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ABSTRACT
We present a first proof-of-concept use-case that demonstrates

the efficiency of interfacing the algorithm framework ParadisEO

with the automated algorithm configuration tool irace and the ex-

perimental platform IOHprofiler. By combing these three tools,

we obtain a powerful benchmarking environment that allows us

to systematically analyze large classes of algorithms on complex

benchmark problems. Key advantages of our pipeline are fast eval-

uation times, the possibility to generate rich data sets to support

the analysis of the algorithms, and a standardized interface that

can be used to benchmark very broad classes of sampling-based

optimization heuristics.

In addition to enabling systematic algorithm configuration stud-

ies, our approach paves a way for assessing the contribution of new

ideas in interplay with already existing operators—a promising

avenue for our research domain, which at present may have a too

strong focus on comparing entire algorithm instances.

CCS CONCEPTS
• Theory of computation→ Bio-inspired optimization.
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1 INTRODUCTION
When confronted with an optimization problem in practice, one of

the major challenges that we face is the selection (and the config-

uration) of an algorithm that corresponds well to the given prob-

lem structure, optimization objective(s), and the available resources

(compute, possibility to parallelize computations, accessibility of the

problem, etc.). A vast amount of different optimization techniques

exist, which renders this algorithm selection problem non-trivial.

In practice, algorithm selection is often biased by personal pref-

erences and experiences, as well as by practical aspects such as the

availability of ready-to-use implementations. Supporting practition-

ers in making more systematic choices is one of the key objectives
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of our research domain. A key tool for deriving such recommen-

dations is algorithm benchmarking, i.e., the analysis of empirical

performance data and search trajectories of one or several algo-

rithms on one or several optimization problems [6, 29]. Several

important benchmarking tools and software frameworks have been

developed by our community to ensure sound and meaningful data

extraction. These platforms address different stages of the algo-

rithm selection process. They cover, for example, instance selec-

tion and generation [51, 55, 59], feature extraction [35], algorithm

configuration [7, 31, 37, 38], experimentation [21, 29, 48, 52], data

analysis [12, 23, 25], and performance extrapolation [34]. However,

most of these tool are developed in isolation, paying little attention

to building compatible interfaces to other benchmarking modules.

This significantly hinders their wider adoption.

With this work we demonstrate the benefits of a fully modular

benchmarking pipeline design, which keeps the different steps of

the benchmarking study in mind. We see our work as a proof of

concept for better compatibility between benchmarking software.

On the practical side, our pipeline paves a way for assessing the

benefits of new algorithmic ideas in the context of and in interplay

with other operators and ideas that our community has to offer.

1.1 Our Contribution
Concretely, we propose in this work a benchmarking pipeline that

integrates the modular algorithm framework Paradiseo [11, 33]

with the algorithm configuration tool irace [38], the experimental

platform IOHexperimenter [21], and the data analysis and visual-

ization module IOHanalyzer [53]. We test our pipeline on tuning

a family of genetic algorithms, inspired by [58], on the so-called

W-model problem instances suggested in [54].

Quality of the results: We show that irace is capable of finding

algorithm instances which outperform all baseline algorithms se-

lected by hand, and this for each of the 19 problem instances that

we consider. The relative advantage of the best out of 15 irace sug-

gestions over the best baseline algorithm, measured in terms of

volume under the discretized Empirical Attainment Function (see

Sec. 3.1), varies between 1% and 30%, with a median gain of 13%.

Scalability: Targeting per-instance algorithm design on synthetic

benchmark, our algorithmic framework is capable of generating

large set of solvers, up to several millions of unique configurations.

We show that it is possible to tackle such spaces thanks to fast

computations. For instance, we give irace a budget of 100 000 tar-

get runs for each of 19 problems, and it completes the full task

in approximately 3 hours on a laptop. In our experience, our C++

pipeline is at least 10 times faster than heavily optimized counter-

parts in Python, not mentioning that most of the available modular

frameworks are not always heavily optimized.
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Take-away for instance selection: As a side result, we observe

that similar algorithm instances can be suggested by irace for some

problems, suggesting that the diversity in performance profiles

sought in [54] may be weaker than intended. Our work suggests

that an approach like ours may result in a more reliable instance

selection, since it will be less biased by a small set of baseline

algorithms, but rather be built on a large and diverse set of possible

algorithm instances.

Extendability: Our pipeline is ready to perform large benchmark

studies, covering large classes of continuous and discrete optimiza-

tion algorithms. For example, local searches, particle swarm opti-

mization, estimation of distribution algorithms and using numerical

or bitstring encodings. Similarly, the pipeline gives direct access to

all problems collected in IOHprofiler, which comprises in particular

the BBOB functions from the COCO framework [29], the Nevergrad

problem suites [48], the W-model instances [55], the PBO suite [22],

etc. Additionally, any benchmark or solver which would be plugged

into IOHprofiler would be easily used to further extend this study.

1.2 Comparison to Previous Works
Our work is a top-down approach for automatic algorithm de-

sign [44], which uses a parametrized algorithmic framework to

instantiate many algorithm instances. Following [39], we observe
that this differs from bottom-up “grammar-based” approaches [16,

17, 47] or Grammatical Evolution [42, 49], which allow for easily

designed algorithm space, but complicates algorithm instantiation

and optimization. In our case, the width of the design space is al-

ready large and we target fast algorithm instantiation. We thus

favor the top-down approach. In this first study, we only consider

categorical parameters, for the sake of implementation simplicity.

