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ABSTRACT
Selection hyper-heuristics have been increasingly and successfully
applied to numerical and discrete optimization problems. This pa-
per proposes HHTS, a hyper-heuristic (HH) based on the Thomp-
son Sampling (TS) mechanism to select combinations of low-level
heuristics aiming to provide solutions for various continuous single-
objective optimization benchmarks. Thompson Sampling is mod-
eled in the present paper as a Beta Bernoulli sampler considering
the increase/decrease of diversity among population individuals
to measure the success/failure during the search. In the experi-
ments, HHTS (a generic evolutionary algorithm generated by TS)
is compared with five well-known evolutionary algorithms. Results
indicate that, despite requiring less computational effort, HHTS’s
performance is similar or better than the other algorithm for most
instances and in 50% of the cases it is capable of achieving the global
optimum.
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1 INTRODUCTION
In spite of successfully solving complex and large scale optimiza-
tion problems, metaheuristics might present some difficulties when
applied to real-world problems due to the existence of multiple
parameters and high sensibility to their configuration.

Many approaches have been proposed to tackle this issue such
as parameter tuning [3, 6, 33] and parameter control [25]. With
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parameters being defined a priori in the first case and during the ex-
ecution in the second one. Algorithm selection [52] is a mechanism
that selects methods from a portfolio and is usually based on ma-
chine learning techniques to identify the most suitable algorithm.
The combination of metaheuristics in a multiagent perspective [34]
is another interesting approach. The hyper-heuristics [31] which
generate, select or combine heuristic components to automatically
design more efficient heuristic approaches.

Hyper-heuristics are considered search methods that operate on
a high-level of abstraction aiming to automate the process of com-
bining, generating and selecting low-level components of a given
heuristic [16]. The high-level strategy (HLS) usually involves two
main components, (i) the selection mechanism which chooses an
element from the pool of heuristics or combine elements from the
pool of heuristics components, and (ii) the move acceptance which
decides whether to accept or discard the generated solution [49].
The low-level heuristics (LLHs) are defined for a particular opti-
mization framework and problem domain and consist of operators
working directly on the problem-solving space. In [31], an ant
colony optimization (ACO)-based hyper-heuristic solves the inter-
cell scheduling problem. The approach selects rules to schedule
parts and machines in a combinatorial process. In another inter-
esting work [34], the authors propose a MultiAGent Metaheuristic
Architecture (MAGMA) framework and show that a hybrid algo-
rithm can be designed as a combination of existing components
from the MAGMA architecture.

Although hyper-heuristics are considered robust approaches,
the selection mechanism influences quite hard their performance.
Particularly, due to the exploration versus exploitation (EvE) trade-
off: the strategy must find out if there is a heuristic better than
the current one (exploration); nevertheless, it must select the best
heuristic performance as much as possible (exploitation) [20]. EvE is
a classic dilemma in reinforcement learning (RL). Many interesting
tasks from decision-making can be formulated as RL problems.
In such cases, interactions between agents and the environment,
which might be dynamic, stochastic and partial known, guide the
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search for a stock selection approach that optimizes some measure
of long-term performance [20].

The stochastic problem of the Multi-Armed Bandit (MAB) is the
simplest model of compensation for the EvE dilemma [5] and it is
formulated as the problem of a player whose choices rely on differ-
ent slot machines in a casino (an armed bandit). The MAB model
presents a decision-maker who repeatedly chooses between mul-
tiple discrete options so that each option produces a probabilistic
reward. Over time, the decision maker builds an understanding of
the distribution of rewards for each option. The goal is to maximize
the expected reward, the option that offers a higher average reward
should be sought and then exploited.

Thompson Sampling (TS) is an algorithm based on Bayesian
inference that has been proposed to support online decision prob-
lems [11]. Its actions are taken in a sequential way aiming at (i)
exploiting what is known to maximize current performance and
(ii) accumulating new information to improve future performance.
Providing an alternative that more intelligently allocates the scan-
ning effort, and proved to be almost optimal [1], TS is adopted in
various computationally efficient problems.

This paper proposes a hyper-heuristic (HH) based on TS for
choosing one from multiple arms of the MAB problem, i.e., combi-
nations of heuristic components in the HH context. The synergy
between HH and MAB has been previously explored for example
in [2, 19, 22], when it is used to solve combinatorial optimization
problems. Authors in [29] also use TS to support the selection
mechanism in a HH, yet in another application context (Max-SAT
competition). Besides a different application domain (numerical
optimization) is introduced.

