
Error Function Learning with Interpretable Compositional
Networks for Constraint-Based Local Search

Florian Richoux
AIST
Japan

florian.richoux@aist.go.jp

Jean-François Baffier
University of Tokyo

Japan
jf@baffier.fr

ABSTRACT
In Constraint Programming, some Constraint-Based Local Search
algorithms exploit error functions, a finer representation of con-
straints than the usual one. However, this makes problem modeling
significantly harder, since providing a set of error functions is not
always easy. Here, we propose a method to automatically learn an
error function corresponding to a constraint. Our method learns error
functions upon a variant of neural networks we named Interpretable
Compositional Networks, allowing us to get interpretable results,
unlike regular artificial neural networks. Experiments show that
our method can learn, over small-dimensional spaces or incomplete
spaces, functions that scale on high-dimensional spaces.

CCS CONCEPTS
• Mathematics of computing → Combinatorial optimization; •
Human-centered computing → Accessibility systems and tools.

KEYWORDS
Combinatorial optimization, Problem modeling, Constraint-Based
Local Search, Error function, Interpretable learning

ACM Reference Format:
Florian Richoux and Jean-François Baffier. 2021. Error Function Learn-
ing with Interpretable Compositional Networks for Constraint-Based Local
Search. In 2021 Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.3459464

1 LEARNING ICN MODELS
The main result of this work is to propose a method to automatically
learn an error function representing a constraint, making easier the
modeling of Error Function Satisfaction/Optimization Problems [4].
We are tackling a regression problem since the goal is to find a
function that outputs a target value. For this work, the target value is
the Hamming distance between a given variable assignment and its
closest solution within the constraint assignment space.

To model error functions, we propose a variant of neural networks
retaking two principles from Compositional Pattern-Producing Net-
works [5]: 1., having neurons containing one activation function
among many possible ones, and 2., being able to handle inputs in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459464

a size-independent fashion. Due to their interpretable nature, we
named our variant Interpretable Compositional Networks (ICN).
For this work, ICNs are composed of four layers (see Figure 1),
each of them having a specific purpose and themselves composed of
neurons applying a unique activation function each, called elemen-
tary operation. All neurons from a layer are linked to all neurons
from the next layer. The weight on each link is purely binary: its
value is either 0 or 1. This restriction is crucial to obtain interpretable
functions. A weight between neurons 𝑛1 and 𝑛2 with the value 1
means that the neuron 𝑛2 from layer 𝑙 + 1 takes as input the output
of the neuron 𝑛1 from layer 𝑙 . Weight with the value 0 means that 𝑛2
discards the output of 𝑛1.

Here is our method workflow in 4 points:
1. Users provide a regular constraint network ⟨𝑉 , 𝐷,𝐶⟩ where

𝑉 is the set of variables, 𝐷 their domain, and 𝐶 a set of concepts
representing constraints.

2. We generate for each constraint concept 𝑐 its ICN input space
𝑋 , which is either a complete or incomplete constraint assignment
space. Those input spaces are our training sets. If the space is com-
plete, then the Hamming distance of each assignment can be pre-
computed before learning our ICN model. Otherwise, we randomly
draw assignments to build an incomplete space and pre-compute an
approximation of the Hamming distance for each drawn assignment.

3. We learn the weights of our ICN model in a supervised fashion,
with the following loss function:

loss =
∑
®𝑥 ∈𝑋

(|𝐼𝐶𝑁 (®𝑥) − 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(®𝑥) |) + 𝑅(𝐼𝐶𝑁) (1)

where 𝑋 is the constraint assignment space, ICN (®𝑥) the out-
put of the ICN model giving ®𝑥 ∈ 𝑋 as an input, Hamming(®𝑥) the
pre-computed Hamming distance of ®𝑥 (only approximated if 𝑋 is
incomplete), and R(ICN) is a regularization between 0 and 0.9 to
favor short ICNs, i.e., with as few elementary operations as possible,
such that 𝑅(𝐼𝐶𝑁) = 0.9 × Number of selected elementary operations

Maximal number of elementary operations .
4. We have hold-out test sets of assignments from larger dimen-

sions to evaluate the quality of our learned error functions.
Like any neural network, learning an error function through an

ICN boils down to learning the value of its weights. Many of our
elementary operations are discrete, therefore are not differentiable.
Then, we cannot use a back-propagation algorithm to learn the ICN’s
weights. This is why we use a genetic algorithm for this task.

Since our weights are binary, we represent individuals of our ge-
netic algorithm by a binary vector of size 29, each bit corresponding
to one operation in the four layers. Since arithmetic and aggregation
layers contain only two mutually exclusive operations, these opera-
tions are represented by one bit for each layer. For the transformation

137

https://doi.org/10.1145/3449726.3459464
https://doi.org/10.1145/3449726.3459464

GECCO ’21, July 10–14, 2021, Lille, France Florian Richoux and Jean-François Baffier

Figure 1: Our 4-layer network. Layers with blue neurons have
mutually exclusive operations.

and comparison layers, the 𝑖-th bit set to 1 means their 𝑖-th operation
is selected to be part of the error function.

We randomly generate an initial population of 160 individuals,
check and fix them if they do not satisfy mutually exclusive con-
straints. Then, we run the genetic algorithm to produce at most 800
generations before outputting its best individual according to our
fitness function.