A similar approach to ours was suggested in [9, 10, 40] for multi-

objective optimization. Those studies also use irace, but the authors
implemented their own modular algorithm frameworks that are

restricted to multi-objective optimization. Our work significantly

scales up this kind of study, by leveraging larger algorithm design

spaces, larger sets of benchmarks, with more problems and allowing

a more detailed analysis of the results.

Few other studies consider a bi-objective measurement of per-

formance for automated algorithm design. Most notably, [41] in-

troduced the use of the hypervolume for given quality and time

budgets. In our case, we use the volume under the curve of the em-

pirical cumulative histogram of quality and time attainments [15].

This should behave as the sum of hypervolumes defined for a set

of thresholds covering the whole domain, instead of a single one.

1.3 Structure of the Paper
Sec. 2 briefly introduces the individual modules of our algorithm

design pipeline and how they interplay with each other. The use-

case on which we apply this pipeline, as well as the experimental

setup are summarized in Sec. 3. The results of our empirical analysis

are described in Sec. 4. We conclude our paper in Sec. 5 with a

discussion on promising avenues for future work.

1.4 Availability of Code and Data
The code and data used for this study have been archived

at [4]. Up-to-date versions of the code are available at https:

ParadisEO eoEvalIOHproblem

eoEvalFunc
eoAlgoFoundryFastGAfastGA

irace

IOHexperimenter

IOH_csv_logger

W_Model_
OneMaxIOH_observer_combineIOH_ecdf_sum

IOHlogger

IOH_ecdf_logger

IOHproblem

Figure 1: Summary diagram of the FastGA evaluation
pipeline involving the Paradiseo (upper part, red colors)
and IOHexperimenter (lower part, blue colors) frameworks
along with the irace entry point. The execution starts from
the irace run command on the left, goes through the Par-
adiseo modules, which call the IOHexperimenter problem
(in blue) and loggers (in green). After the run of the algo-
rithm, a statistic is computed on the ECDF data (in cyan),
which is then returned to irace as performance metric (i.e.,
this is the “fitness value” that the evaluation associates to
the configuration under evaluation). Involved classes are
represented using the UML convention. For the sake of clar-
ity, the IOHprofiler prefix is written as IOH and the type of
the eoAlgoFoundryFastGA slots are indicated as {double} in-
stead of eoOperatorFoundry<double>.

//github.com/jdreo/paradiseo and https://github.com/IOHprofiler/

IOHexperimenter.

2 THE MODULAR BENCHMARK PIPELINE
Figure 1 summarizes our automated algorithm design pipeline for

the concrete use-case that will be studied in Sec. 3. The pipeline

links an algorithm configurator with an algorithm generator and

a benchmark platform. The algorithm configurator asks the algo-

rithm generator to instantiate an algorithm, which then solves a

problem of the benchmark platform while being observed by a

logger. After this run, the logger’s data are summarized as a scalar

performance measure, which is sent back to the algorithm configu-

rator. We briefly present in this section the different components

of our pipeline, and explain the reasons behind our choices.

Algorithm Framework:Paradiseo. Many evolutionary algorithms

share similar design patterns, and are often composed of similar

operators. This has given rise to several platforms which aim at

supporting their users in designing evolutionary heuristics by com-

piling a set of readily-available operators within a standardized

software environment. Given the substantial work that has been

put into these frameworks, we decided to build our pipeline around

one of the most powerful toolboxes. To this end, we have ranked 39

frameworks among the ones easily available on the web, based on

an adhoc metric combining rapidity, activity, features and license,

e.g., [1, 2, 14, 26, 27, 46, 50], to name only a few. Since speed is a

major concern for our pipeline, we favor frameworks written in
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C++. To select an up-to-date framework and to ensure availability

of support in case of technical issues, we also checked the contribu-

tion activity in recent years. These two criteria reduced our choices

to Paradiseo [11, 33], OpenBeagle [27], and ECF [1]. Among these

three, Paradiseo covers the largest portfolio of algorithm families,

which are composed in the framework by assembling atomic func-

tions (called operators). Paradiseo is also the most actively main-

tained framework among the three, so that we decided to use it for

our work.

The upper part of Figure 1 shows the core classes of Paradiseo
involved in our setting.

Algorithm Configuration: irace. Several algorithm configuration

tools have been developed in the last decade. Among the most

common ones used in our community are irace [38], SMAC [31],

SPOT [7], GGA [3], and hyperband [37]. We have chosen irace1
for this study, for practical considerations (previous experience,

availability of documentation, support from development team).

Experimental Environment: IOHexperimenter. The IOHprofiler
project [21] is a modular platform for algorithm benchmarking of it-

erative optimization heuristics (IOH). Within this project, IOHexpe-
rimenter provides synthetic benchmarks which are very fast to

execute and a standardized way of observing algorithms behavior

through so-called loggers. We have chosen this platform, because

it is fast and its modular design made it particularly easy for us to

integrate the algorithm design framework (being written in C++, as

Paradiseo). IOHprofiler is also actively maintained, and provides

access to broad ranges of different optimization processes.

Compared to Nevergrad [48], we particularly like the detailed

logging options, which provide information about the anytime be-

havior of the algorithms—information that is currently not available

in Nevergrad. Compared to the COCO [29] environment, IOHpro-
filer makes it considerably easier to test algorithms’ performance

on our own benchmark problems or suites. Finally, the project

also supports interactive performance analysis and visualization

module, IOHanalyzer, which we used for the interpretation of our

data.

The lower part of Figure 1 shows the classes related to the loggers

and the problems that are used in our experimental study in Sec. 3.