In the present paper we consider TS for Bernoulli bandits with
Beta(𝛼, 𝛽) as prior distribution of Bernoulli means. We consider
TS as it is more efficient to address exploration and exploitation
balance compared with other approaches [51]. Moroever, it has the
ability to self-correct [23] due to the Bayesian inference. Moreover,
heuristic components are addressed as evolutionary operators: 6
crossover types, 5 mutation operators and 3 selection mechanisms.
The experiments are performed using 23 instances of the CEC’05
benchmark functions. In the next section we present the basic
concepts necessary to understand the proposed approach.

2 BACKGROUND
2.1 Multi-armed bandit (MAB) problem
The multi-armed bandit problem backs to the sequential design
of experiments [39] and can be defined as follows. Given a slot
machine, at each time, one of the arms is selected. Each arm, when
is selected for playing, returns a random reward based on an un-
known probability distribution [1]. In classic MAB formulations,
the random rewards obtained from playing an arm repeatedly are
independent and identically distributed for each arm. The goal is to
maximize the expected accumulated reward in a given time horizon
by using a proper selection approach [19].

MAB is often applied to study the exploration/exploitation trade-
off in sequential decision-making problems [1]. According to [7], in
such problems, an agent is expected to select the best action (arm)
among several alternatives at each time instant. These problems

are frequently encountered in various practical applications, from
clinical trials, to recommender systems, and anomaly detection.

There aremany strategies to decide which arm should be selected
at each time. Epsilon Greedy, Upper Confidence Bound (UCB) and
Thompson Sampling (detailed in the next section) are examples of
algorithms proposed to solve MABs.

2.2 Thompson Sampling
Thompson Sampling (TS) is a randomized probability matching
algorithm [1] which samples arms according to the Bayesian poste-
rior probability that each arm is optimal. The beta-Bernoulli bandit
problem [40] assumes that rewards are either 0 or 1 drawn from a
Bernoulli distribution with parameter 𝜃 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽) as conjugate
prior distribution according to Eq. (1).

𝐵𝑒𝑡𝑎(𝛼, 𝛽) : 𝑝 (𝜃 ;𝛼, 𝛽) = Γ (𝛼 + 𝛽)
Γ (𝛼) Γ (𝛽) 𝜃

𝛼−1 (1 − 𝜃 )𝛽−1 (1)

with mean 𝛼 / (𝛼 +𝛽) and function gamma Γ. High values of 𝛼 and 𝛽
concentrate the distribution around its mean. After a Bernoulli trial
observation, the posterior distribution is updated to 𝐵𝑒𝑡𝑎(𝛼 + 1, 𝛽)
or 𝐵𝑒𝑡𝑎(𝛼, 𝛽 + 1) depending on the success or failure of the trial,
respectively.

The TS algorithm starts by assuming that each arm has a prior
𝐵𝑒𝑡𝑎(1, 1) which is the uniform distribution on (0, 1). After playing
arm 𝑠 at trial 𝑡 , the result can be either success (reward = 1) or failure
(reward = 0) and the total number of successes 𝑆𝑠 (𝑡) or failures
𝐹𝑠 (𝑡) of the selected arm 𝑠 is updated accordingly. Thereafter, the
algorithm updates the posterior distribution 𝜃𝑠 ∼ 𝐵𝑒𝑡𝑎(𝑆𝑠+1, 𝐹𝑠+1),
samples 𝜃𝑖 from 𝐵𝑒𝑡𝑎(𝑆𝑖 + 1; 𝐹𝑖 + 1) of each arm 𝑖 = 1, ..., 𝐾 , and
chooses the arm 𝑠 ← argmax𝑖 (𝜃𝑖 ).

2.3 Related approaches
Many algorithms have been developed for MAB problems, such as
Upper Confidence Bound (UCB) [26, 28], Epsilon Greedy [44] and
Thompson Sampling [11]. Several studies have shown the efficiency
of Thompson sampling [41], and in some cases TS outperformsmore
complex alternatives such as UCB [11]. TS has been often applied to
solve several real-world problems [11, 45]. Recently, in addition to
its important contribution to reinforcement learning, MAB has been
also applied in the context of optimization. More specifically, in
selection mechanisms of hyper-heuristics [2, 19, 22, 29, 30, 36, 50].