Our genetic algorithm is rather simple: The fitness function is
the loss function of our supervised learning depicted by Equation 1.
Selection is made by a tournament selection between 2 individuals.
Variation is done by a one-point crossover operation and a one-flip
mutation operation, both crafted to always produce new individuals
verifying the mutually exclusive constraint of the comparison layer.
The crossover rate is fixed at 0.4, and exactly one bit is mutated for
each selected individual with a mutation rate of 1. Replacement is
done by an elitist merge, keeping 17% of the best individuals from
the old generation into the new one, and a deterministic tournament
truncates the new population to 160 individuals. The algorithm stops
before reaching 800 generations if no improvements have been
done in the last 50 generations. We use the framework EVOLVING

OBJECTS [3] to code our genetic algorithm.
Our hyperparameters, i.e., the population size, the maximal num-

ber of generations, the number of steady generations before early
stop, the crossover, mutation and replacement rates, and the size of
tournaments have been chosen using ParamILS [2], trained one week
on one CPU over a large range of values for each hyperparameter.

2 EXPERIMENTS
To show the versatility of our method, we tested it on five very dif-
ferent constraints: AllDifferent, Ordered, LinearSum, NoOverlap1D,
and Minimum. According to XCSP specifications (Boussemart et
al. [1], see also http://xcsp.org/specifications), those global con-
straints belong to four different families: Comparison (AllDifferent
and Ordered), Counting/Summing (LinearSum), Packing/Scheduling
(NoOverlap1D) and Connection (Minimum). Again according to
XCSP specifications, these five constraints are among the twenty
most popular and common constraints.

The source code and experimental setups are accessible on GitHub.1

Table 1 presents the mean error and the normalized mean error
of the most frequently learned error function for each constraint
type, over test sets of 20,000 assignments sampled from huge spaces
1https://github.com/richoux/LearningErrorFunctions/releases/tag/1.0

Constraints complete incomplete
mean norm. mean norm.

all_different-100-100 0 0 5.2821 0.0528
linear_sum-100-100-5279 0.0379 0.0003 0.0379 0.0003
minimum-100-100-30 0 0 0 0
no_overlap-10-35-3 2.6863 0.2686 2.0257 0.2025
ordered-12-18 1.2745 0.1062 0.6054 0.0504

Table 1: Mean test error over 20,000 assignments in high dimen-
sions of most frequently learned error functions.

of 10100 assignments. Its second column shows test errors for error
functions learned over small complete spaces (about 500 ∼ 625 as-
signments) and the third one for error functions learned over in-
complete spaces (20,000 drawn assignments in spaces of size about
1012).

The mean error is the total error on a test set divided by the
size of the test set (20,000 for each test set). Therefore, a mean
error of 5 for instance means that, on average, the error function
computes a Hamming distance off by 5 variables regarding the
expected Hamming distance. However, it is not the same thing to be
off by 5 variables on instances with 10 variables or with 100 ones.
Thus, Table 1 also contains a normalized mean error corresponding
to the mean error divided by the number of variables in the instance.

The perfect score of 0 for AllDifferent and Minimum shows that
our system has been able to learn the exact Hamming distance over
a small constraint assignment space of 625 assignments. For Lin-
earSum, the error function only has a total error of 758 over 20,000
assignments, giving a mean error of 0.0379 over each assignment.
Since our test set instance for LinearSum is over 100 variables, the
normalized mean error is 3.79 × 10−4.

Ordered and NoOverlap1D do not show such good results. For
Ordered, a mean error of 1.2745 on assignments with 12 variables
is still honorable: it means that on average, the difference between
the expected and estimated Hamming distance over 10 variables is
about one variable. Put differently, there is a mean error of 0.1062
per variable in the test instance.

However, the mean error of 2.6863 for NoOverlap1D, considering
the constraint instance has 10 variables, is not so good: this leads
to a normalized mean error of 0.2686, which starts to be significa-
tive (about one error every 4 variables). NoOverlap1D is certainly
the most intrinsically combinatorial over our 5 constraints, partly
explaining why it is harder to learn a correct error function for it.

REFERENCES
[1] Frederic Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette.

2016. XCSP3: An Integrated Format for Benchmarking Combinatorial Constrained
Problems. arXiv e-prints abs/1611.03398 (2016), 1–238.

[2] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009.
ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial
Intelligence Research 36 (2009), 267–306.

[3] Maarten Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer. 2002. Evolving
Objects: A General Purpose Evolutionary Computation Library. Artificial Evolution
2310 (2002), 829–888.

[4] Florian Richoux and Jean-François Baffier. 2021. Error Function Learning with
Interpretable Compositional Networks for Constraint-Based Local Search. arXiv
e-prints abs/2002.09811 (2021), 1–11.

[5] Kenneth O. Stanley. 2007. Compositional Pattern Producing Networks: A Novel
Abstraction of Development. Genetic Programming and Evolvable Machines 8, 2
(2007), 131–162.

138

http://xcsp.org/specifications
https://github.com/richoux/LearningErrorFunctions/releases/tag/1.0

	Abstract
	1 Learning ICN models
	2 Experiments
	References