Data Records: fast ECDF Logger. In our use-case, we decide to

tune algorithms for good anytime performance, and to use volume

under the approximated empirical cumulative density function

(ECDF) curve as objective. To this end, we implement within IO-
Hexperimenter an efficient way of computing these values. This

“ECDF logger” will be described in Sec. 3.1.

Data Analysis and Visualization with IOHanalyzer. Data analy-
sis and visualization is performed via IOHanalyzer [53], another
module of the IOHprofiler project [21].

3 USE-CASE AND EXPERIMENTAL SETUP
Our use-case is the optimization of the anytime performance of a

genetic algorithm on selected instances of the W-model problem.

Our performance measure (Sec. 3.1), the algorithmic framework

(Sec. 3.2), and the problems (Sec. 3.3) are introduced in the first

1
Version 3.4.1 of https://cran.r-project.org/web/packages/irace/, ran with R 3.6.3.

three subsections. We then summarize the experimental setup of

the whole pipeline in Sec. 3.4. Our objective is to find the best

algorithm for each instance, which would be the first step of a per-

instance, landscape-aware algorithm selection, for instance. We

thus do not consider training versus test sets.

3.1 Anytime Performance Measure: AUC
In order to allow for large scale experiments, we implement a fast

logger within IOHexperimenter, which essentially stores a his-

togram of the two-dimensional distribution of the number of runs

having reached a quality/time target. The time dimension is given

as the number of calls to the objective function, linearly discretized

between zero and the allowed budget. The quality dimension is

given as the absolute value of the best solution found during the

run, linearly discretized between zero and the known 𝑉max bound

(see Table 1). This is essentially a discrete version of the Empirical

Attainment Function [15], which is related itself to the multivariate

Empirical Cumulative Distribution Function [28].

Figure 2 shows two examples of such histograms, arbitrarily

chosen. The matrix defines the considered quality/time targets

(𝑣, 𝑡). The color of each cell corresponds to the probability that

the algorithm has identified, within the first 𝑡 function evaluations,

a solution of quality at least 𝑣 . The darker a cell, the larger the

fraction of runs that could successfully meet the quality/time target.

Note here that we assume minimization as objective.

Using the histogram of the performance ECDF instead of its con-

tinuous counterpart allows to keep the data in-memory, in compact

data structures, without having to rely on slow disk accesses.

The performance of the considered algorithm is computed as a

statistic on this histogram. In our study, we use the volume under

the curve (3D counterpart of the area under the curve, AUC) of the

discretized ECDF, approximated as the sum of the EAF histogram.

This allows for a compromise between quality and time, which is

easily available because we consider synthetic benchmarks with

known bounds.

3.2 The (𝜇 +, 𝜆) “Fast” GA Family
We chose for our use-case a family of (𝜇 +, 𝜆) GAs, which is to a

large extend inspired by the study [58]. Algorithm 1 summarizes

the framework, called “FastGA” in the implementation.

Essentially, given a parent population of 𝜇 points, each of the 𝜆

offspring is created by first deciding which variation operator is

applied (line 9): with probability 𝑝𝑐 the offspring is generated by first

recombining two search points from the parent population (lines

11–13) and then randomly deciding (with probability 𝑝𝑚) whether

or not to apply a mutation operator to the so-created offspring (lines

15–18). When crossover was not selected in line 10, the offspring is

created by mutation (lines 20–21). When all 𝜆 offspring have been

created, the iteration is completed by a replacement step (line 25).

Implementation of this Family in Paradiseo: We implement this

family of GAs through Paradiseo’s “foundries”, which allow to

register a set of operators (e.g., several kind of mutations) within

a “slot” (e.g., the step at which mutation is called within the al-

gorithm). Before each call, it is possible to instantiate a specific

operator among the registered ones, for each slot, thus assembling

one of the algorithm instance among all the possible combinations
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Algorithm 1: A Configurable Family of (𝜇 +, 𝜆) Genetic
Algorithms.

1 Input: Budget 𝐵, configuration (𝜇, 𝜆, 𝑝𝑐 , 𝑝𝑚), choice of the
operators and conditional parameters. Note that 𝑃 and 𝑃 ′

are multi-sets, i.e., the same point may appear multiple

times;

2 Initialization:
3 𝑃 ← InitialSampling(𝜇);
4 evaluate the 𝜇 points in 𝑃 ;

5 Evals← 𝜇;

6 Optimization: while Evals < 𝐵 do
7 𝑃 ′ ← ∅;
8 for 𝑖 = 1, . . . , 𝜆 do
9 Sample 𝑟𝑐 ∈ [0, 1] u.a.r.;

10 if 𝑟𝑐 ≤ 𝑝𝑐 then
11

(
𝑦 (𝑖,1) , 𝑦 (𝑖,2)

)
← SelectC(𝑃);

12

(
𝑦′(𝑖,1) , 𝑦′(𝑖,2)

)
← Crossover

(
𝑦 (𝑖,1) , 𝑦 (𝑖,2)

)
;

13 Sample 𝑧 (𝑖,1) ∈
{
𝑦′(𝑖,1) , 𝑦′(𝑖,2)

}
u.a.r. ;

14 Sample 𝑟𝑚 ∈ [0, 1] u.a.r. ;
15 if 𝑟𝑚 ≤ 𝑝𝑚 then
16 𝑧 (𝑖,2) ← Mutation

(
𝑧 (𝑖,1)

)
;

17 else
18 𝑧 (𝑖,2) ← 𝑧 (𝑖,1) ;

19 else
20 𝑧 (𝑖,1) ← SelectM(𝑃);
21 𝑧 (𝑖,2) ← Mutation

(
𝑧 (𝑖,1)

)
;

22 Evaluate 𝑧 (𝑖,2) ;
23 Evals← Evals+1;
24 𝑃 ′ ← 𝑃 ′ ∪

{
𝑧 (𝑖,2)

}
;

25 𝑃 ← Replace(𝑃, 𝑃 ′, 𝜇);

of operators. Note that operators can be simple numbers, like a

probability. Operators are referenced within slots by their indices.

