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ABSTRACT
In this paper, a novel continuous encoding method developed for
multiobjective evolutionary algorithm to solve the community de-
tection problem in complex networks is proposed. Each edge in
the considered network is associated with a continuous compo-
nent of an individual’s genotype. Through non-linear operations,
each continuous-valued genotype is transformed into a solution to
the community detection problem, i.e. a partition of the network
nodes. This encoding method is embedded within the algorithmic
framework of the multiobjective genetic algorithm for networks
(MOGA-Net). Experimental results on synthetic and real-world net-
works demonstrate that the developed method can improve the
performance of MOGA-Net significantly.
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1 INTRODUCTION
In real life, many systems can be modeled as complex networks,
such as World Wide Web, which can be represented as a set of
vertices (nodes) and a set of edges connecting with these nodes.
Community detection in complex networks is a meaningful but
difficult task in the data mining research area [4].

The purpose of community detection in complex networks is
to find a set of nodes in which edges in communities are as dense
as possible while edges between communities are as sparse as
possible. In this paper, we consider disjoint community detection
in undirected complex networks. That is, there are no nodes which
belongs to more than one community.

By defining metrics which can measure the quality of the set of
communities, the community detection problem can be modeled
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as a single/multiobjective optimization problem. As a promising
paradigm of solving optimization problems, (multiobjective) evolu-
tionary algorithms have been used to solve these problems since
last decade [7], which has become a popular research avenue.

In [6], Pizzuti modeled the problems as discrete multiobjective
optimization problems (MOPs) and proposed MOGA-Net based on
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [2]. Spe-
cially, MOGA-Net takes locus-based encoding method to represent
individual solutions and two discrete evolutionary operators are
used to generate offsprings. In their paper, they proposed two objec-
tives, including the community score and the sum of the community
fitness of each detected community.

In this paper, we propose a new encoding method to encode
individuals in MOGA-Net. Combined with MOGA-Net, continuous
encoding MOGA-Net, dubbed as CEMOGA-Net, is proposed. Dif-
ferent from locus-based encoding method, our encoding method is
continuous based rather than discrete. That is, individuals’ genotype
are continuous. By performing certain non-linear operations, each
individual can be transferred to a network partition solution (i.e.
a set of communities). Except these, CEMOGA-Net uses the same
objective functions and optimization framework (i.e., NSGA-II) as
MOGA-Net. In the experiments, CEMOGA-Net and MOGA-Net
are tested on widely used synthetic and real-world networks. The
results show that our new encoding method is very effective for
improving the performance of MOGA-Net.

2 CONTINUOUS ENCODING METHOD
Assume that x is a continuous valued genotype in a population 𝑃 .
Here, x = [x1, x2, . . . , x𝑛] ∈ [0, 1]𝐿 where 𝑛 and 𝐿 stand for the
number of nodes and edges in a network, respectively. The sub-
vector x𝑖 is the encoding for node 𝑉𝑖 . The length of x𝑖 is equal to
the number of edges linking with node 𝑉𝑖 and the set of linking
nodes is defined as N(𝑉𝑖 ).

Our encoding method is performed as follows. At first, an edge
set E is set to empty. For each node 𝑉𝑖 in the network, we perform
the sigmoid function on its corresponding sub-vector x𝑖 element
by element. The softmax function and argmax function are then
operated step by step to select a node 𝑉𝑝𝑖 within N(𝑉𝑖 ). The node
𝑉𝑝𝑖 is considered as in the same community as node 𝑉𝑖 . The node
pair (𝑉𝑖 ,𝑉𝑝𝑖 ) will be stored in E.

The above non-linear operations are performed for all nodes in
the network one by one. In the end, a discrete permutation solution
will be obtained, which is a locus-based encoding solution, i.e. a
node’s genotype is one of its connected nodes. After decoding, a
discrete network partition solution will be obtained.
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Figure 1: The encoding and decoding processes of an individ-
ual x on a network.

The encoding and decoding processes of an individual x on a
simple network is visualized in Fig. 1. As shown in the figure, sig-
moid, softmax and argmax operations are performed on individual
x step by step. Consequently, a locus-based encoding solution is
obtained. After decoding, two communities {1, 2, 3, 4} and {5, 6}
are obtained as the result.

