providers. The cost

incurred to deploy a web service𝑊𝑖 at a location𝐴 𝑗 is given by𝐶𝑖 𝑗 .

The deployment cost varies from one data center to another due to

the difference in electricity price, real estate price, human labour

cost etc. All web services are assumed to be independent of each

other. If that is not the case, we can merge dependent services into

a single web service.

There are𝑚 user centers𝑈 = {𝑈1,𝑈2 . . .𝑈𝑚} that require access
to each of the 𝑠 web services. A user center represents a geographic

region. It also allows us to estimate the latency between the user

center and candidate locations. The service invocation frequency

(demand) of a web service𝑊𝑖 from a user center𝑈𝑘 over a unit time

interval is represented by 𝐹𝑘𝑖 . The service frequencies are computed

as the average number of invocations over a period of time, such as

over a month. The network latency between a user center𝑈𝑘 and a

location 𝐴 𝑗 is given by 𝐿𝑘 𝑗 . Each service has to be deployed in at

least one location. Further, a service can be deployed at multiple

locations to improve its response time. Note that the requirement

of a user center pertaining to a given web service is catered by

exactly one location. The matrices required for modelling the input

in WSLAP are given in Table 1.

Table 1: Input and Output Matrices in the WSLAP

Matrix Entry Description

𝑊𝑠×1 𝑊𝑖 𝑖𝑡ℎ web service

𝐴𝑛×1 𝐴 𝑗 𝑗𝑡ℎ location

𝑈𝑚×1 𝑈𝑘 𝑘𝑡ℎ user center

𝐹𝑚×𝑠 𝐹𝑘𝑖 Frequency invocation of service𝑊𝑖 at𝑈𝑘

𝐶𝑠×𝑛 𝐶𝑖 𝑗 Cost of deploying service𝑊𝑖 at 𝐴 𝑗

𝐿𝑚×𝑛 𝐿𝑘 𝑗 Latency between𝑈𝑘 and 𝐴 𝑗

𝑋𝑠×𝑛 𝑋𝑖 𝑗 Decision variable indicating whether𝑊𝑖

is deployed at location 𝐴 𝑗

The mathematical model of WSLAP is as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 =

𝑠∑
𝑖=1

𝑛∑
𝑗=1

𝐶𝑖 𝑗 · 𝑋𝑖 𝑗 (1)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 =

𝑚∑
𝑘=1

𝑠∑
𝑖=1

𝑅𝑘𝑖 · 𝐹𝑘𝑖 (2)

subject to:
𝑛∑
𝑗=1

𝑋𝑖 𝑗 ≥ 1 ∀𝑖 ∈ {1, . . . , 𝑠} (3)

𝑋𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ {1, . . . , 𝑠} ∀𝑗 ∈ {1, . . . , 𝑛} (4)

The objective of WSLAP is to locate a set of web services𝑊 among

a set of candidate locations 𝐴 such that the total deployment cost

𝑓1 and the total response time 𝑓2 are minimized. A service location

matrix 𝑋 of size 𝑠 × 𝑛 is used to represent the entire location plan.

The value of the decision variable 𝑋𝑖 𝑗 is 1 if web service 𝑊𝑖 is

deployed at location 𝐴 𝑗 ; otherwise, it is 0. A user center is served

from the nearest web service location among the deployed locations

to minimize latency.

To minimize latency, each user center is served from the nearest

web service location among the set of deployed locations. 𝑅𝑘𝑖 rep-

resents the minimal response time incurred when web service𝑊𝑖

is accessed by user center𝑈𝑘 and is calculated as follows.

𝑅𝑘𝑖 =𝑚𝑖𝑛{𝐿𝑘 𝑗 | 𝑋𝑖 𝑗 = 1 & 𝑗 ∈ {1, . . . , 𝑛}} (5)

As the dimensions of the service location matrix 𝑋 is 𝑠 ×𝑛 and each

entry takes a binary value 0 or 1, the size of the search space for

WSLAP is 2
𝑠×𝑛

.

A solution of WSLAP is a tuple (𝑎, 𝑏), where 𝑎 represents the

total deployment cost (𝑓1) and 𝑏 represents the total latency (𝑓2). A

solution 𝜃𝑖 = (𝑎𝑖 , 𝑏𝑖) is said to dominate solution 𝜃 𝑗 = (𝑎 𝑗 , 𝑏 𝑗), if
𝜃𝑖 is at least as good as 𝜃 𝑗 in one objective and strictly better in the

other objective,

• 𝑎𝑖 < 𝑎 𝑗 and 𝑏𝑖 ≤ 𝑏 𝑗 or

• 𝑎𝑖 ≤ 𝑎 𝑗 and 𝑏𝑖 < 𝑏 𝑗

A solution 𝜃∗ is referred to as Pareto-optimal if it is not dominated

by any other solution. A multi-objective optimization problem typ-

ically has many Pareto-optimal (non-dominated) solutions.

Locations: In the original problem, a web service can be de-

ployed in at most 𝑛 locations. If the candidate locations are cloud

regions, then the value of 𝑛 is typically 50 (e.g., Microsoft Azure). If

multiple cloud providers are considered, then the value of 𝑛 easily

exceeds 100. Solving WSLAP could generate many solutions where

each service is deployed in a large number of locations. In practice,

a web service provider might consider deploying its web service

𝑊𝑖 in at most 𝑑𝑖 locations (𝑑𝑖 << 𝑛). Therefore, to accomodate

this upper bound 𝑑𝑖 , we change the WSLAP constraint given in

equation (3) as follows:

1 ≤
𝑛∑
𝑗=1

𝑋𝑖 𝑗 ≤ 𝑑𝑖 , 𝑑𝑖 ≤ 𝑛 ∀𝑖 ∈ {1, . . . , 𝑠} (6)

If we set 𝑑𝑖 to be 𝑛, then the problem becomes equivalent to the

original WSLAP.

3 OUR APPROACH
We show that WSLAP with the aforementioned characteristics can

be tackled efficiently using a D&C approach. The steps involved in

our D&C approach is as follows:

1. DecomposeWSLAP into s subproblems, one for each web service.

2

1347

2. Solve each subproblem independently using MOEAs.

3. Merge solutions of all subproblems.

In the rest of the section, first, we prove that WSLAP can be

decomposed into 𝑠 sub-problems, where 𝑠 is the number of unique

web services, and each sub-problem can be solved independently.

Later, we give a novel space and time efficient merge algorithm for

combining non-dominated solutions of each sub-problem to obtain

non-dominated solutions for the original WSLAP problem.

Theorem 1. The multi-objective web service location allocation
problem (WSLAP) comprising of 𝑠 web services can be decomposed
into 𝑠 sub-problems, one corresponding to each web service.