Similarly to the present work, in [2] the selection task of a HH
is interpreted as a player and the low-level heuristics as the arms
of the slot machines. In that work, the authors propose for the
first time an adaptive TS mechanism for a selection HH and evalu-
ate its performance on a large number of hyper-heuristics within
the 2011 Cross-domain HeuristicSearch (CHeSC) competition [35].
Their proposed approach outperforms even the state-of-the-art al-
gorithms for Personnel Scheduling, Permutation Flow-shop and
the Travelling Salesman problem.

In [19], the authors also present a MAB selection strategy. How-
ever, differently from other works, the selection mechanism is based
not only on the performance of an operator but also on the number
of times it has been used. The approach is also evaluated on the
CHeSC2011 Competition.

The authors in [22] combine the MOEA/D framework with a
selection hyperheuristic to solve many-objective problems. They
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propose the Contextual Multi-Armed Bandit (MAB) to find the low
level heuristic (Differential Evolution mutation strategy) to apply
for each individual solution during MOEA/D execution.

Recently, the work presented in [29] proposes a hyper-heuristic
called the Multilevel Synergy Thompson Sampling Hyper-Heuristic
that includes both the probabilistic learning mechanism (as a adap-
tive learning selection hyper-heuristic) and the multilevel paradigm
to generate smaller sub-problems from large problem instances hi-
erarchically, addressing Max-SAT competition.

3 THE PROPOSED APPROACH
This section presents the proposed approach encompassing a MAB
problem (formulated as the selection of heuristic components in a
hyper-heuristic) which must be solved by the TS algorithm used as
a selection mechanism of a HH. The TS-based selection mechanism
aims at online selecting combinations of operators for crossover, mu-
tation and selection to be used when searching for optimal solutions
of numerical optimization problems. Our approach will be referred
to as a Hyper-Heuristic based on Thompson Sampling (HHTS) in
the remainder of the paper.

3.1 Heuristic components
In this subsection, it is described the portfolio of heuristic compo-
nents used in HHTS. The crossover is one of the basic operators
in evolutionary algorithms. In the proposed approach six different
crossover operators are applied to the selected pairs of parents:
Single point crossover [38]; Blend crossover [17]; Simulated bi-
nary crossover - SBX[15]; Unimodal normal distribution crossover
- UNDX [37]; Parent-centric recombination - PCX [15]; and the
Opposition-based learning - OBL [48].

Another basic operator is mutation. We consider five mutation
operators: Gaussian mutation [24]; Michalewicz’ mutation [18];
Differential evolution (DE) mutation [42]; Random mutation [8];
and the Particle swarm optimization operator [27].

The proposed approach considers three selection methods:
Roulette Wheel [32]; Tournament [46]; and Truncation [46]. Notice
that the operators addressed in this paper are considered due to
their adoption in a large number of evolutionary algorithms. In
addition, their performance has been studied and analyzed exten-
sively in previous works both theoretically and empirically using
benchmark functions and real-world problems.

3.2 HHTS Framework
Within the HHTS context, an arm is equivalent to a particular com-
bination of different LLHs. Considering for example𝑀 = 3 LLHs,
and 𝐶𝑅𝑂𝑆𝑆 , 𝑀𝑈𝑇 and 𝑆𝐸𝐿 as acronyms representing crossover,
mutation and selection operators respectively, we would have
a = (𝑎1, . . . , 𝑎𝑀 ) encoding an arm, i.e., a particular combination
of these operators. In this case, each element 𝑎𝑚 ∈ {1, . . . , 𝐿𝑚, },
𝑚 = 1, . . . , 𝑀 , is associated with one specific operator, and 𝐿𝑚
denotes the total of options addressed for the particular operator
considered in the 𝑚-th position of the vector. Therefore, assum-
ing the encoding sequence as crossover, mutation and selection we
would have: 𝐿1 = |𝐶𝑅𝑂𝑆𝑆 | = 6, 𝐿2 = |𝑀𝑈𝑇 | = 5 and 𝐿3 = |𝑆𝐸𝐿 | = 3,
with |.| defined as the sets’ cardinalities whose values are estab-
lished according to the alternatives described in Section 3.1. Figure

1 illustrates the framework which consists of two main modules:
high-level and problem domain. The high-level domain is associ-

HH Set of actions

a1 ... aM

a1

...

aK

 Random 
Initialization

Problem Pop0

solution fitness

p1

...

pN  

Thompson 
Sampling

Thompson 
Sampling

HIGH-LEVEL
DOMAIN

Enumeration Select as Select as 

Update TS 
parameters
Update TS 
parameters

Problem Popnew

solution fitness

p1

...

plast   

Generate new 
population

Generate new 
population

SelectionSelection

Problem Popg+1

solution fitness

p1

...

pN   

Applying 
as ={a

1
 ... a

M-1 
}

on Problem Pop

Applying aM

Figure 1: HHTS Framework.
ated with the HHTS components, with {a1, · · · , aK} identifying
the set of all possible arms (i.e., all combinations of the addressed
LLHs), and ai = (𝑎𝑖1, . . . , 𝑎

𝑖
𝑀
) encoding a particular combination.