Most of the operators we use were already available inParadiseo,
to the exception of mutations operators with indices 1–5 (see below),

which we implemented for this study. We also implemented the

algorithm 1 as the eoFastGA class
2
, in which to plug the operators.

We consider the following operators and parametrizations,

which result in a (large) total number of 1 630 475 different configu-

rations of Algorithm 1. Numbers in brackets indicate the indices of

the corresponding operators within its slot.

InitialSampling(𝜇): Initialization of the Algorithm (1 option).
We only consider independent uniform sampling, i.e., the 𝜇 points

are i.i.d. uniform samples. The corresponding ParadisEO operator

is eoInitFixedLength.

2
All our code is contributed to the Paradiseo project.

Figure 2: Example of two ECDF histograms. Abscissa shows
the time dimension and the ordinate shows the target qual-
ity. The colormap shows the probability for the considered
algorithm to reach a quality/time target falling in each
bucket of the histogram. The figures show ECDF histograms
for the 1ptGA algorithm (see Sec. 3.2) after 50 independent
runs on problem 2 (left) and of problem 5 (right), respec-
tively, using 20 buckets on each axis.

Crossover rate 𝑝𝑐 (6 options). We consider 𝑝𝑐 ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8}. Being only able to use the integer
and categorical interface for irace.

SelectC(𝑃): Selection of two points for the crossover operation (7
options). Note that in the implementation, the selection operator

(line 11) is called twice to select the two candidate points.

[0] eoRandomSelect(): Uniformly select a point from 𝑃

(without removing the first selected individual from the set

𝑃 used by the second selection). (1 option).

[1] eoStochTournamentSelect(𝑘): Select a point from 𝑃

with tournament selection, i.e., we select uniformly at ran-

dom 𝑘 different points in 𝑃 and the best one of these is

selected. 𝑘 denotes the tournament size as percentage of

population (i.e., 𝑘 ∈ [0, 1]). (1 option, 𝑘 = 0.5).

[2] eoSequentialSelect(): Select the best point from 𝑃

(with respect to the objective function value). This oper-

ator is sometimes referred to as elitist selection or truncation
selection. When called twice, it selects the two distinct best

points from 𝑃 . (1 option).

[3] eoProportionalSelect(): Select a point from 𝑃 with

so-called fitness-proportional selection, i.e., point 𝑥 ∈ 𝑃 is

chosen with probability 𝑓 (𝑥)/∑𝑦∈𝑃 𝑓 (𝑦). (1 option).
[4–6] eoDetTournamentSelect(𝑘): Like

eoDetTournamentSelect, but 𝑘 is deterministic. (3 different

options, each one for 𝑘 ∈ [2, 6, 10]).

Crossover(𝑥,𝑦): Bivariate Variation Operators (11 options).
[0–4] eoUBitXover(𝑏𝑐): Uniform crossover with bias (or

“preference” in ParadisEO) 𝑏𝑐 , setting (independently for

each position 𝑖 ∈ [1..𝑛]) 𝑧𝑖 = 𝑥𝑖 with probability 𝑏𝑐 and

setting 𝑧𝑖 = 𝑦𝑖 otherwise. 𝑧 denotes the offspring element

coming from the crossover of 𝑥 and 𝑦. (5 different options,

𝑏𝑐 ∈ [0.1, 0.3, 0.5, 0.7, 0.9]).
[5–9] eoNPtsBitXover(𝑘) : 𝑘-point crossover, which selects

𝑖1, . . . , 𝑖𝑘 uniformly at random andwithout replacement from

[1..𝑛] and sets 𝑧𝑖 = 𝑥𝑖 for 𝑖 ∈ [1..𝑖1] ∪ [𝑖2 + 1..𝑖3] ∪ . . . and
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sets 𝑧𝑖 = 𝑦𝑖 for 𝑖 ∈ [𝑖1 + 1..𝑖2] ∪ [𝑖3 + 1..𝑖4] ∪ . . . (5 different

options, 𝑘 ∈ [1, 3, 5, 7, 9]).
[10] eo1PtBitXover(): Classic 1-point crossover. (1 option).
We mistakenly added this option even if it is the same as the

previous crossover with 𝑘 = 1.

Mutation probability 𝑝𝑚 (6 options): We consider 𝑝𝑚 ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8}.

Mutation(𝑥): Univariate Variation Operator (11 options). All
mutation operators are unary unbiased in the sense proposed

in [36]. For a compact representation, we follow the characteri-

zation suggested in [19] and define the mutation operators via the

distributions that they define over the possible mutation strengths

𝑘 ∈ [0..𝑛]. After sampling 𝑘 from the operator-specific distribution,

the 𝑘-bit flip operator, flip𝑘 (·), is applied; it flips the entries in 𝑘

uniformly chosen, pairwise different bits (i.e., the 𝑘 bits are chosen

u.a.r. without replacement).

[0] eoUniformBitMutation(): The “uniform” mutation op-

erator, which samples 𝑘 uniformly at random in the set [0..𝑛].
(1 option).

[1] eoStandardBitMutation(𝑝 = 1/𝑛): This is the standard
bit mutation with mutation rate 𝑝 . It chooses 𝑘 from the

binomial distribution B(𝑛, 𝑝). (1 option).
[2] eoConditionalBitMutation(𝑝 = 1/𝑛): A conditional

standard bit mutation operator with mutation rate 𝑝 . It

chooses 𝑘 ′ from B(𝑛 − 1, 𝑝) and applies the flip𝑘 (·) operator
with 𝑘 = 𝑘 ′ + 1. (1 option).

