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ABSTRACT
When designing meta-heuristic strategies to optimize the quadratic
assignment problem (QAP), it is important to take into account
the specific characteristics of the instance to be solved. One of the
characteristics that has been pointed out as having the potential to
affect the performance of optimization algorithms is the symmetry
of the distance and flow matrices that form the QAP.

In this paper, we further investigate the impact of the symme-
try of the QAP on the performance of meta-heuristic algorithms,
focusing on local search based methods. The analysis is carried
out using the elementary landscape decomposition (ELD) of the
problem under the swap neighborhood. First, we study the number
of local optima and the relative contribution of the elementary com-
ponents on a benchmark composed of different types of instances.
Secondly, we propose a specific local search algorithm based on the
ELD in order to experimentally validate the effects of the symmetry.
The analysis carried out shows that the symmetry of the QAP is
a relevant feature that influences both the characteristics of the
elementary components and the performance of local search based
algorithms.
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1 INTRODUCTION
Formalized by Koopmans and Beckmann [36] in 1957, the quadratic
assignment problem (QAP) has been a recurring problem in combi-
natorial optimization due to its known complexity. In fact, in 1976,
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Sahni and Gonzalez [44] proved its NP-hardness. The QAP was
originally proposed as a mathematical model for the location of
a set of indivisible economic activities; however, in recent years,
it has demonstrated to have many other real world applications
such as facility layout design [24], parallel production scheduling
[29], backboard wiring [6] or keyboard configuration [8]. Moreover,
some major optimization problems can be expressed as particular
cases of the QAP, as for example the traveling salesman problem
(TSP) [34], the linear ordering problem (LOP) [13] or the DNA
fragment assembly problem (DNA-FA) [38]. As a result of this, a
number of survey papers and reference books about the QAP have
been published over the years [2, 9, 37].

A great number of strategies to solve the QAP have been pro-
posed in the literature. Among them, branch and bound [28] and
branch and cut [25] algorithms have proved to be powerful for small
problem sizes; however, in large problems, they are no longer viable.
As a result, due to the computational limitations, meta-heuristic
algorithms [5] postulate as an efficient alternative, though they
do not guarantee the optimality of the solutions. Over the years,
many different meta-heuristic algorithms have been proposed for
the QAP, ranging from local search approaches [4, 49, 53] to popu-
lation based evolutionary algorithms [1, 23, 27, 40]. Designing new
specific algorithms requires a good knowledge of the problem to
be solved, so many authors have felt the need to perform extensive
prior analyses of the characteristics of the QAP [16, 21, 39, 41].

Nevertheless, due to the inherent complexity of NP-hard prob-
lems, it may be difficult to directly study the characteristics of the
QAP. In this sense, an alternative strategy can be to decompose the
problem into a set of components that provide a framework that
eases the analysis [42]. This approach allows us to have a more
detailed vision of the problem that can facilitate the detection of
useful properties for optimization. Among all the possible decom-
position techniques, one available for the QAP is the elementary
landscape decomposition (ELD). Proposed by Chicano et al. [19],
this decomposition technique allows the QAP to be decomposed as
a linear combination of three independent components (elementary
landscapes). However, in spite of the growing interest, its impact
on the analysis of combinatorial optimization problems and the
development of new algorithms have been quite limited. Ceberio et
al. [12] used the ELD as a method for the multi-objectivization of
the QAP. In that work, a reference to the correlation between the
symmetry of the QAP and its ELD decomposition was also high-
lighted. In fact, the symmetry has been observed to be particularly
important in the QAP [22].

In this work, the elementary landscape decomposition is used to
better understand the way in which the symmetry of the problem in-
fluences the performance of meta-heuristic algorithms, specifically
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local search based methods [48]. For this purpose, we first analyze
the components of the decomposition on a benchmark of instances
extracted from the QAPLIB library [7]. The analysis focuses on two
main issues: the number of local optima and the relative contribu-
tion of the components of the decomposition to the structure of
the problem. With this analysis, we intend to study the differences
between different types of instances according to their symmetry.
We build on the obtained results to propose a local search based
algorithm that uses the elementary landscape decomposition to
efficiently solve the QAP. This algorithm is used to validate the
conclusions of the analysis through an experimental study of its
performance on a benchmark of instances.

The rest of the paper is organized as follows. In Sections 2 and 3,
the quadratic assignment problem and the theory on elementary
landscape decomposition are introduced. Section 4 shows the anal-
ysis of the QAP through the ELD, and discusses the effects of the
symmetry of the instances on the characteristics of the problem.
In Section 5, a local search based algorithm that uses the ELD is
proposed and an experimental study of its performance is intro-
duced. Finally, general conclusions and ideas for future work are
presented in Section 6.

2 QUADRATIC ASSIGNMENT PROBLEM
The quadratic assignment problem (QAP) [36] consists of 𝑛 facilities
that need to be assigned to𝑛 available locations, taking into account
that a facility can only be assigned to one location, and vice versa.
𝑑𝑖 𝑗 is defined as the distance between the location 𝑖 and location
𝑗 , and ℎ𝑝𝑞 is defined as the work flow between the facility 𝑝 and
the facility 𝑞. The goal of the QAP is to find the configuration
that minimizes the overall communication costs between facilities,
computed by the following objective function:

𝑓 (𝑥) =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑑𝑖 𝑗ℎ𝜎 (𝑖)𝜎 ( 𝑗) (1)

where 𝜎 is a permutation of size 𝑛 and 𝜎 (𝑖) denotes the facility
assigned to the location 𝑖 . Therefore, any QAP instance is composed
of two elements: a distance matrix 𝐷 = [𝑑𝑖 𝑗 ]𝑛×𝑛 that specifies the
distances between locations and a flow matrix 𝐻 = [ℎ𝑝𝑞]𝑛×𝑛 that
denotes the work flows between facilities.