The problem domain represents the problem features and parame-
ters (benchmark function).

In the high-level domain, the actions (arms) are enumerated
in block Enumeration. Therefore 𝐾 represents the total of arms,
i.e., all possible combinations using the addressed LLHs (block HH
Set of actions). In Thompson Sampling block, the TS mechanism is
considered to identify which arm (combination of LLHs) should be
applied at a given iteration.

The first𝑀−1 sub-actions (𝑎𝑠1, 𝑎
𝑠
2, ..., 𝑎

𝑠
𝑀−1) (i.e., LLHs associated

with reproduction operators and encoded in a selected action or arm
as) are then sequentially applied, in block Generate new population,
to each problem solution pj, 𝑗 ∈ 1, ..., 𝑁 , from population 𝑃𝑜𝑝 , which
has been randomly initialized.

In block Problem 𝑃𝑜𝑝𝑛𝑒𝑤 , the new problem solutions obtained
from the LLHs associated with reproduction operators constitute
the new population. It is noticed that 𝑃𝑜𝑝𝑛𝑒𝑤 can present a different
cardinality at each stage, depending on the applied operator. The
last sub-action (𝑎𝑠

𝑀
) encoded in the sequence represents the LLH

associated with the selection technique, and it must be applied in
block Selection to the entire population 𝑃𝑜𝑝𝑛𝑒𝑤 to select the best
𝑁 solutions that will compose the next population 𝑃𝑜𝑝𝑔+1.

The entire iterative process continues until a stop criterion is
satisfied. Usually used as the stopping criterion, the maximum
number of problem function evaluations𝑀𝑎𝑥𝑒𝑣𝑎𝑙 is also adopted
in this work. Finally, the best problem solution is selected from the
population 𝑃𝑜𝑝𝑔+1 and provided as the algorithm output.

In the proposed approach, TS considers each execution of an
arm (a combination of LLHs) as a Bernoulli trial with output {0, 1},
with 1 meaning that the applied arm generates a better population
𝑃𝑜𝑝𝑔+1 with respect to a given metric and search point, and 0 de-
notes the opposite case. The distribution 𝐵𝑒𝑡𝑎(𝛼, 𝛽) is commonly
used as prior distribution of Bernoulli distribution for the Thomp-
son sampling [47]. Given that 𝐵𝑒𝑡𝑎(𝛼, 𝛽) distribution is the prior
conjugate of Bernoulli distribution, the framework computes the
posteriori distribution of 𝜃𝑖 updated by the count of successes and
failures of Bernoulli trials. [40].
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The arms perform in a different way according to the regions
of the search space [2] and TS chooses an arm according to the
Bayesian posterior probability of that arm is optimal [47]. In this
paper, Thompson sampling is modeled as a beta-Bernoulli sampler,
but it can be generalized beyond the Bernoulli bandit problem [40].
The TS mechanism adopted in the proposed approach is described
in Algorithm 1.

Algorithm 1 TS for the Bernoulli bandit in HHTS
1: 𝐾 : total number of arms or actions (LLH combinations in this case)
2: 𝑀𝑎𝑥𝐸𝑣𝑎𝑙 ← maximum number of function evaluation
3: for 𝑖 = 1...𝐾 do
4: 𝑆𝑖 ← 0
5: 𝐹𝑖 ← 0
6: end for
7: 𝑔← 0
8: repeat
9: for each 𝑖 = 1...𝐾 do
10: sample 𝜃𝑖 ∼ 𝐵𝑒𝑡𝑎 (𝑆𝑖 + 1, 𝐹𝑖 + 1)
11: end for
12: 𝑠 ← argmax𝑖 (𝜃𝑖 )
13: Apply arm 𝑠 (combination of LLHs) to 𝑃𝑜𝑝𝑔
14: 𝑔← 𝑔 + 1
15: if 𝑃𝑜𝑝𝑔+1 is better than 𝑃𝑜𝑝𝑔 then
16: 𝑟 ← 1
17: 𝑆𝑠 ← 𝑆𝑠 + 1
18: else
19: 𝑟 ← 0
20: 𝐹𝑠 ← 𝐹𝑠 + 1
21: end if
22: if Move Acceptance criterion is not met then
23: 𝑃𝑜𝑝𝑔+1 ← 𝑃𝑜𝑝𝑔
24: end if
25: until𝑀𝑎𝑥𝑒𝑣𝑎𝑙