[3] eoShiftedBitMutation(𝑝 = 1/𝑛): The “shifted” stan-

dard bit mutation with mutation rate 𝑝 , suggested in [13].

It samples 𝑘 ′ from the binomial distribution B(𝑛, 𝑝). When

𝑘 ′ = 0, it uses 𝑘 = 1 and it uses 𝑘 = 𝑘 ′ otherwise. (1 option).
[4] eoNormalBitMutation(𝑝,𝜎2): The “normal” mutation

operator suggested in [57]. It samples 𝑘 from the normal

distributionN(𝑝𝑛, 𝜎2). When 𝑘 > 𝑛, 𝑘 is replaced by a value

chosen uniformly at random in the set [0..𝑛]. (1 option, 𝑝 =

1/𝑛 and 𝜎2 = 1.5).

[5] eoFastBitMutation(𝛽): The “fast” mutation operator

suggested in [20]. It samples 𝑘 ′ from the power-law distribu-

tion P[𝐿 = 𝑘] = (𝐶𝛽

𝑛/2)
−1𝑘−𝛽 with 𝐶

𝛽

𝑛/2 =
∑𝑛/2
𝑖=1

𝑖−𝛽 . When

𝑘 ′ is larger than 𝑛, it samples a uniform value 𝑘 in [0..𝑛],
and it uses 𝑘 = 𝑘 ′ otherwise. (1 option, 𝛽 = 1.5).

[6–10] eoDetSingleBitFlip(𝑘): Deterministically applies

flip𝑘 (·). (5 different options, 𝑘 ∈ [1, 3, 5, 7, 9]).

SelectM(𝑃): Selection of one point for the mutation operation if
crossover was not chosen (7 options). We essentially have the same

selection operators as for crossover. The only difference is that we

select only one point instead of two.

Replace(𝑃, 𝑃 ′, 𝜇): Replacement of population (11 options).
[0] eoPlusReplacement(): The best 𝜇 points of the multiset

𝑃 ∪ 𝑃 ′ are chosen. (1 option).
[1] eoCommaReplacement(): The best 𝜇 points of the off-

spring multiset 𝑃 ′ are chosen. (1 option).
[2] eoSSGAWorseReplacement(): The 𝑚𝑖𝑛(𝜆, 𝜇) points of

the offspring multiset 𝑃 ′ replace the worst points in 𝑃 . (1

option).

[3–5] eoSSGAStochTournamentReplacement(𝑘): Like
eoSSGADetTournamentReplacement, 𝑘 being the the tour-

nament size as percentage of population. (3 different options,

𝑘 ∈ [0.51, 0.71, 0.91]).
[6–10] eoSSGADetTournamentReplacement(𝑘): The 𝜇

points are selected through tournament selection. Each

tournament involves 𝑘 uniformly chosen points in 𝑃 ∪ 𝑃 ′

and the best ones of these 𝑘 points is selected. This

procedure is repeated 𝜇 times, each time removing an

already selected point from the multi-set 𝑃 ∪ 𝑃 ′. (5 different
options, 𝑘 ∈ [2, 4, 6, 8, 10]).

This concludes our description of the high level operators of

our family of (𝜇 +, 𝜆) GAs. The set of all combinations generates

the algorithm design space on which we let irace search for the

configuration(s) that best solve a given problem instance.

Baseline Algorithms. We consider four baseline algorithms,

against which we compare the results of the automated design.

They were manually chosen without particular justification. (1)
(𝜆 + 𝜆) EA: no crossover, plus replacement, standard bit mutation,

random selector for mutations. (2) (𝜆 + 𝜆) fEA: no crossover, plus

replacement, fast bit mutation, random selector for mutations. (3)
(𝜆 + 𝜆) xGA: sequential selections, uniform crossover, standard bit

mutation, plus replacement, 𝑝𝑐 = 0.4, 𝑏𝑐 = 0.4. (4) (𝜆 + 𝜆) 1ptGA:
sequential selections, 1-point crossover, standard bit mutation, plus

replacement, 𝑝𝑐 = 0.4, 𝑏𝑐 = 0.4.

3.3 The W-Model Problems
We evaluate our automated algorithm design pipeline on the W-

model functions originally suggested in [55]. In a nutshell, the

W-model is a benchmark problem generator, which allows to tune

different characteristics of the problems, see below for a descrip-

tion. We selected from this family of benchmark problems the

19 instances suggested in [54], which are summarized in Table 1.

Note here that the description differs from that given in [54], since

we used the implementation within IOHexperimenter, which was

made available in the context of the work [22]. The problem in-

stances listed in Table 1 are identical to those suggested in [54], it

is only the representations that differ.

It was suggested in [22] to superpose the W-model transforma-

tions to different optimization problems. The instances selected

in [54], however, were only selected from transformations applied

to the OneMax problem OM : {0, 1} −→ [0..𝑛], 𝑥 −→ ∑𝑛
𝑖=1 𝑥𝑖 . The

OneMax problem has a very smooth and non-deceptive fitness

landscape. Due to the well-known coupon collector effect [24], it

is relatively easy to make progress when the function values are

small, and the probability to obtain an improving move decreases

considerably with increasing function values. The complexity of

the OneMax problem can be considerably increased through the

following W-model transformations.