We can re-write the first objective of WSLAP given in equations

(1) as follows:

𝑓1 =
(𝑛∑
𝑗=1

𝐶1𝑗 · 𝑋1𝑗

)
+
(𝑛∑
𝑗=1

𝐶2𝑗 · 𝑋2𝑗

)
+ . . . +

(𝑛∑
𝑗=1

𝐶𝑠 𝑗 · 𝑋𝑠 𝑗
)

(7)

= 𝐶𝑜𝑠𝑡 𝑜 𝑓 𝑊1 +𝐶𝑜𝑠𝑡 𝑜 𝑓 𝑊2 + . . . +𝐶𝑜𝑠𝑡 𝑜 𝑓 𝑊𝑠 (8)

= 𝑓11 + 𝑓12 + . . . + 𝑓1𝑠 (9)

where, 𝑓1𝑖 denotes the deployment cost of web service𝑊𝑖 .

Similarly, we can re-write the second objective as follows:

𝑓2 =
(𝑚∑
𝑘=1

𝑅𝑘1 · 𝐹𝑘1
)
+
(𝑚∑
𝑘=1

𝑅𝑘2 · 𝐹𝑘2
)
+ . . . +

(𝑚∑
𝑘=1

𝑅𝑘𝑠 · 𝐹𝑘𝑠
)

(10)

= 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑜 𝑓 𝑊1 + 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑜 𝑓 𝑊2 + . . . + 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑜 𝑓 𝑊𝑠 (11)

= 𝑓21 + 𝑓22 + . . . + 𝑓2𝑠 (12)

where, 𝑓2𝑖 denotes the latency of web service𝑊𝑖 .

Similarly, the constraint given in equation (6) that upper-bounds

the number of deployment locations for each web service can be

decomposed as follows:

1 ≤
𝑛∑
𝑗=1

𝑋1𝑗 ≤ 𝑑1, . . . , 1 ≤
𝑛∑
𝑗=1

𝑋𝑠 𝑗 ≤ 𝑑𝑠 (13)

Grouping the corresponding terms in equations (9), (12) and (13),

we can model and solve the location allocation problem for each

web service independently.

Corollary 1. If a solution (𝑓1𝑖 , 𝑓2𝑖) for web service 𝑊𝑖 is not
Pareto-optimal then the corresponding solution (𝑓1, 𝑓2) to the original
problem WSLAP is also not Pareto-optimal.

By Theorem 1, the solution (𝑓1, 𝑓2) to WSLAP is computed using

solution obtained for each web service. Therefore, we have:

𝑓1 = 𝑓11 + 𝑓12 + . . . + 𝑓1𝑖 + . . . + 𝑓1𝑠

𝑓2 = 𝑓21 + 𝑓22 + . . . + 𝑓2𝑖 + . . . + 𝑓2𝑠

Since the solution (𝑓1𝑖 , 𝑓2𝑖) corresponding to web service𝑊𝑖 is

not Pareto-optimal, there exists a better solution (𝑓 ′
1𝑖
, 𝑓

′
2𝑖
) which

dominates it. Assume that 𝑓
′
1𝑖

≤ 𝑓1𝑖 and 𝑓
′
2𝑖

< 𝑓2𝑖 . Therefore, the

new solution (𝑓 ′
1
, 𝑓

′
2
) to the original WSLAP problem can be com-

puted as follows:

𝑓
′
1
= 𝑓11 + 𝑓12 + . . . + 𝑓

′
1𝑖
+ . . . + 𝑓1𝑠 ≤ 𝑓1

𝑓
′
2
= 𝑓21 + 𝑓22 + . . . + 𝑓

′
2𝑖
+ . . . + 𝑓2𝑠 < 𝑓2

As (𝑓1, 𝑓2) is dominated by (𝑓 ′
1
, 𝑓

′
2
), it cannot be Pareto-optimal.

Note: Similar argument can be made for the case of 𝑓
′
1𝑖

< 𝑓1𝑖 and

𝑓
′
2𝑖

≤ 𝑓2𝑖

Corollary 2. If the relative invocation frequency and the deploy-
ment cost of a web service𝑊𝑖 is the same as that of another web
service𝑊𝑔 , then the solution for𝑊𝑔 can be obtained using solutions
for𝑊𝑖 and vice versa.

Consider the relative invocation frequency of service𝑊𝑖 for𝑚

user centers, that is:

𝐹1𝑖
/ 𝑚∑
𝑘=1

𝐹𝑘𝑖 , 𝐹2𝑖
/ 𝑚∑
𝑘=1

𝐹𝑘𝑖 , . . . , 𝐹𝑚𝑖

/ 𝑚∑
𝑘=1

𝐹𝑘𝑖

Similarly, consider the relative invocation frequency of service

𝑊𝑔 :

𝐹1𝑔
/ 𝑚∑
𝑘=1

𝐹𝑘𝑔 , 𝐹2𝑔
/ 𝑚∑
𝑘=1

𝐹𝑘𝑔 , . . . , 𝐹𝑚𝑔

/ 𝑚∑
𝑘=1

𝐹𝑘𝑔

We are given that the relative invocation frequency and cost of

both services are the same. Hence, we have:

𝐹𝑘′𝑖
/ 𝑚∑
𝑘=1

𝐹𝑘𝑖 = 𝐹𝑘′𝑔
/ 𝑚∑
𝑘=1

𝐹𝑘𝑔 ∀𝑘 ′ ∈ {1, . . . ,𝑚}

𝐶𝑖 𝑗 = 𝐶𝑔𝑗 ∀𝑗 ∈ {1, . . . , 𝑛}

Let

𝑚∑
𝑘=1

𝐹𝑘𝑖 = 𝑧 ·
𝑚∑
𝑘=1

𝐹𝑘𝑔

Therefore, we have:

𝐹𝑘𝑖 = 𝑧 · 𝐹𝑘𝑔 ∀𝑘 ∈ {1, . . . ,𝑚}
Let (𝑓 ∗

1𝑔
, 𝑓 ∗
2𝑔
) be a Pareto-optimal solution for service𝑊𝑔 . We claim

that (𝑓 ∗
1𝑔
, 𝑧 · 𝑓 ∗

2𝑔
) is a Pareto-optimal solution for service𝑊𝑖 . Suppose

that another solution (𝑓1𝑖 , 𝑓2𝑖) of𝑊𝑖 dominates solution (𝑓 ∗
1𝑔
, 𝑧 · 𝑓 ∗

2𝑔
).

Therefore, there exists a solution (𝑓1𝑖 , 𝑓2𝑖/𝑧) for𝑊𝑔 that dominates

solution (𝑓 ∗
1𝑔
, 𝑓 ∗
2𝑔
). Hence, the contradiction.

Once a web service𝑊𝑖 is located, allocation of user centers is

relatively easy. Each user center is allocated to the nearest web

service location. Therefore, search space for location allocation of

a web service is

𝑑𝑖∑
𝑙=1

(𝑛
𝑙

)
. Since there are 𝑠 web services, the search

space is at most

𝑠∑
𝑖=1

𝑑𝑖∑
𝑙=1

(𝑛
𝑙

)
. After obtaining non-dominated solutions

to each web service, we need to combine them to find the non-

dominated solutions for the original problem. Let the set of non-

dominated solutions for each web service 𝑊𝑖 be denoted by 𝑆𝑖 .