It initially assumes that each arm 𝑖 has prior 𝐵𝑒𝑡𝑎(1, 1) and
𝑆𝑖 = 𝐹𝑖 = 0 for 𝑖 = 1, ..., 𝐾 . HHTS then iterates by sampling from
posterior distributions (line 10), selecting an arm 𝑠 according to the
highest probability (line 12) and playing it (line 13). After playing
arm 𝑠 at iteration 𝑔, and observing success (𝑟 = 1) or failure (𝑟 = 0)
based on which population (𝑃𝑜𝑝𝑔+1 or 𝑃𝑜𝑝𝑔) is better to the prob-
lem, TS updates the distribution parameters 𝑆𝑠 and 𝐹𝑠 . Moreover,
it accepts the new population in case of success or disregards it in
case of failure (line 23).

To check the acceptance criterion (i.e., to test informing whether
the modified population is better than the current one), this paper
considers the True Diversity normalized metric (𝐷𝑛

𝑇𝐷
) [14] which

is calculated as using Eq. 2.

𝐷𝑛𝑇𝐷 =

1
𝐶

√∑𝐶
𝑐=1 (𝑝2𝑐 − (𝑝𝑐 )2)
𝑁𝑀𝐷𝐹

(2)

𝐷𝑛
𝑇𝐷

represents the average standard deviation calculated for
each element of a 𝐶 dimensional solution p = (𝑝1, ..., 𝑝𝐶 ), with
p representing an individual from the population 𝑃𝑜𝑝 with 𝑁 in-
dividuals, and 𝑝𝑐 = 1

𝑁

∑𝑁
𝑗=1 𝑝 𝑗,𝑐 , 𝑝

2
𝑐 = 1

𝑁

∑𝑁
𝑗=1 𝑝

2
𝑗,𝑐
. 𝑁𝑀𝐷𝐹 is a

normalization factor that helps to determine the maximum diver-
sity obtained until the current iteration. Such value is computed as
the maximum diversity in the initialization procedure.

4 EXPERIMENTS AND RESULTS
This section aims to compare the results of HHTS with those pro-
vided by Particle Swarm Optimization (PSO) [27], Differential Evo-
lution (DE) [42], Genetic Algorithm (GA) [21], Differential Search

(DS) [12] and Covariance Matrix Adaptation and Evolution Strate-
gies (CMAES) [4] to solve CEC’05 benchmark of continuous func-
tions F1-F23 [43].

We use these functions since they present known global optimum
values (𝑓𝑚𝑖𝑛) that are shown in Table 1 together with equation, type,
dimension and lower and upper bounds. In [9], a hyper-heuristic
generates mutation operators for evolutionary programming to
solve these benchmarks as well. More details about those functions
can be found in [43].

The proposed approach (HHTS) has different parameters that
must be configured and the values considered in this paper are:
the solution size is 𝑀 = 3; the set of crossover operators is
𝐶𝑅𝑂𝑆𝑆 = {Blend, Multi-Point, OBL, PCX, SBX, Single Point, UNDX}
and mutation 𝑀𝑈𝑇 = {Gaussian, Michalewicz, DE, PSO opera-
tor, Random}; the selection operators 𝑆𝐸𝐿 = {Truncation, Tour-
nament, Roulette}; the set of actions (all possible combinations)
is 𝐾 = ( |𝐶𝑅𝑂𝑆𝑆 | + |𝑀𝑈𝑇 |)𝑀−1 ∗ |𝑆𝐸𝐿 | and finally the maximum
number of problem function evaluation Maxeval is 25000.

In the problem domain, the population size is set to 𝑁 = 50 for
all the algorithms considered in comparisons. For the statistical
analysis, the optimization methods performed 35 independent runs
for each function from the benchmark set. The PSO, GA, DE, DS
and CMAES internal parameters have been set up according to the
original references aiming to maintain each algorithm performance.

4.1 Comparative Analysis
Figures 2 and 3 show the average best score of objective values
over all the 35 runs in the optimization process that is performed
until the stop criteria is achieved (maximum number of function
evaluations).