(1) Neutrality𝑊 (., 𝜇𝑊 , ., .): The bit string (𝑥1, ..., 𝑥𝑛) is reduced
to a string (𝑦1, ..., 𝑦𝑚) with𝑚 := 𝑛/𝜇𝑊 , where 𝜇𝑊 is a parameter of

the transformation (we use the subscript𝑊 to indicate that these are

parameters of the W-model problem generator). For each 𝑖 ∈ [𝑚]
the value of𝑦𝑖 is the majority of the bit values in the size-𝜇 substring

(𝑥 (𝑖−1)𝜇𝑊 , 𝑥 (𝑖−1)𝜇𝑊 +1, ..., 𝑥𝑖𝜇𝑊 ) of 𝑥 . That is, 𝑦𝑖 = 1 if and only if
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Table 1: Test problems on which the pipeline is evaluated,
taken from [54]. In column “best” we list the baseline algo-
rithm with largest average AUC value, reported in column
AUCb. AUCi is the average of the 15 mean AUC of elite con-
figurations, as suggested by 15 independent runs of irace
with default hyperparameters. AUC-values are w.r.t. to at
least 50 validation runs and “rel.” indicates the relative gain
(AUCi −AUCb)/AUCb.

FID dim 𝜇𝑊 𝜈𝑊 𝛾𝑊 𝑉max best AUC
b

AUCi rel.

1 20 2 6 10 10 xGA 8378 8740 4%

2 20 2 6 18 10 fEA 8402 8754 4%

3 16 1 5 72 16 fEA 8352 8397 1%

4 48 3 9 72 16 EA 8299 8914 7%

5 25 1 23 90 25 fEA 8003 8510 6%

6 32 1 2 397 32 1pt 7055 7311 4%

7 128 4 11 0 32 1pt 6833 8183 20%

8 128 4 14 0 32 EA 6885 8499 23%

9 128 4 8 128 32 xGA 8154 8786 8%

10 50 1 36 245 50 fEA 7216 8122 13%

11 100 2 21 256 50 EA 8314 9139 10%

12 150 3 16 613 50 EA 8034 8730 9%

13 128 2 32 256 64 fEA 8076 9345 16%

14 192 3 21 16 64 fEA 6173 7677 24%

15 192 3 21 256 64 fEA 6797 8292 22%

16 192 3 21 403 64 fEA 7273 8592 18%

17 256 4 52 2 64 xGA 6935 9028 30%

18 75 1 60 16 75 EA 5958 7089 19%

19 150 2 32 4 75 EA 7399 8717 18%

there are at least 𝜇𝑊 /2 ones in this “block”. When 𝑛/𝜇𝑊 ∉ N , the

last bits of 𝑥 are copied to 𝑦.

(2) Epistasis 𝑊 (., ., 𝜈𝑊 , .): Epistasis introduces local

perturbations to the bit strings. It first “cuts” the in-

put string (𝑥1, ..., 𝑥𝑛) into subsequent blocks of size 𝜈𝑊 .

Using a permutation 𝑒𝜈𝑊 : {0, 1}𝜈𝑊 −→ {0, 1}𝜈𝑊 , each

substring (𝑥 (𝑖−1)𝜈𝑊 +1, 𝑥 (𝑖−1)𝜈𝑊 +2, ..., 𝑥𝑖𝜈𝑊 ) is mapped

to another string (𝑦 (𝑖−1)𝜈𝑊 +1, 𝑦 (𝑖−1)𝜈𝑊 +2, ..., 𝑦𝑖𝜈𝑊 ) =

𝑒𝜈𝑊 ((𝑥 (𝑖−1)𝜈𝑊 +1, 𝑥 (𝑖−1)𝜈𝑊 +2, ..., 𝑥𝑖𝜈𝑊 )). The permutation 𝑒𝜈𝑊 is

chosen in a way that Hamming-1 neighbors are mapped to strings

of Hamming distance at least 𝜈𝑊 − 1, see [55] for examples.

(3) Ruggedness and Deceptiveness𝑊 (., ., ., 𝛾𝑊 ): This layer
perturbs the fitness values, by applying a permutation 𝜎 (𝛾𝑊 ) to
the possible fitness values [0..𝑛]. The parameter 𝛾𝑊 can be thought

of as a parameter which controls the distance of the permutation

to the identity. The permutations 𝜎 (𝛾𝑊 ) are chosen in a way such

that the “hardness” of the instances monotonically increases with

increasing 𝛾𝑊 , see [55] for details.

We convert these functions into a minimization problem by

multiplying all values by −1.

3.4 Experimental Setup
Our test bed is the automated design of Algorithm 1with the options

specified in Sec. 3.2 and with the objective to maximize the AUC

as defined in Sec. 3.1, and this for each of the 19 problems listed in

Table 1. These instances of the W-model problem were suggested

in [54] based on an empirical study using clustering of algorithm

performance data, with the goal to select a diverse collection of

benchmark problems. Note here that we tune the algorithms for

each problem individually. That is, we apply our algorithm design

pipeline 19 independent times.

For the sake of simplicity, we fix the population sizes to 𝜆 = 𝜇 = 5,

for the search performed by irace and for our baseline algorithms.

For each use-case, we set the budget of the algorithms to 5𝑛 func-

tion evaluations (FEs). To compute the AUC, we evaluate the per-

formance at 100 linearly distributed budgets 𝑏1, . . . , 𝑏100 ∈ [1, 5𝑛]
and at 100 linearly distributed target values 𝑣1, . . . , 𝑣100 ∈ [0,𝑉max].
Linearization computes the bucket index 𝑖 = ⌊(𝑥 − 𝑥min)/(𝑥max −
𝑥min) · 100⌋ for both budgets and targets.