Therefore, the total solution space of WSLAP is:

𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 = 𝑂 (
𝑠∑
𝑖=1

𝑑𝑖∑
𝑙=1

(
𝑛

𝑙

)
) +

𝑠∏
𝑖=1

|𝑆𝑖 | (14)

To summarize, since all web services are independent, we can di-

videWSLAP into 𝑠 smaller sub-problems, one corresponding to each

3

1348

web service, find non-dominated solutions to each sub-problem

(web service) and finally merge the solutions of all sub-problems

to obtain solutions to the original problem (WSLAP). The major

benefits of using D&C approach for WSLAP are as follows:

1. Efficiency: Each sub-problem is relatively smaller and indepen-

dent, hence can be solved in parallel. The existing approaches pro-

posed in the literature [6][7][3] do not exploit these characteristics

and attempt to solve the problem in its entirety.

2. Incremental: If a new web service is added to the existing prob-

lem, then the previously proposed techniques [6][7][3] need to

resolve the entire problem from scratch. With the D&C approach,

we only need to find location-allocation for the new web service

and merge the resulting solutions with the existing solutions. Thus,

the proposed approach is incremental.

3. Reuse: In some applications, it is likely that the invocation fre-

quency and deployment cost of few web services are the same. With

the D&C approach, we only need to find solutions for one such

web service (Corollary 2).

The pseudocode of our D&C approach is depicted in Algorithm 1.

First, we obtain a set of non-dominated solutions 𝑆𝑖 for each web

service 𝑊𝑖 using evolutionary algorithms described in the next

section (lines 4-6). The resulting sets of non-dominated solutions

(𝑆1, 𝑆2, . . . , 𝑆𝑠) are then combined using the𝑀𝑒𝑟𝑔𝑒 procedure (line

7). The merge algorithm is iterative and starts by combining non-

dominated solutions of the first two web services which are then

combined with non-dominated solutions of the third web service

and so on (lines 13-16). The 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 procedure consists of three

main steps. First, it adds non-dominated solutions of two sub-

problems 𝐸1 and 𝐸2 in all possible ways (lines 23-29). The resulting

set of solutions 𝐸 = {(𝑎 + 𝑐, 𝑏 + 𝑑) | (𝑎, 𝑏) ∈ 𝐸1 𝑎𝑛𝑑 (𝑐, 𝑑) ∈ 𝐸2} is
of size |𝐸1 | · |𝐸2 |. Second, it sorts set 𝐸 by the first objective in as-

cending order. Third, it uses Kung’s et al. 𝐹𝑟𝑜𝑛𝑡 method [10] which

is a recursive procedure to find non-dominated solutions from the

input set 𝐸.

Theorem 2. The 𝑀𝑒𝑟𝑔𝑒 procedure takes as input a list of non-
dominated solution sets 𝑆1, 𝑆2 . . . , 𝑆𝑠 , where 𝑆𝑖 is a solution set for 𝑖𝑡ℎ

sub-problem, and computes the set of non-dominated solutions 𝑆 to
the original problem.

We prove the correctness of𝑀𝑒𝑟𝑔𝑒 procedure using a loop invari-

ant [11]. The loop invariant is at the start of 𝑖𝑡ℎ iteration where set

𝑆 contains non-dominated solutions to the first 𝑖 − 1 sub-problems.

Initialization. Before the loop starts, set 𝑆 is initialized to the set

𝑆1 of non-dominated solutions for the first sub-problem (line 13).

Hence, at the start of the loop, when the value of 𝑖 is 2, 𝑆 = 𝑆1.

Therefore, the loop invariant initially holds.

Maintenance. Suppose that the invariant holds at the beginning
of iteration 𝑖 , that is, 𝑆 contains non-dominated solutions to the first

𝑖 − 1 sub-problems. The𝐶𝑜𝑚𝑏𝑖𝑛𝑒 procedure is called to merge solu-

tions of the first 𝑖−1 sub-problems with solution set 𝑆𝑖 of the 𝑖
𝑡ℎ

sub-

problem (line 15). The procedure begins by adding non-dominated

solutions in two sets 𝑆 and 𝑆𝑖 in all possible ways (lines 23-29) and

creates a new set 𝐸 = {(𝑎+𝑐, 𝑏+𝑑) | (𝑎, 𝑏) ∈ 𝑆 𝑎𝑛𝑑 (𝑐, 𝑑) ∈ 𝑆𝑖 }. Then,
it sorts set 𝐸 by first objective in ascending order (line 30) and calls

Kung’s et al. 𝐹𝑟𝑜𝑛𝑡 method [10] to find the set of non-dominated

solutions 𝑁 in 𝐸 (line 31). The set 𝑁 is returned and assigned to

𝑆 . The set 𝑆 now contains non-dominated solutions to the first 𝑖

Algorithm 1 D&C Algorithm

1: procedure 𝐷𝑖𝑣𝑖𝑑𝑒𝐴𝑛𝑑𝐶𝑜𝑛𝑞𝑢𝑒𝑟
2: Input: Frequency matrix 𝐹𝑚×𝑠 , Cost matrix𝐶𝑠×𝑛 and Latency matrix 𝐿𝑚×𝑛
3: Output: A set of non-dominated solutions 𝑆 to WSLAP

4: for 𝑖 = 1 to 𝑠 do
5: 𝑆𝑖 = 𝑆𝑜𝑙𝑣𝑒 (𝐹 [1 :𝑚] [𝑖],𝐶 [𝑖], 𝐿)
6: end for
7: 𝑀𝑒𝑟𝑔𝑒 (𝑆1, 𝑆2, . . . , 𝑆𝑠)
8: end procedure
9:

10: procedure𝑀𝑒𝑟𝑔𝑒
11: Input: A set of non-dominated solutions 𝑆𝑖 for each of the 𝑠 web services

12: Output: A set of non-dominated solutions 𝑆 to WSLAP

13: 𝑆 = 𝑆1
14: for 𝑖 = 2 to 𝑠 do
15: 𝑆 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 (𝑆, 𝑆𝑖)
16: end for
17: return 𝑆
18: end procedure
19:

20: procedure𝐶𝑜𝑚𝑏𝑖𝑛𝑒
21: Input: Two sets of non-dominated solutions 𝐸1 and 𝐸2
22: Output: A set of non-dominated solutions in the combined set 𝐸 = {(𝑎 + 𝑐,𝑏 + 𝑑) | (𝑎,𝑏) ∈

𝐸1 𝑎𝑛𝑑 (𝑐,𝑑) ∈ 𝐸2 }
23: 𝐸 = ⊥
24: for 𝑥 = 1 to |𝐸1 | do
25: for 𝑦 = 1 to |𝐸2 | do
26: 𝑠 = (𝑎𝑥 + 𝑐𝑦 , 𝑏𝑥 + 𝑑𝑦)
27: 𝐸 [(𝑥 − 1) ∗ |𝐸2 | + 𝑦] = 𝑠
28: end for
29: end for
30: sort tuples in 𝐸 by first objective in ascending order

31: return 𝐹𝑟𝑜𝑛𝑡 (𝐸)
32: end procedure

sub-problems and, therefore, the invariant holds at the end of the

iteration as well.