We consider one curve for each algorithm according to the colors
shown in the legend of Fig. 3l (with HHTS in dark blue). The curves
are in linear-log scales but curves for F16 which are in linear scales
due to positive and negative values. We can clearly observe that
HHTS uses fewer function evaluations to reach theminimumvalues,
providing the best performance in terms of convergence rate.

For F1, F2, F3, F9, F11, F14, F16, F19, note that HHTS strongly
decays to the minimum values. This fact also occurs when 𝑓𝑚𝑖𝑛 is
reached with a minimum number of iterations and fitness function
evaluations. In these cases, the dark blue curve of HHTS is difficult
to identify due to the fast convergence.

Since the information obtained shows a non-normal distribution
(based on the Shapiro-Wilk normality test [13]), it is necessary to
employ the Kruskal-Wallis [10] and Dunn-Sidak’s post-hoc tests.
Such methods consider and compare the HHTS and the rest of the
methods. In this way they are used the objective function values
generated by the 35 independent experiments. Notice that the tests
used employs confidence level of 95% (𝛼 = 5%). The average of
the objective function values for each test function is presented in
Table 2. In such table the values in bold corresponds to the global
best, while the colored results are the ones that have no statistically
significant differences with the global best values.

We notice in Table 2 that HHTS is similar or better than the other
methods for all cases but 4 instances (2 unimodal and 2 multimodal).
Moreover, in some cases the proposed method has no statistically
significant differences in specific when it is compared to DE and
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Table 1: Benchmark functions.

ID Equation Lower Upper Dimension Type fmin

F1 𝑓 (𝑥) =
𝑛∑
𝑖=1

𝑥2
𝑖

-100 100 10 Unimodal 0

F2 𝑓 (𝑥) =
𝑛∑
𝑖=1
|𝑥𝑖 | +

𝑛∏
𝑖=1
|𝑥𝑖 | -10 10 10 Unimodal 0

F3 𝑓 (𝑥) =
𝑛∑
𝑖=1

(
𝑖∑
𝑗−1

𝑥𝑖

)2
-100 100 10 Unimodal 0

F4 𝑓 (𝑥) = max𝑖 {|𝑥𝑖 | , 1 ≤ 𝑖 ≤ 𝑛} -100 100 10 Unimodal 0

F5 𝑓 (𝑥) =
𝑛−1∑
𝑖=1

[
100

(
𝑥𝑖+1 − 𝑥2𝑖

)2 + (𝑥𝑖 − 1)2] -30 30 10 Unimodal 0

F6 𝑓 (𝑥) =
𝑛∑
𝑖=1
( [𝑥𝑖 + 0.5])2 -100 100 10 Unimodal 0

F7 𝑓 (𝑥) =
𝑛∑
𝑖=1

𝑖 · 𝑥4
𝑖
+ 𝑟𝑎𝑛𝑑𝑜𝑚 [0, 1] -1.28 1.28 10 Unimodal 0

F8 𝑓 (𝑥) =
𝑛∑
𝑖=1
−𝑥𝑖 sin

(√
𝑥𝑖

)
-500 500 10 Multimodal -415*5

F9 𝑓 (𝑥) =
𝑛∑
𝑖=1

[
𝑥2
𝑖
− 10 cos (2𝜋𝑥𝑖 ) + 10

]
-5.12 5.12 10 Multimodal 0

F10 𝑓 (𝑥) = −20 exp
(
−0.2

√
1
𝑛

𝑛∑
𝑖=1

𝑥2
𝑖

)
− exp

(
1
𝑛

𝑛∑
𝑖=1

cos (2𝜋𝑥𝑖 )
)
+ 20 + 𝑒 -32 32 10 Multimodal 0

F11 𝑓 (𝑥) = 1
4000

𝑛∑
𝑖=1

𝑥2
𝑖
−

𝑛∏
𝑖=1

cos
(
𝑥𝑖√
𝑖

)
+ 1 -600 600 10 Multimodal 0

F12 [

𝑓 (𝑥) = 𝜋
𝑛

{
10sin2 (𝜋𝑦1) +

𝑛−1∑
𝑖=1
(𝑦𝑖 − 1)2

[
1 + 10sin2 (𝜋𝑦𝑖+1)

]
+ (𝑦𝑛 − 1)2

}
𝑛∑
𝑖=1
𝑢 (𝑥𝑖 , 10, 100, 4)