To find the best algorithm design, we allow irace a budget of

100 000 target runs. We ensure that irace performed at least 50

independent runs for the first ranked elite configuration, adding

additional runs if needed, and keeping all runs if irace conducted

more than 50 runs.We do not consider the other elite configurations

ranked by irace, even in draw cases. We run irace 15 independent

times, to check the robustness of its selection. We compare perfor-

mance to the four baseline algorithms, whichwe run 50 independent

times each on each of the 19 test problems.

In total, these experiments took around 15 × 3 hours on a com-

puter with four Intel CPU cores i5-7300HQ at 2.50GHz and Crucial

P1 solid-state disks.

4 EXPERIMENTAL RESULTS
Comparison of AUC Values by Function. Table 1 compares the

AUC values of the best out of the four baseline algorithms against

that of the elite configuration suggested by irace. We observe that,

for each of the 19 functions, the elite configurations suggested by

irace perform better than the best baseline algorithm. We report

in Table 1 the average values, but the differences between the indi-

vidual irace runs are very small, less than 2.1% difference in AUC

value between the best and the worst elite configuration for all

19 problems, and less than 1% performance difference for 9 out of

the 19 functions. The relative advantage of the irace recommen-

dations over the best baseline algorithms varies between 1% and

30%. When looking at each of the 15 elite configurations suggested

per function, the best relative advantage is 31% for F17, whereas

two of the irace elites performed worse than the best of the four

baseline algorithms on function F3. For all other functions, all 15

irace elites have a better AUC value than the best of the four base-

line algorithms. However, although we see a clear advantage of

the irace configurations, we should keep in mind that the irace

configurations are specifically tuned for each function, whereas the

configurations of the four baseline algorithms are identical for all

19 W-model functions.

Unfortunately, our pipeline does not yet allow to tune a single

best solver, i.e., a single configuration that maximizes the AUC

under the aggregated ECDF curve. Adding this functionality is a

straightforward extension of our framework, which we plan to

address in future work. The key challenge here is that Paradiseo
does not have the feature to easily reset on the fly the states of

solvers between two runs on different problems.
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Table 2: Configuration of the best out of the elite recommendation suggested by 15 independent runs of irace, for each of the
19 benchmark problems specified in Table 1, and compared against the configuration of the four baseline algorithms. The “op.”
column gives the number of options per operator. All other integer values correspond to the indices with which the different
options are listed in Sec. 3.2 and “-” indicates a non-applicable element (e.g., no crossover operator is used when 𝑝𝑐 = 0).

Operator op. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 EA fEA xGA 1ptGA

𝑝𝑐 5 1 4 1 2 4 0 3 0 2 4 3 2 3 1 2 2 3 4 4 0 0 2 2

SelectC 7 2 5 3 1 2 - 0 - 2 2 2 2 6 5 5 2 2 2 2 - - 2 2

Crossover 11 1 2 8 1 2 - 3 - 2 2 10 5 2 9 2 10 2 2 2 - - 2 5

𝑝𝑚 5 2 3 2 2 4 - 4 - 4 4 4 4 4 4 4 4 4 4 4 - - 2 2

SelectM 7 2 4 6 6 3 2 3 2 5 5 2 3 1 2 6 6 5 1 6 0 0 2 2

Mutation 11 8 9 3 9 7 6 10 10 10 9 10 9 10 8 8 10 10 8 9 1 5 1 1

Replace 11 8 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Distribution of operators variants recommended by 15 runs of irace, for problems 5 (left), problem 17 (center) and all
problems (right). The most selected indices are highlighted in bold and the darker the background color, the more often the
operator instance is selected. Empty cells indicates that irace never selected the operator instance, cells with a “-” entry marks
indices which are not defined for this operator.

Problem 5 Problem 17 All problems

Op. index 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Pc 5 6 1 3 - - - - - - 1 14 - - - - - - 18 74 56 57 65 - - - - - -

SelectC 1 5 2 4 3 - - - - 15 - - - - 18 16 141 19 18 30 28 - - - -

Crossover 1 5 2 2 1 1 1 2 15 11 29 78 24 6 8 11 19 18 23 43

Pm 2 3 10 - - - - - - 15 - - - - - - 4 9 25 49 183 - - - - - -

SelectM 14 1 - - - - 6 2 1 2 2 2 - - - - 26 17 61 36 27 41 62 - - - -

Mutation 2 5 1 1 2 4 1 9 4 1 2 7 3 1 2 6 10 62 81 96

Replace 15 15 245 2 3 6 2 1 2 5 1 3

Comparison of the Configurations. Table 2 summarizes the best

of the 15 elite configurations that were suggested by irace and com-

pares them against the four baseline algorithms. Table 3 shows the

distribution of operators chosen by the 15 irace runs. For the latter,

we have chosen problem 17 as an example because we observed

here the largest relative gain (see Table 1). We have added problem 5

for comparison, because the distribution of operators suggested for

it is very distinct from that of problem 17.

It is worth noting that each operator is selected at least once in

the 19 × 15 elite configurations suggested by irace (Table 3, right),

which seems to confirm that i) different operators work well on

different problems and ii) that irace searches the full design space,

giving some indication that it is not too large or too complex for

automated tuning approaches.