Termination. The loop terminates when 𝑖 = 𝑠 + 1. Thus, from the

invariant, 𝑆 contain non-dominated solutions to all 𝑠 sub-problems

and hence to the original problem.

We note that the 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 procedure given in Algorithm 1 re-

quires𝑂 (|𝐸1| · |𝐸2|) space to store all possible solutions (lines 24-29)
and𝑂 (|𝐸1| · |𝐸2| · 𝑙𝑜𝑔(|𝐸1| · |𝐸2|)) time for sorting all possible solu-

tions (line 30). However, the number of non-dominated solutions

could be much less than |𝐸1| · |𝐸2|. In the next section, we give a

space and time efficient method to combine non-dominated solu-

tions of two sub-problems.

3.1 Novel Combine Algorithm
Consider two sub-problems 𝑃1 and 𝑃2. Suppose that 𝑃1 has 𝑟 unique

non-dominated solutions 𝐸1 = {(𝑎1, 𝑏1), . . . , (𝑎𝑟 , 𝑏𝑟)} and 𝑃2 has 𝑡
unique non-dominated solutions 𝐸2 = {(𝑐1, 𝑑1), . . . , (𝑐𝑡 , 𝑑𝑡)}, where
𝑟 ≤ 𝑡 . We consider only unique solutions to avoid redundant compu-

tations. Further, assume that each solution set is sorted in ascending

(increasing) order by first objective i.e, 𝑎1 < 𝑎2 < . . . < 𝑎𝑟 and

𝑐1 < 𝑐2 < . . . < 𝑐𝑡 . Adding solutions in sets 𝐸1 and 𝐸2 in all possible

ways yields a solution set 𝐸 consisting of 𝑟 · 𝑡 tuples as shown in

Figure 1.

Theorem 3. Consider a solution tuple (𝑎𝑖 + 𝑐 𝑗 , 𝑏𝑖 + 𝑑 𝑗) ∈ 𝐸. It
cannot dominate or be dominated by tuples (𝑎𝑘 + 𝑐𝑙 , 𝑏𝑘 + 𝑑𝑙), where
(𝑘 ≤ 𝑖 and 𝑙 ≤ 𝑗) or (𝑘 ≥ 𝑖 and 𝑙 ≥ 𝑗).

Since all solutions in 𝐸1 are unique, non-dominated and arranged

in increasing order of the first objective 𝑓1, they must be in de-

creasing order of the second objective 𝑓2. Similar is the case with

solutions in 𝐸2.

Since 𝑎𝑘 < 𝑎𝑖 and 𝑏𝑘 > 𝑏𝑖 for 𝑘 < 𝑖 , and 𝑐𝑙 < 𝑐 𝑗 and 𝑑𝑙 > 𝑑 𝑗 for

4

1349

𝐸1 𝐸2 Combined 𝐸

Figure 1: Two sets 𝐸1 and 𝐸2 of non-dominated solutions con-
taining 𝑟 and 𝑡 tuples respectively, and their combination 𝐸

consisting of 𝑟 · 𝑡 candidate solutions.

𝑙 < 𝑗 , we have

𝑎𝑘 + 𝑐𝑙 < 𝑎𝑖 + 𝑐 𝑗 , 𝑏𝑘 + 𝑑𝑙 > 𝑏𝑖 + 𝑑 𝑗 (15)

The above inequality holds even when 𝑘 = 𝑖 (and 𝑙 < 𝑗) or
𝑙 = 𝑗 (and 𝑘 < 𝑖). Hence, (𝑎𝑖 + 𝑐 𝑗 , 𝑏𝑖 + 𝑑 𝑗) cannot dominate or be

dominated by (𝑎𝑘 + 𝑐𝑙 , 𝑏𝑘 + 𝑑𝑙), where 𝑘 ≤ 𝑖 and 𝑙 ≤ 𝑗 .

Similarly, 𝑎𝑘 > 𝑎𝑖 and 𝑏𝑘 < 𝑏𝑖 for 𝑘 > 𝑖 , and 𝑐𝑙 > 𝑐 𝑗 and 𝑑𝑙 < 𝑑 𝑗
for 𝑙 > 𝑗 . Hence, we have

𝑎𝑘 + 𝑐𝑙 > 𝑎𝑖 + 𝑐 𝑗 , 𝑏𝑘 + 𝑑𝑙 < 𝑏𝑖 + 𝑑 𝑗 (16)

The above inequality holds even when 𝑘 = 𝑖 (and 𝑙 > 𝑗) or 𝑙 =

𝑗 (and 𝑘 > 𝑖). Hence, (𝑎𝑖 + 𝑐 𝑗 , 𝑏𝑖 + 𝑑 𝑗) cannot dominate or be

dominated by (𝑎𝑘 + 𝑐𝑙 , 𝑏𝑘 + 𝑑𝑙), where 𝑘 ≥ 𝑖 and 𝑙 ≥ 𝑗 . Thus, the

proof.

Consider a solution (𝑎3 + 𝑐2, 𝑏3 +𝑑2) ∈ 𝐸 which is highlighted in

green in Figure 1c. The theorem implies that all solution tuples that

lie to the top-left (shaded in cyan) of (𝑎3+𝑐2, 𝑏3+𝑑2) are better in the
first objective but worse in the second objective. Similarly, all solu-

tion tuples that lie to the bottom right (shaded in yellow) are better

in the second objective but worse in the first objective. Therefore,

(𝑎3 + 𝑐2, 𝑏3 + 𝑑2) need not be compared with these solutions.

Based on this observation, we propose an iterative procedure

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐸𝑓 𝑓 (Algorithm 2) which generates |𝐸 | = 𝑟 · 𝑡 solution tu-

ples strategically to avoid unnecessary comparisons and returns a

set of non-dominated solutions 𝑁 ⊆ 𝐸. The strategy is to generate a

solution tuple (𝑎𝑖+𝑐 𝑗 , 𝑏𝑖+𝑑 𝑗) only if the left tuple (𝑎𝑖−1+𝑐 𝑗 , 𝑏𝑖−1+𝑑 𝑗)
and the top tuple (𝑎𝑖+1 + 𝑐 𝑗−1, 𝑏𝑖+1 + 𝑑 𝑗−1) have already been gen-

erated and compared with the existing non-dominated solutions.

The new procedure uses two data structures, min-heap 𝐻 and stack

𝑁 . The generated solutions are stored temporarily in the min-heap.

The solutions that are confirmed to be non-dominated are removed

from the min-heap and stored in the stack. The value of first objec-

tive 𝑓1 is used as key of min-heap. If two tuples have the same key

(𝑓1 value), then they are compared using the second objective 𝑓2.

We imagine all possible solutions being arranged in a 𝑡 × 𝑟 table (as

shown in Figure 1c) and identify each solution tuple using a row

number and column number. An integer array 𝑓 𝑙𝑎𝑔 of size 𝑟 stores

the row index of recently removed tuple (from min-heap) for each

column.