𝑢 (𝑥𝑖 , 𝑎, 𝑘,𝑚) =


𝑘 (𝑥𝑖 − 𝑎)𝑚, 𝑥𝑖 > 𝑎

0, −𝑎 ≤ 𝑥𝑖 ≤ 𝑎
𝑘 (−𝑥𝑖 − 𝑎)𝑚, 𝑥𝑖 < −𝑎

] -50 50 10 Multimodal 0

F13 [
𝑓 (𝑥) = 0.1

{
sin2 (3𝜋𝑥𝑖 ) +

𝑛∑
𝑖=1
(𝑥𝑖 − 1)2

[
1 + sin2 (3𝜋𝑥𝑖 + 1)

]
+

(𝑥𝑛 − 1)2
[
1 + sin2 (2𝜋𝑥𝑛)

]}
+
𝑛∑
𝑖=1
𝑢 (𝑥𝑖 , 5, 100, 4)

] -50 50 10 Multimodal 0

F14 𝑓 (𝑥) =
©« 1
500 +

25∑
𝑗=1

1

𝑗+
2∑

𝑖=1
(𝑥𝑖−𝑎𝑖 𝑗 )6

ª®®¬ − 1 -65.536 65.536 2 Multimodal 0

F15 𝑓 (𝑥) =
(
11∑
𝑖=1

[
𝑎𝑖 −

𝑥1 (𝑏2𝑖 +𝑏𝑖𝑥2)
𝑏2
𝑖
+𝑏𝑖𝑥3+𝑥4

]2)
-5 5 4 Multimodal 0.0003

F16 𝑓 (𝑥) =
(
4𝑥21 − 2.1𝑥

4
1 +

1
3𝑥

6
1 + 𝑥1𝑥2 − 𝑥

2
2 + 4𝑥

4
2

)
-5 5 2 Multimodal -1.0316

F17 [𝑓 (𝑥) =
(
𝑥2 − 5.1

4𝜋2 𝑥
2
1 +

5
𝜋 𝑥1 − 6

)2
+ 10

(
1 − 1

8𝜋

)
cos𝑥1 + 10] -5 5 2 Multimodal 0.398

F18 [ 𝑓 (𝑥) =
[
1 + (𝑥1 + 𝑥2 + 1)2

(
19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥

2
2
) ]

×
[
30 + (2𝑥1 − 3𝑥2) ×

(
18 − 32𝑥1 + 12𝑥21 + 48𝑥2 − 36𝑥1𝑥2 + 26𝑥

2
2
) ] ] -2 2 2 Multimodal 3

F19 𝑓 (𝑥) = −
4∑
𝑖=1

𝑐𝑖 exp

(
−

3∑
𝑗=1

𝑎𝑖 𝑗
(
𝑥 𝑗 − 𝑝𝑖 𝑗

)2) 1 3 3 Multimodal -3.86

F20 𝑓 (𝑥) = −
4∑
𝑖=1

𝑐𝑖 exp

(
−

6∑
𝑗=1

𝑎𝑖 𝑗
(
𝑥 𝑗 − 𝑝𝑖 𝑗

)2) -0 1 6 Multimodal -3.32

F21 𝑓 (𝑥) = −
5∑
𝑖=1

[
(𝑋 − 𝑎𝑖 ) (𝑋 − 𝑎𝑖 )𝑇 + 𝑐𝑖

]−1
-0 10 4 Multimodal -10.1532

F22 𝑓 (𝑥) = −
7∑
𝑖=1

[
(𝑋 − 𝑎𝑖 ) (𝑋 − 𝑎𝑖 )𝑇 + 𝑐𝑖

]−1
-0 10 4 Multimodal -10.4028

F23 𝑓 (𝑥) = −
10∑
𝑖=1

[
(𝑋 − 𝑎𝑖 ) (𝑋 − 𝑎𝑖 )𝑇 + 𝑐𝑖

]−1
-0 10 4 Multimodal -10.5363
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Figure 2: Convergence curve of F1-F11 for average best scores over the 35 runs using semilog scale for all algorithms.

PSO. It is important to remark that for half of the instances, i.e., for F1, F2, F3, F9, F11, F16, F17, F18, F19, F21, F22 and F23, the proposed
method can achieve the global optimal 𝑓𝑚𝑖𝑛 value.
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Figure 3: Convergence curve of F12-F23 for average best scores over the 35 runs using semilog scale (with exception for F16),
for all algorithms.

1400



GECCO ’21 Companion, July 10–14, 2021, Lille, France Martins et al.

Table 2: Average objective values over 35 executions for each function.