We can see that, among all the best configurations proposed

by irace across 15 runs, none are similar to one of the baseline

algorithms. The probability of mutation 𝑝𝑚 is most frequently set

to higher values and themost often chosenmutation is deterministic

bit flip with larger number of bits (index 10 in the Mutation slot,

which is the flip
9
mutation operator). This indicates that larger

mutation strengths could have been worth investigating, a result

that has surprised us, since in most benchmark studies we see

small mutation rates as defaults (albeit we do not consider various

population sizes in this study). The results confirm the superiority

of the plus replacement (id. 0 in the Replace slot) and support the

use of an elitist selection for the crossover candidates (id. 2 in

SelectC). We can also see that the uniform crossover with 𝑏𝑐 = 0.5

(id. 2 in Crossover) is more often chosen, like a small probability of

performing a crossover (id. 1 in 𝑝𝑐 ).

For some problems, irace almost always suggest a similar algo-

rithm. On problem 17, for example, it often selects a GAwith a large

probability of applying uniform crossover in combination with de-

terministic bit flip mutations. For some other problems, a larger

variance on the selected operators can be observed. For instance

on problem 5, irace selects a high mutation probability along with

an elitist mutation selection, but does not show a clear preference

for the other slots.

These results support the idea that there is not always a single

best solver (i.e., “No Free Lunch”), even when considering limited

design and benchmarking spaces. We also see that some problems

seem to require certain design choices, whereas others can be solved

well by a broad range of configurations. A more detailed analysis

of how these preferences correlate with the characteristics of the

problems should offer plenty of interesting insights, but is left for

future work.

Fixed-budget solution qualities. Figure 3 shows two examples of

convergence plots, where we plot the values of the best solutions

found so far against the number of objective function evaluations

performed, for each baseline algorithm and for the best elite con-

figuration selected by irace. Problems 5 and 17 are chosen to allow

for comparison with Table 2.

We observe that the elite configuration on problem 17 is largely

more efficient than any of the baseline algorithms. However, on
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Figure 3: Convergence plots for the baseline algorithms and
the elite configurations suggested by irace, on problem 5
(top) and problem 17 (bottom).

problem 5, the elite configuration is only the most efficient until 140

evaluations. It is selected nonetheless, because we consider the AUC

of the 2D ECDF, which takes into account the average performance

(across all budgets and targets) rather than the terminal budget of

the best target. We believe that, whatever the performance metric

we choose, there will always exists such artifacts, where some

algorithm would be the best, had we chosen another metric. It is

clear, however, that even in this plot the elite configuration performs

better most of the time.

5 CONCLUSIONS AND FUTUREWORK
By interfacing the three state-of-the-art benchmarking modules

from the evolutionary computation literature, irace [38], Par-
adiseo [33], and IOHprofiler [21], we have introduced in this work

a powerful pipeline for the automated design of sampling-based

optimization algorithms. We have demonstrated its efficiency on

the use-case of tuning a family of genetic algorithms on instances

of the W-model [55] suggested in [54].

Our results supports the idea that automated algorithm design

can lead to increased performances and that there are efficient

designs which wait to be studied more thoroughly. We believe

that efficient pipelines like the one we introduce has the potential

to help raising the level of abstraction at which researchers are

working. Using automated algorithm design, it becomes possible

to check if a newly designed operator can actually be useful in

some algorithms/problems coupling [56]. We also believe that such

studies can help deriving generic rules about algorithm design and

could probably help theoretical researchers by suggesting where to
look for interesting structures.

The modular design of the pipeline and its components makes

our approach very broadly applicable. It is not restricted to par-

ticular types of problems nor to specific algorithms. In particular,

extensions to continuous or mixed-integer problems are rather

straightforward. Indeed, the Paradiseo framework is designed to

separate operators which are independent of the encoding (selec-

tion, replacement, etc.) from operator which depends on it (muta-

tion, crossover, etc.), allowing for easy reuse of components and

extensions to other algorithmic paradigms (estimation of distribu-

tion, local search, multi-objective, etc.). Additionally, the IOHexper-
imenter provides loggers for vectorial encodings and benchmarks

for both numerical and bitstring encodings.

Our work is partially motivated by an industrial application that

requires an automated configuration of hardware products. How-

ever, we believe that our pipeline is not only interesting for such

practical purposes. For researchers, our pipeline offers an elegant

way of assessing new algorithm operators and their interplay with

already existing ones.

In terms of further development, we plan to add the necessary

features which would i) allow for running the same algorithm

on multiple problems, while using a single logger that aggregates

the results and would ii) support irace’s interface for numerical

parameters (additionally to categorical and integer ones).

We then plan to test the approach on different algorithms fami-

lies, with a possible extension to generic “bottom-up” hybridization

grammars [43] and studies on the most efficient algorithms design

(e.g., on the correlations between elite algorithms’ operators).

We also plan to extend the framework by integrating feature

extraction methods that use algorithm trajectory data [5, 18] and/or

samples specifically made for exploratory landscape analysis [35,

45] to couple the algorithm design to such information, similar to

the per-instance configuration approaches made in [8, 30].

Our long-term vision is a pipeline for the automated design of

algorithms which adjust their behavior during the optimization

process, by taking into account information accumulated so far,

similar to the dynamic algorithm configurations studied under the

notion of parameter control [32]. In contrast to the static designs

considered in this work, the automated design of dynamic algo-

rithms requires to select suitable update rules (e.g. based on time,

on progress, on self-adaption, etc.).

Finally, we also consider interesting the idea to provide a user-

friendly front-end which allows users to assemble a benchmark

study by selecting (e.g. through a graphical user interface) one or

more algorithms and problems, the budget, etc. and then passing

on this study to an automated interface which tunes (if desired) and

runs the algorithm(s) and then automatically directs its users to the

data summary and visualization platform IOHanalyzer, where the
results of the empirical study can be analyzed. We believe that such

a pipeline would greatly improve the deployment of evolutionary

methods in practice.
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