Algorithm 2 proceeds as follows. Initially, the stack 𝑁 contains

a dummy solution (0,∞) (lines 4-5). The first tuple (𝑎1 + 𝑐1, 𝑏1 +
𝑑1) is generated and added to the min-heap 𝐻 since its 𝑓1 value

is the lowest (lines 6-7). At the start of each iteration, the tuple

𝑚𝑖𝑛 = (𝑓1, 𝑓2) is removed from the root node (line 10). Its 𝑓2 value

is compared with 𝑓2 value of solution at the top of the stack 𝑁 . If

the value is smaller, then the solution𝑚𝑖𝑛 is pushed in the stack

(lines 11-13). Note that, solutions are removed from the heap in the

increasing order of first objective 𝑓1. If 𝑓1 value of𝑚𝑖𝑛 is equal to 𝑓1
value of solution at the top of the stack, then 𝑓2 value of𝑚𝑖𝑛 must

be less than the 𝑓2 value of top solution.

Assume that the solution𝑚𝑖𝑛 belongs to row 𝑗 and column 𝑖 in

the solution table of size 𝑡 × 𝑟 (Figure 1c). The 𝑖𝑡ℎ entry in 𝑓 𝑙𝑎𝑔 is

updated with the row number 𝑗 since it is the most recent solution

in column 𝑖 which is removed from the min-heap (line 16). Now,

there is a possibility of generating two solutions, one that lies in

the right column 𝑖 + 1 and the other that lies in the bottom row

𝑗 + 1. For generating the solution in the column 𝑖 + 1, we need to

check if the solution above it (row 𝑗 − 1) is already removed from

the min-heap (lines 17-19). For this, the (𝑖 +1)𝑡ℎ entry in 𝑓 𝑙𝑎𝑔 array

is inspected. Similarly, to generate the solution in the row 𝑗 + 1,

we need to check if the solution left to it (column 𝑖 − 1) is already

removed from the min-heap (lines 20-23). For this, the (𝑖 − 1)𝑡ℎ
entry in 𝑓 𝑙𝑎𝑔 array is inspected. This entire process repeats until

all 𝑟 · 𝑡 solutions are generated. In the end, the stack 𝑁 contains the

set of non-dominated solutions to the combined problem which is

returned to the calling function (line 24).

Theorem 4. The memory requirement of the 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐸𝑓 𝑓 pro-
cedure is 𝑂 (𝑟) + |𝑁 |, where 𝑟 = |𝐸1 | and 𝑁 ⊆ 𝐸 is the set of non-
dominated solutions to the combined problem.

We claim that the size of the min-heap 𝐻 at any point in time

during execution never exceeds 𝑟 . Suppose that the candidate so-

lutions 𝐸 to the problem are arranged in 𝑡 × 𝑟 table as depicted

in (Figure 1c). If there are more than 𝑟 tuples in min-heap, then

by pigeonhole principle at least two tuples, say 𝑒𝑢 and 𝑒𝑣 must

belong to the same column. Suppose that 𝑢 and 𝑣 indicate the row

numbers of these tuples and let 𝑢 < 𝑣 . Then by Theorem 3, 𝑒𝑢
must be smaller than 𝑒𝑣 with respect to the first objective 𝑓1, i.e.,

𝑒𝑢 .𝑓1 < 𝑒𝑣 .𝑓1 (𝑒𝑢 .𝑓1 and 𝑒𝑣 .𝑓1 represents the first objective value

of the tuples 𝑒𝑢 and 𝑒𝑣 , respectively). However, 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐸𝑓 𝑓 does

not generate 𝑒𝑣 until 𝑒𝑢 is removed from the min-heap. Therefore,

tuples 𝑒𝑢 and 𝑒𝑣 cannot not be present in the min-heap at the same

time. Hence, the contradiction.

The size of the integer array 𝑓 𝑙𝑎𝑔 is also𝑂 (𝑟). Further, the stack
𝑁 only stores the non-dominated solutions. Therefore, the total

memory requirement of the 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐸𝑓 𝑓 procedure is 𝑂 (𝑟) + |𝑁 |,
where 𝑁 ⊆ 𝐸 is the set of non-dominated solutions to the combined

problem. As the for loop runs for 𝑟 · 𝑡 iterations and the maxi-

mum amount of work done in each loop is 𝑂 (𝑙𝑜𝑔(𝑟)) (min-heap

operations), the time complexity of the 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐸𝑓 𝑓 procedure is

𝑂 (𝑟 · 𝑡 · 𝑙𝑜𝑔(𝑟)). Note: Algorithm 2 assumes that solutions in both

sets 𝐸1 and 𝐸2 are sorted by the first objective. It generates all possi-

ble 𝑟 · 𝑡 solutions in a strategic manner. The same algorithm works

well (with minimum modifications) even if we sort solutions by the

second objective.

Illustration: Consider two sets of non-dominated solutions 𝐸1
and 𝐸2 (sorted by the first objective) given in Table 2. The combined

set of solutions 𝐸 is also shown in Table 2. The non-dominated

solutions are highlighted in bold. Table 3 illustrates the contents of

5

1350

Algorithm 2 Efficient Algorithm to Combine Non-dominated So-

lutions of Two Sub-problems

1: procedure𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐸𝑓 𝑓
2: Input: Two sets of non-dominated solutions 𝐸1 and 𝐸2 . Both sets are sorted by the first objec-

tive.

3: Output: A set of non-dominated solutions𝑁 in the combined set 𝐸 = {(𝑎+𝑐,𝑏 +𝑑) | (𝑎,𝑏) ∈
𝐸1 𝑎𝑛𝑑 (𝑐,𝑑) ∈ 𝐸2 }

4: initialize stack 𝑁
5: 𝑁 .𝑝𝑢𝑠ℎ (0,∞)
6: initialize min-heap𝐻 of size 𝑟
7: 𝐻.𝑎𝑑𝑑 ((𝑎1 + 𝑐1, 𝑏1 + 𝑑1))
8: 𝑓 𝑙𝑎𝑔 [] = 𝑖𝑛𝑡 [𝑟]
9: for 𝑙 = 1 to 𝑟 · 𝑡 do
10: (𝑓1, 𝑓2) = 𝐻.𝑟𝑒𝑚𝑜𝑣𝑒 () //𝑚𝑖𝑛 solution

11: if 𝑓2 < 𝑁 .𝑡𝑜𝑝 () .𝑓2 then
12: 𝑁 .𝑝𝑢𝑠ℎ (𝑓1, 𝑓2) //increments top and pushes element into stack

13: end if
14: 𝑖 = col index of𝑚𝑖𝑛 tuple (𝑓1, 𝑓2)
15: 𝑗 = row index of𝑚𝑖𝑛 tuple (𝑓1, 𝑓2)
16: 𝑓 𝑙𝑎𝑔 [𝑖] = 𝑗 //update entry in pos 𝑖 with the row index 𝑗 of𝑚𝑖𝑛 soln

17: if 𝑖 + 1 ≤ 𝑟 and (𝑗 == 1 or 𝑓 𝑙𝑎𝑔 [𝑖 + 1] == 𝑗 − 1) then
18: 𝐻.𝑎𝑑𝑑 ((𝑎𝑖+1 + 𝑐 𝑗 , 𝑏𝑖+1, 𝑑 𝑗)) // generate right tuple
19: end if
20: if 𝑗 + 1 ≤ 𝑡 and (𝑖 == 1 or 𝑓 𝑙𝑎𝑔 [𝑖 − 1] ≥ 𝑗 + 1) then
21: 𝐻.𝑎𝑑𝑑 ((𝑎𝑖 + 𝑐 𝑗+1, 𝑏𝑖 + 𝑑 𝑗+1)) //generate bottom tuple

22: end if
23: end for
24: return solutions in stack 𝑁
25: end procedure

Table 2: Two sets 𝐸1 and 𝐸2 of non-dominated solutions each
containing four tuples (sorted by the first objective), and
their combination 𝐸 consisting of 4 · 4 = 16 candidate solu-
tions. Non-dominated solutions are highlighted in bold.