Instance HHTS PSO DE GA DS CMAES
F1 0.000 1.548𝐸 − 09 2.654𝐸 − 12 378.0 4.865𝐸 − 06 1.202𝐸 − 22
F2 0.000 0.3346 3.643𝐸 − 08 177.2 0.1986𝐸 − 03 2.783𝐸 − 10
F3 0.000 1523 2527𝐸 + 01 5086 731.0 1.107𝐸 − 13
F4 2.134E − 244 7.688 1.962 9.689 1.767 1.885𝐸 − 10
F5 6.065 247.7 47.01 5718𝐸 + 02 30.51 59.73E − 03
F6 7.834𝐸 − 03 3.336𝐸 − 10 2.692𝐸 − 12 367.6 3.661𝐸 − 06 1.917E − 22
F7 0.006668E − 03 49.54𝐸 − 03 28.24𝐸 − 03 249.5𝐸 − 03 23.15𝐸 − 03 5.160𝐸 − 03
F8 − 2612 −8112 −1241E + 01 −1596 − 4151 − 2376
F9 0.000 39.42 58.33 8.668 1.331 20.73
F10 9.104E − 13 38.46𝐸 − 03 4.770𝐸 − 07 2.420 3.270𝐸 − 03 14.67
F11 0.000 33.92𝐸 − 03 1.626𝐸 − 09 3.822 48.69𝐸 − 03 0.7043𝐸 − 03
F12 0.008258𝐸 − 03 32.60𝐸 − 03 3.992𝐸 − 13 1344𝐸 + 02 8.887𝐸 − 03 8.052E − 20
F13 0.5282𝐸 − 03 72.64𝐸 − 03 1.628𝐸 − 12 9027𝐸 + 02 0.6518𝐸 − 03 1.200E − 19
F14 0.9980 1.252 1.026 7.301 7.042 6.610
F15 1.494E − 03 2.383𝐸 − 03 1.289𝐸 − 03 88.73𝐸 − 03 9.132𝐸 − 03 3.310𝐸 − 03
F16 −1.032 −1.032 −1.032 −0.5766 −0.9.150 −1.032
F17 0.3979 0.3979 0.3979 0.6110 1.182 0.3979
F18 3.000 3.000 3.000 35.03 94.88 3.000
F19 − 3.863 − 3.863 − 3.863 −3.774 − 3.862 − 3.197
F20 − 2.888 − 3.269 − 3.069 − 2.619 − 3.316 −0.2885
F21 −10.15 −7.078 −9.339 −4.434 −6.091 −8.156
F22 −10.40 −9.093 − 10.23 −5.207 −6.211 − 10.21
F23 −10.54 −7.906 − 10.32 −5.475 −5.421 − 10.52

These results corroborate with the comparison shown in Figures
2 and 3, especially for functions F1, F2, F3, F9, F11, F16, F17, F18,
F19, F21, F22 and F23 where 𝑓𝑚𝑖𝑛 is achieved.

5 CONCLUSIONS
This article proposes a hyper-heuristic approach based on the
Thompson Sampling mechanism to select combinations of low-
level-heuristics applied to candidate solutions for different con-
tinuous benchmarks. Thompson Sampling is a classical algorithm
adopted to solve multi-armed bandit problems, and it is applied in
a hyper-heuristic context here, due to its efficiency in addressing
the trade-off between exploration and exploitation while selecting
appropriate heuristic components.

Modeled in the proposal as a sampler of Beta distributions
with means adjusted by Bayesian inference using observations
of Bernoulli distributions, Thompson Sampling considers the in-
crease/decrease of diversity among population individuals to mea-
sure the success/failure during the search. Diversity has also used
as the move acceptance criterion in the proposed hyper-heuristic.
The low-level-heuristics have been addressed in the paper as evolu-
tionary operators: 6 different crossover types, 5 mutation operators,
and 3 selection mechanisms.

The experimental study was performed over 23 instances of
CEC’05 benchmark dataset. The proposed approach HHTS was
compared with 5 traditional implementations of Particle Swarm
Optimization, Genetic Algorithm, Differential Evolution, Differen-
tial Search and Covariance Matrix Adaptation with Evolutionary

Strategy. The reported results indicated that HHTS performed sim-
ilarly or better than the other algorithms in most of instances (19
out of 23 total). HHTS attained the global optimum value for 12
instances. Furthermore, all the results were achieved with less com-
putational effort compared with the other algorithms, which is
mainly due to HHTS’ ability to balance between exploration and
exploitation.

Future works will include extending the approach to use other
MAB formulations such as restless and contextual bandits. More-
over, we intend to expand the framework and analyze its perfor-
mance for combinatorial and multi-objective optimization prob-
lems.
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