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ABSTRACT
Most GNNs for molecular property prediction are proposed based
on the idea of learning the representations for the nodes by aggre-
gating the information of their neighbour nodes in graph layers.
Then, the representations can be passed to subsequent task-specific
layers to deal with individual downstream tasks. Facing real-world
molecular problems, the hyperparameter optimisation for those
layers are vital. In this research, we focus on the impact of selecting
two types of GNN hyperparameters, those belonging to graph lay-
ers and those of task-specific layers, on the performance of GNN for
molecular property prediction. In our experiments, we employed a
state-of-the-art evolutionary algorithm (i.e., CMA-ES) for HPO. The
results reveal that optimising the two types of hyperparameters
separately can improve GNNs’ performance, but optimising both
types of hyperparameters simultaneously will lead to predominant
improvements.
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Figure 1: The neural architecture of GNN inmolecular prop-
erty prediction

1 INTRODUCTION
Graph neural networks (GNNs) have been applied to solve a wide
range of problems. One advantage of GNNs is that they can be
directly operated on graphs in an end-to-end manner for real-world
problems, and task-specific representations can be learned automat-
ically between latent layers. The study presented in [5] indicated
that hyperparameter optimization (HPO) by evolutionary computa-
tion could improve the GNN’s performance for predictingmolecular
properties. In this research, we employed CMA-ES [3] to investi-
gate the differences of optimizing hyperparameters related to graph
layers and those from task-specific layers. In this way, we expect
to discover that optimizing which types of hyperparameters may
bring more expected gains.

2 NEURAL ARCHITECTURE AND
HYPERPARAMETERS

In general, facing the problem of molecular property prediction,
the architectures of GNNs are classified into graph layer and task-
specific layer (Fig. 1). The former denotes those layers that take
responsibility for processing the structured data by aggregations,
and generate vector representations for all the nodes in graph.
Task-specific layers are exploited to deal with individual problems
(e.g., classification, regression). In Fig. 1, task-specific layers are
implemented by fully-connected layers, which take the molecular
representation as input to output a value. The hyperparameters
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Types Hyperparameters Ranges Step sizes

Graph layer
𝑛𝑔 1 − 6 1
𝑠𝑔 32 − 512 32
𝑠𝑑 64 − 1024 64

Fully-connected layer
𝑛𝑓 1 − 6 1
𝑠𝑓 64 − 1024 64
𝑎 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, 𝑟𝑒𝑙𝑢, 𝑡𝑎𝑛ℎ 1

Table 1: Hyperparameters summary

related to these two parts of GNN play different roles, but both
affect the whole learning process.

To assess the impact of optimizing different types of hyperpa-
rameters on the performance of GNNs, we employed the graph
convolution model (GC) [2]. The hyperparameters from graph lay-
ers include the number of graph convolution layer 𝑛𝑔 , the sizes of
those graph convolution layers 𝑠𝑔 , and the size of dense layer 𝑠𝑑
which is defined in GC to generate molecular representations. These
hyperparameters determine the range of the aggregation and affect
the ability of learning representations. As for the hyperparameters
in task-specific layers, in order to predict molecular properties R,
we employed a simple feedforward neural network consisting of a
few fully-connected layers. So the task-specific hyperparameters
include the number of fully-connected layers 𝑛𝑓 (excluding the
output layer), and the sizes of those layers 𝑠𝑓 , and the activation
function 𝑎. These hyperparameters will determine the ability to fit
real problems to some degree. Furthermore, 𝑛𝑔 and 𝑛𝑓 will deter-
mine the number of 𝑠𝑔 and 𝑠𝑓 , so our search space is dynamic. All
hyperparameters and their search ranges are summarised in Table 1.
However, it is noted that CMA-ES does not support dynamic search
space [1]. Therefore we turn to implement the pseudo-dynamic
process, which keeps the CMA-ES to sample the maximum number
of elements , thereafter 𝑛𝑔 and 𝑛𝑓 decide how many elements will
be used to instantiate the model.

3 EXPERIMENTS
Lipophilicity [4] is a representative molecular benchmark dataset,
and it corresponds to the task of predicting octanol/water distri-
bution coefficient. The best hyperparameter values obtained from
CMA-ESHPO are used to instantiate GCs, and these GCs are trained,
validated, and tested for 30 times by the data sets with the ra-
tio 80%/10%/10% of Lipophilicity dataset. The detailed results are
shown in Table 2.

In Table 2, we observed that only optimizing fully-connected lay-
ers has relatively more serious over-fitting problem compared with
the optimizing both types of hyperparameters, since it obtained
less root mean square error (RMSE) value on the training set, and
inversely had larger RMSE value on validation and test sets. In this
case, it indicates optimizing fully-connected layers’ hyperparame-
ters would help to fit the problems. However, without optimizing
graph layer hyperparameters, the molecular representations may
not be better learnt, which leads to reduced performance of GNNs
on test sets. Conducting HPO only on graph layers achieved lower
performance than performing HPO on task-specific layers and the
both. We believe the reason is that the default setting of GC only
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provides an output layer without hidden layers; it dramatically
restricts the learning capability. Interestingly, after HPO, the hy-
perparameter 𝑎 was assigned to 𝑅𝑒𝐿𝑈 in the experiment which
is the same choice as described in [2], where the 𝑅𝑒𝐿𝑈 activation
function was manually selected.

In summary, although graph layers and task-specific layers play
different roles in GNNs, they need to be optimized together when
solving practical problems. The reason is as follows: a better graph
representation learned from graph layers needs to be supported
by tailored task-specific layers to accomplish tasks. Similarly, task-
specific layers also need appropriate graph representations to achie-
ve good performance.

Lipophilicity Graph layers Fully-connected layers Graph and fully-connected layers

Hyperparameters
𝑛𝑔 = 6,
𝑠𝑔 = [416, 256, 512, 320, 384, 128],
𝑠𝑑 = 768

𝑛𝑓 = 4,
𝑠𝑓 = [1024, 896, 832, 64],
𝑎 = 𝑟𝑒𝑙𝑢

𝑛𝑔 = 5, 𝑠𝑔 = [480, 512, 256, 192, 224],
𝑠𝑑 = 960, 𝑛𝑓 = 4,
𝑠𝑓 = [704, 320, 128, 768],
𝑎 = 𝑟𝑒𝑙𝑢

Train Mean RMSE 0.2148 0.1369 0.1701
Mean Std 0.0206 0.0201 0.0361

Valid Mean RMSE 0.6655 0.6656 0.6239
Mean Std 0.0171 0.0144 0.0154

Test Mean RMSE 0.7014 0.6786 0.6472
Mean Std 0.0148 0.0165 0.0187

Table 2: HPO on the Lipophilicity dataset

4 CONCLUSIONS AND FUTUREWORK
In this paper, we elaborated the problem of HPO on GNNs for
molecular property prediction, and investigated which types of
hyperparameters should be selected to optimise when computa-
tional resources are limited. Based on our experiments, we conclude
that both hyperparameters related to graph and task-specific layers
should be optimised simultaneously, and leaving any one out will
result in reduced performance.

Finally, we acknowledge that our experiments are based on one
type of GNN model and one evolutionary strategy. However, we
believe that our conclusion can be further generalised. We have
selected the representative GNN model, used a state-of-the-art
evolutionary HPO approach, and the benchmark dataset used for
experiments is also representative in molecular property prediction
problems [4]. Meanwhile, CMA-ES does not support the dynamic
search space, which constrains its scalability. Other evolutionary
HPO approaches can be applied in our future work to explore their
effectiveness on optimising hyperparameters with dynamic search
space for GNNs.
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