(1,4) (2,10) (3,14) (7,13) (8,12) (15,11)

(5,3) (4,7) (5,11) (9,10) (10,9) (17,8)

(6,2) (5,6) (6,10) (10,9) (11,8) (18,7)

(13,1) (7,5) (8,9) (12,8) (13,7) (20,6)
𝐸1 𝐸2 Combined E

heap𝐻 , stack 𝑁 and array 𝑓 𝑙𝑎𝑔 during the iterations of Algorithm 2.

In the beginning, a dummy entry (0, ∞) is added to the stack (line

5). Further, the solution tuple (1,4) from 𝐸1 and the solution tuple

(2,10) from 𝐸2 are combined to produce (3,14) and added to the heap

(line 7). Thus, at the start of the first iteration, that is, 𝑙 = 1, heap

𝐻 contains (3,14). Subsequently, it is removed from the heap and

compared with the top element in stack 𝑁 . As the second objective

value of the top element is ∞, the tuple (3,14) is added to the stack

(lines 11-13) and the dummy entry (0,∞) is removed. As the first

entry in the first column is generated and removed from the heap,

𝑓 𝑙𝑎𝑔[0] is set to 1. Subsequently, the solution tuple (5,3) from 𝐸1
and the solution tuple (2,10) from 𝐸2 are combined to obtain (7,13),

and added to the heap (lines 17-19). Similarly, the solution tuple

(1,4) from 𝐸1 and the solution tuple (4,7) from 𝐸2 are combined to

obtain (5,11), and added to the heap (lines 20-22). Thus, at the start

of the second iteration, that is, 𝑙 = 2, heap 𝐻 contains (5,11) and

(7,13), and stack 𝑁 contains a non-dominated solution (3,14). In this

way, in each iteration, the algorithm removes a tuple from heap 𝐻 ,

pushes it on stack 𝑁 if appropriate, and generates at most two new

tuples and adds them to heap 𝐻 .

Table 3: Execution of Algorithm 2 on solutions 𝐸1 and 𝐸2 (Ta-
ble 2) of two sub-problems (sorted by the first objective).

Iter 𝑙 Heap 𝐻 Stack 𝑁 𝑓 𝑙𝑎𝑔

1 (3,14) (0, ∞) [0,0,0,0]

2 (5,11)(7,13) (3,14) [1,0,0,0]

3 (6,10)(7,13) (3,14)(5,11) [2,0,0,0]

4 (7,13)(8,9) (3,14)(5,11)(6,10) [3,0,0,0]

5 (8,9)(9,10)(8,12) (3,14)(5,11)(6,10) [3,1,0,0]

6 (8,12)(9,10) (3,14)(5,11)(6,10)(8,9) [4,1,0,0]

7 (9,10)(15,11) (3,14)(5,11)(6,10)(8,9) [4,1,1,0]

8 (10,9)(15,11)(10,9) (3,14)(5,11)(6,10)(8,9) [4,2,1,0]

9 (10,9)(15,11) (3,14)(5,11)(6,10)(8,9) [4,2,2,0]

10 (11,8)(15,11)(12,8) (3,14)(5,11)(6,10)(8,9) [4,3,2,0]

11 (12,8)(15,11) (3,14). . . (8,9)(11,8) [4,3,3,0]

12 (13,7)(15,11) (3,14). . . (8,9)(11,8) [4,4,3,0]

13 (15,11) (3,14). . . (11,8)(13,7) [4,4,4,0]

14 (17,8) (3,14). . . (11,8)(13,7) [4,4,4,1]

15 (18,7) (3,14). . . (11,8)(13,7) [4,4,4,2]

16 (20,6) (3,14). . . (11,8)(13,7) [4,4,4,3]

17 (3,14). . . (13,7)(20,6) [4,4,4,4]

3.2 Evolutionary Algorithms
Classical optimization methods typically convert a multi-objective

problem to a single objective problem by assigning appropriate

weights to each objective. Such methods yield only one Pareto-

optimal solution for the given weights. To obtain multiple solu-

tions, they have to be applied many times. On the other hand,

evolutionary algorithms are considered to be more effective in solv-

ing multi-objective optimization problems since they work with

a population of solutions and produce a set of non-dominated so-

lutions in a single simulation run. Several multi-objective evolu-

tionary algorithms have been proposed in the literature. NSGAII

is an extended genetic algorithm that uses the concept of elitism,

fast non-dominated sorting and crowding distance (for diversity)

to solve multi-objective problems [12]. Recently, a binary particle

swarm optimizer BMOPSOCD was proposed to solve WSLAP [3]

and was shown to generate better solutions than NSGAII. BMOP-

SOCD maintains a set of non-dominated solutions in the external

archive and uses crowding distance to find diverse solutions. In

this work, we make use of NSGAII and BMOPSOCD to find the

non-dominated solutions for each web service in WSLAP.

4 EXPERIMENT
We compare the efficacy of the proposed D&C approach with multi-

objective evolutionary algorithms (MOEAs) proposed in the liter-

ature [3, 6, 7] on test instances of different sizes. Specifically, we

consider four algorithms: NSGAII, BMOPSOCD, D&C NSGAII and

D&C BMOPSOCD. All algorithms were implemented in Python

version 3.7 and the experiments were conducted on a Windows 10

machine with i7-8650U 2.11 GHz processor and 16GB of RAM. We

follow the experimental methodology used by [3].

6

1351

4.1 Test Instances
We conducted experiments with 14 different WSLAP instances de-

scribed in [3]. The search space of an instance is computed using

the number of services and candidate locations (2
𝑠 ·𝑛

) as shown

in Table 4. Since the computation complexity of an instance also

depends on the number of user centers, for each search space, the

number of user centers is varied. The test instances employ real-

world WSDream dataset [13] for obtaining latency numbers. This

dataset contains only latencies between candidate locations and

user centers, and lacks deployment costs for candidate locations

and invocation frequencies for web services. Therefore, to gener-

ate a complete test instance, we followed the approach suggested

in [3]. We randomly generated the deployment costs for candidate

locations according to a normal distribution with a mean of 100

and a standard deviation of 20. We also randomly generated the

invocation frequencies for user centers from a uniform distribution

between 1 and 120.

Table 4: Different WSLAP Instances Used in Experiments.