In CEMOGA-Net, the objective functions are the same as in
MOGA-Net, including the community score and the sum of commu-
nity fitness of each detected community. Evolutionary operators:
differential evolution (DE) and polynomial mutation used in [3] are
employed directly due to the convenience of continuous encoding.

Note that our encoding method implements the transformation
of continuous value-based individual and discrete partition solution
of complex network. To the best of our knowledge, our work is
the first continuous transformation method in this research area.
Moreover, this encoding method is easy to be embedded in any
continous evolutionary algorithm based method.

3 EXPERIMENTAL STUDY
In this section, we present the experimental results obtained by
performing CEMOGA-Net and MOGA-Net on synthetic and real-
world networks. The population size of CEMOGA-Net is set to 100.
The number of generations is 200. The parameters of DE are set
as 𝐹 = 0.7 and 𝐶𝑅 = 0.5. The mutation probability is set to 0.02
and distribution index of mutation is set to 20. For MOGA-Net, the
parameters are set the same as in the original work [6].

The commonly used normalized mutual information (NMI) [1]
metric is employed to evaluate the performance of the two MOEAs.
The larger the NMI value, the better performance of a method. In
the following tables, the mean and standard deviation NMI values
summarized from the 30 runs obtained by the two algorithms are
reported and the best results are marked in bold.

Ten different LFR [5]1 synthetic networks with 500 nodes are
generated. Their main control parameter 𝜇 ranges from 0.1 to 1.0
with step size 0.1 and we mark them as LFR1 to LFR10 correspond-
ingly. The NMI results for these LFR networks are shown in Table 1.
We can find that CEMOGA-Net achieves higher NMIs than MOGA-
Net, which reveals that the proposed encoding method can certainly
enhance the performance of MOGA-Net.

Four real-world networks, including Zackary’s Karate Club net-
work (abbr. Karate), Bottlenose Dolphins network (abbr. Dolphins),
American College Football network (abbr. Football) and Kreb’s
books on American politics network (abbr. Books), are also used to
test CEMOGA-Net and MOGA-Net. The obtained results are sum-
marized in Table 2. From the table, we see that the NMI obtained by
1LFR is a network generator proposed by Lancichinetti, Fortunato and Radicchi in [5]
which has been widely used for complex network studies.

Table 1: The NMI values obtained by MOGA-Net and
CEMOGA-Net on ten synthetic networks.

Methods LFR1 LFR2 LFR3 LFR4 LFR5
MOGA-Net 0.782(0.016) 0.516(0.027) 0.448(0.023) 0.379(0.011) 0.324(0.022)
CEMOGA-Net 0.793(0.012) 0.585(0.012) 0.534(0.011) 0.433(0.006) 0.375(0.008)
Methods LFR6 LFR7 LFR8 LFR9 LFR10
MOGA-Net 0.281(0.014) 0.245(0.013) 0.253(0.009) 0.239(0.005) 0.217(0.007)
CEMOGA-Net 0.311(0.008) 0.262(0.011) 0.270(0.004) 0.250(0.009) 0.223(0.007)

Table 2: The NMI values obtained by the compared algo-
rithms on four real-world networks.

Methods Karate Dolphins Football Books

MOGA-Net 1(0) 1(0) 0.795(0.016) 0.597(0.014)
CEMOGA-Net 1(0) 1(0) 0.822(0.014) 0.614(0.009)

CEMOGA-Net are higher than MOGA-Net in general, though both
methods have the same results of ‘1’ on ‘Karate’ and ‘Dolphins’.
Moreover, in both tables, the standard deviation values obtained by
CEMOGA-Net are roughly all smaller than those by MOGA-Net,
which indicates that CEMOGA-Net is more stable.

4 CONCLUSION
In this paper, we proposed a novel continuous encoding method
for the community detection problem in complex networks. With
this encoding method, we realized the transformation from a dis-
crete MOP to a continuous MOP. By embedding it in MOGA-Net,
CEMOGA-Net was proposed. The experimental studies showed
that CEMOGA-Net performs significantly better than MOGA-Net,
which indicated that the continuous encoding method is effective.
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