Instance Services Locations User Centers Search Space

𝑠 𝑚 𝑛 2
𝑠 ·𝑛

1 20 5 10 2
100

2 20 10 10 2
200

3 50 15 20 2
750

4 50 15 40 2
750

5 50 25 20 2
1250

6 50 25 40 2
1250

7 100 15 20 2
1500

8 100 15 40 2
1500

9 100 25 20 2
2500

10 100 25 40 2
2500

11 200 25 40 2
5000

12 200 25 80 2
5000

13 200 40 40 2
8000

14 200 40 80 2
8000

4.2 Performance Metrics
We use HyperVolume (HV) [14, 15] and Inverted Generational Dis-

tance (IGD) [16] to evaluate the diversity and quality of solutions

produced by four algorithms (NSGAII, BMOPSOCD, D&C NSGAII

and D&C BMOPSOCD). HV is a measure that reflects the volume

enclosed by a solution set and a reference point. A larger HV value

indicates a better solution set. IGD is a modified version of Genera-

tional Distance (GD) [17] which estimates how far the elements in

the true Pareto front are from those in the non-dominated set pro-

duced by an algorithm. IGD calculates the sum of the distances from

each point within the true Pareto front to the nearest point within

the non-dominated set produced by an algorithm. A lower IGD

value indicates a better quality solution set. However, for calculat-

ing the IGD value, we need a true Pareto front, and for our problem,

the true Pareto front is unknown. Therefore, as discussed in [3], we

computed an approximated Pareto front by combining all solutions

produced by four algorithms and then applying a non-dominated

sorting to obtain the final non-dominated set.

4.3 Parameter Settings
The parameter values used for each algorithm considered in the

evaluation are shown in Table 5. We found the parameter values for

NSGAII algorithm empirically, that is, we tried several values for

parameters, and observed whether the solutions have converged

(have similar fitness values between two consecutive generations).

We used the same values of crossover probability (0.8) and mutation

probability (0.2) for D&C NSGAII. The size of a chromosome used

for NSGAII is 𝑠 · 𝑛, where 𝑠 is the number of web services and 𝑛 is

the number of candidate locations. Since D&C NSGAII, solves the

location allocation for each web service independently, the size of a

chromosome, in this case, is just 𝑛. As the search space of NSGAII is

larger 2
𝑠 ·𝑛

, we used a population size of 250. As the search space of

D&C NSGAII is smaller 2
𝑛
, we used a smaller population of size 20.

Note that, our study focuses on the effectiveness of D&C approach

instead of selecting the best parameter set.

For BMOPSOCD algorithm, we used the parameter values as

described in [3]. The value of static inertia weight𝑤 was set to 0.4

and the mutation probability 𝑃𝑚 was set to 0.5. The parameters

𝑐1 and 𝑐2 were both set to 1. Hence, particle’s personal best and

swarm’s global best had an equal influence on the swarm.

Table 5: Parameters Choice for the Four Algorithms.

Parameter NSGAII D&C NSGAII
Population size 250 20

Chromosome size 𝑠 · 𝑛 𝑛

Tournament size 3 3

Crossover probability 0.8 0.8

Mutation probability 0.2 0.2

Maximum generations 250 40

Parameter BMOPSOCD D&C BMOPSOCD
Population size 250 20

Archive size 250 20

Inertia𝑤 0.4 0.4

Personal best 𝑐1 1 1

Swarm best 𝑐2 1 1

Mutation probability 𝑝𝑚 0.5 0.5

Maximum generations 250 40

We normalized two objective functions (latency and cost) be-

tween 0 and 1. The point (1, 1) is the extreme point of objective

values. We used (1, 1) as the reference point in calculating HV. For

each experiment, the proposed algorithm was run ten times inde-

pendently. The best results of all the runs were compared. To obtain

the best result of ten runs, the results of all ten runs were combined

and sorted by the non-dominated values.

4.4 Results
Figure 2a depicts the set of non-dominated solutions produced by

the four algorithms for one of the instances (Instance 3). For bet-

ter clarity, we have shown the closer view of the non-dominated

solutions obtained for the instance in figure 2b. The figure clearly

shows that D&C NSGAII and D&C BMOPSOCD are able to find

better and diverse solutions than NSGAII and BMOPSOCD. Similar

trends were observed for other instances. Although NSGA-II and

7

1352

Table 6: HV Values from the Four Algorithms

Inst- NSGA II D&C BMOPSOCD D&C

-ance NSGA II BMOPSOCD

Mean Std Mean Std Mean Std Mean Std

1 0.72 0.03 0.82 0.01 0.78 0.01 0.90 0.00

2 0.68 0.07 0.92 0.00 0.89 0.01 0.96 0.00

3 0.55 0.09 0.95 0.00 0.89 0.01 0.97 0.00

4 0.56 0.09 0.95 0.00 0.90 0.01 0.97 0.00

5 0.54 0.10 0.97 0.00 0.93 0.01 0.98 0.00

6 0.55 0.10 0.97 0.00 0.93 0.00 0.98 0.00

7 0.54 0.09 0.95 0.00 0.86 0.01 0.97 0.00

8 0.55 0.09 0.95 0.00 0.87 0.01 0.97 0.00

9 0.54 0.10 0.97 0.00 0.90 0.01 0.98 0.00

10 0.54 0.10 0.96 0.00 0.91 0.01 0.98 0.00

11 0.51 0.00 0.96 0.00 0.88 0.01 0.98 0.00

12 0.51 0.00 0.96 0.00 0.89 0.01 0.98 0.00

13 0.51 0.00 0.95 0.00 0.92 0.00 0.98 0.00

14 0.51 0.00 0.94 0.00 0.92 0.00 0.98 0.00

Table 7: IGD Values from the Four Algorithms

NSGA II D&C BMOPSOCD D&C

NSGA II BMOPSOCD

Mean Std Mean Std Mean Std Mean Std

0.19 0.02 0.14 0.00 0.15 0.01 0.00 0.00

0.17 0.04 0.07 0.00 0.07 0.00 0.00 0.00

0.34 0.07 0.05 0.01 0.09 0.01 0.00 0.00

0.25 0.05 0.04 0.01 0.05 0.01 0.00 0.00

0.32 0.07 0.03 0.01 0.04 0.01 0.00 0.00

0.30 0.07 0.03 0.00 0.04 0.01 0.00 0.00

0.39 0.07 0.08 0.01 0.13 0.01 0.00 0.00

0.26 0.05 0.04 0.01 0.07 0.01 0.00 0.00

0.28 0.06 0.03 0.00 0.04 0.00 0.00 0.00

0.30 0.06 0.04 0.01 0.05 0.01 0.00 0.00

0.27 0.01 0.04 0.01 0.05 0.01 0.00 0.00

0.26 0.01 0.04 0.00 0.05 0.00 0.00 0.00

0.30 0.01 0.04 0.01 0.04 0.01 0.00 0.00

0.28 0.01 0.04 0.01 0.03 0.01 0.00 0.00

BMOPSOCD have longer tails (i.e., many solutions with cost > 0.5)

than D&C NSGAII and D&C BMOPSOCD, the solutions present

in the tails are dominated by the solutions of the D&C algorithms.

Table 6 shows HV values and Table 7 shows IGD values (all values

are rounded to two decimal places) calculated using non-dominated

solutions obtained by each algorithm for all fourteen instances. A

larger HV value indicates a better and diverse solution set. A lower

IGD value indicates a better quality solution set. From the Tables 6

and 7, it is clear that solutions obtained using the D&C approach are

much better than the ones obtained using the combined approach

in terms of quality as well as diversity. Overall, D&C BMOPSOCD

produced better solutions than the other three algorithms. Fur-

ther, as observed in [3], BMOPSOCD produced better results than

NSGAII. However, D&C NSGAII resulted in better solutions than

BMOPSOCD.

Table 8: Computation Time (in sec) of the Four Algorithms

Inst- NSGA II D&C BMOPSOCD D&C

-ance NSGA II BMOPSOCD

Mean Std Mean Std Mean Std Mean Std

1 22 1 9 2 13 1 6 2

2 41 1 12 1 21 2 6 1

3 283 8 53 5 108 6 24 3

4 577 45 99 14 192 7 40 6

5 446 16 98 16 194 6 42 8

6 922 96 192 36 318 19 55 6

7 566 29 90 6 264 13 69 9

8 1018 30 216 16 417 15 144 9

9 1103 95 300 26 278 17 167 12

10 1913 88 480 63 404 7 175 12

11 909 95 1982 159 847 21 829 56

12 1775 295 2843 258 1291 16 936 43

13 1227 119 1887 213 1478 368 906 168

14 2499 187 2880 270 5031 413 998 60

0.0 0.2 0.4 0.6 0.8 1.0
Cost

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

NSGA II
BMOPSOCD
D&C BMOPSOCD
D&C NSGA II

0.0 0.1 0.2 0.3 0.4 0.5
Cost

0.00

0.05

0.10

0.15

0.20

La
te

nc
y

NSGA II
BMOPSOCD
D&C BMOPSOCD
D&C NSGA II

Figure 2: a) Pareto fronts obtained from the four algorithms
for instance 3 (50,15,20). b) Closer view of the pareto fronts.

5 CONCLUSION AND FUTUREWORK
In this paper, we show that WSLAP can be solved effectively us-

ing a Divide and Conquer (D&C) approach; wherein, the location-

allocation problem is solved independently for each web service.

Further, we propose a novel merge algorithm to combined the so-

lution from each service. We used NSGA-II and BMOPSOCD to

compute the Pareto front for each service. We compared perfor-

mance of both the algorithm with and without D&C approach. Our

extensive experiments showed that the D&C approach is able to

produce better quality (lower Inverted Generational Distance) and

diverse solutions (higher HyperVolume) than solving theWSLAP as

one problem. The computational time is also less for D&C approach.

Further, the computational time can be significantly reduced by

exploiting the parallelization capability of the proposed algorithm

to merge the non-dominated solutions of multiple services simulta-

neously. Specifically, we can generate solutions for each service in

parallel, and, during merge, we could do pairwise merges in parallel

going all the way up the complete binary tree. Since the proposed

merge algorithm is generic, we plan to study the effectiveness of

the algorithm for other bi-objective optimization problems.

8

1353

REFERENCES
[1] D. A. Menasce. QoS Issues in Web Services. IEEE Internet Computing, 6(6):72–75,

Nov 2002.

[2] Arun Ramamurthy, Saket Saurabh, Mangesh Gharote, and Sachin Lodha. Se-

lection of cloud service providers for hosting web applications in a multi-cloud

environment. In 2020 IEEE International Conference on Services Computing (SCC),
pages 202–209. IEEE, 2020.

[3] Y. Mei B. Tan, H. Ma and M. Zhang. Evolutionary Multi-Objective Optimization

for Web Service Location Allocation Problem. IEEE Transactions on Services
Computing, pages 1–1, 2018.

[4] Reza Zanjirani Farahani and Masoud Hekmatfar. Facility Location: Concepts,
Models, Algorithms and Case studies. Springer, 2009.

[5] Reza Zanjirani Farahani, Maryam SteadieSeifi, and Nasrin Asgari. Multiple

criteria facility location problems: A survey. Applied Mathematical Modelling,
34(7):1689 – 1709, 2010.

[6] Boxiong Tan, Yi Mei, Hui Ma, and Mengjie Zhang. Particle swarm optimization

for multi-objective web service location allocation. In Francisco Chicano, Bin Hu,

and Pablo García-Sánchez, editors, Evolutionary Computation in Combinatorial
Optimization, pages 219–234, Cham, 2016. Springer International Publishing.

[7] Boxiong Tan, Hui Ma, and Mengjie Zhang. Optimization of Location Allocation

of Web Services Using a Modified Non-dominated Sorting Genetic Algorithm.

In Proceedings of the Second Australasian Conference on Artificial Life and Com-
putational Intelligence - Volume 9592, pages 246–257, Berlin, Heidelberg, 2016.
Springer-Verlag.

[8] Hui Ma, Alexandre Sawczuk da Silva, and Wentao Kuang. Nsga-ii with local

search for multi-objective application deployment in multi-cloud. In 2019 IEEE

Congress on Evolutionary Computation (CEC), pages 2800–2807. IEEE, 2019.
[9] Tao Shi, Hui Ma, and Gang Chen. Divide and conquer: Seeding strategies for

multi-objective multi-cloud composite applications deployment. In Proceedings
of the 2020 Genetic and Evolutionary Computation Conference Companion, pages
317–318, 2020.

[10] H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of a Set of

Vectors. J. ACM, 22(4):469–476, October 1975.

[11] Carlo A Furia, Bertrand Meyer, and Sergey Velder. Loop invariants: Analysis,

classification, and examples. ACM Computing Surveys (CSUR), 46(3):1–51, 2014.
[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, April 2002.

[13] Y. Zhang, Z. Zheng, and M. R. Lyu. Exploring Latent Features for Memory-Based

QoS Prediction in Cloud Computing. In 2011 IEEE 30th International Symposium
on Reliable Distributed Systems, pages 1–10, 2011.

[14] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative

case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

[15] N. Riquelme, C. Von Lücken, and B. Baran. Performancemetrics inmulti-objective

optimization. In 2015 Latin American Computing Conference (CLEI), pages 1–11,
2015.

[16] Carlos A Coello Coello and Margarita Reyes Sierra. A Study of the Paralleliza-

tion of a Coevolutionary Multi-objective Evolutionary Algorithm. In Mexican
international conference on artificial intelligence, pages 688–697. Springer, 2004.

[17] D. A. Van Veldhuizen and G. B. Lamont. On Measuring Multiobjective Evolution-

ary Algorithm Performance. In Proceedings of the 2000 Congress on Evolutionary
Computation. CEC00 (Cat. No.00TH8512), volume 1, pages 204–211 vol.1, 2000.

9

1354

	Abstract
	1 Introduction
	2 WSLAP Description
	3 Our Approach
	3.1 Novel Combine Algorithm
	3.2 Evolutionary Algorithms

	4 Experiment
	4.1 Test Instances
	4.2 Performance Metrics
	4.3 Parameter Settings
	4.4 Results

	5 Conclusion and Future Work
	References