The symmetry of the QAP has been singled out as a relevant
feature that might influence the performance of optimization algo-
rithms. Thus, in this work we classify the QAP instances into three
different groups: symmetric (both the distance and flow matrices
are symmetric1), semi-symmetric (either the distance matrix or the
flow matrix is symmetric, but not both), and asymmetric (neither
of the distance and flow matrices is symmetric).

3 ELEMENTARY LANDSCAPE
DECOMPOSITION

A landscape of a combinatorial optimization problem [43] is defined
as a triplet (Ω, 𝑓 , 𝑁 ), where Ω is the search space of the problem, 𝑓 :
Ω → R stands for the objective function that measures the fitness
value of the solutions and 𝑁 denotes a neighborhood function
that assigns to each solution 𝑥 ∈ Ω a set of neighboring solutions

1With respect to the main diagonal.

𝑁 (𝑥) ⊂ Ω. The concepts of local minimum and maximum in a
combinatorial optimization problem are defined by the landscape:

• Local minimum: Any solution 𝑥 ∈ Ω such that 𝑓 (𝑥) ≤
𝑓 (𝑦) for all 𝑦 ∈ 𝑁 (𝑥).

• Local maximum: Any solution 𝑥 ∈ Ω such that 𝑓 (𝑥) ≥
𝑓 (𝑦) for all 𝑦 ∈ 𝑁 (𝑥).

Thus, landscapes are the basis of local search optimization pro-
cesses. Among all possible landscapes, there are some that are of
particular interest due to their properties: the elementary land-
scapes [45, 51]. These landscapes were discovered by L.K. Grover
[31] when the author noticed that the local search procedures of
some combinatorial optimization problems could be modeled by a
discrete formula similar to the wave equation used in physics. This
formula, known as Grover’s wave equation, makes it possible to
calculate the average value of the objective function 𝑓 evaluated
over all the neighborhood 𝑁 (𝑥) based on the fitness value of 𝑥 :

𝑎𝑣𝑔{𝑓 (𝑦)}
𝑦∈𝑁 (𝑥)

= 𝑓 (𝑥) + 𝑘

|𝑁 (𝑥) |
(
𝑓 − 𝑓 (𝑥)

)
(2)

where 𝑓 is the average value of the objective function over the en-
tire search space and 𝑘 is a characteristic constant that depends on
the landscape. Any landscape that satisfies this equation is known
to be elementary. More specifically, a landscape is elementary when
its objective function 𝑓 is elementary, that is, when 𝑓 is an eigen-
function of the Laplacian matrix of the graph induced by Ω and 𝑁

[45, 51].
Elementary landscapes always satisfy the following [20]:
• 𝑓 (𝑥) < 𝑓 =⇒ 𝑓 (𝑥) < 𝑎𝑣𝑔{𝑓 (𝑦)}

𝑦∈𝑁 (𝑥)
< 𝑓

• 𝑓 (𝑥) = 𝑓 =⇒ 𝑓 (𝑥) = 𝑎𝑣𝑔{𝑓 (𝑦)}
𝑦∈𝑁 (𝑥)

= 𝑓

• 𝑓 (𝑥) > 𝑓 =⇒ 𝑓 (𝑥) > 𝑎𝑣𝑔{𝑓 (𝑦)}
𝑦∈𝑁 (𝑥)

> 𝑓

The above implies that all the local minima have a objective
function value that is equal to or less than the average objective
function value of the entire search space, while just the opposite
happens in the case of the local maxima. These properties ensure
that the elementary landscapes have a well known structure, which
makes them particularly interesting for dealing with combinatorial
optimization problems.

Although not every landscape (Ω, 𝑓 , 𝑁 ) is elementary, any land-
scape whose neighborhood is regular (𝑁 (𝑥) = 𝑑 for all 𝑥 ∈ Ω) and
symmetric (𝑦 ∈ 𝑁 (𝑥) ↔ 𝑥 ∈ 𝑁 (𝑦) for all 𝑥,𝑦 ∈ Ω) can be decom-
posed as a linear combination of several elementary landscapes
which are known as elementary components of the problem. This
process is called elementary landscape decomposition (ELD) [19].

3.1 Elementary Landscape Decomposition of
the QAP

In the case of the QAP, no neighborhood that produces an ele-
mentary landscape is known. However, according to [17], the QAP
under the swap neighborhood can be decomposed into a combi-
nation of three elementary landscapes. In the swap neighborhood,
two solutions are neighbors if one can be transformed into the other
by exchanging two items of the solution. Therefore, the landscape
used to represent the QAP is 𝐿 = (𝑆𝑛, 𝑓 , 𝑁 ), where 𝑆𝑛 is the set
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of all the permutations of size 𝑛, 𝑓 is the objective function given
by Equation (1) and 𝑁 is the swap neighborhood. In what follows,
an explanation of the results developed in [17] is presented in a
summarized form. For a more detailed explanation, see [17].

The elementary landscape decomposition of 𝐿 is done by search-
ing for a set of elementary functions {𝑓1, 𝑓2, 𝑓3, ..., 𝑓𝑚} that form
𝑚 elementary landscapes together with the search space and the
neighborhood function of 𝐿. This set of functions is created by
the decomposition of the objective function of 𝐿, so it must satisfy
𝑓 (𝜎) = 𝑓1 (𝜎) + 𝑓2 (𝜎) + 𝑓3 (𝜎) + ... + 𝑓𝑚 (𝜎) for all 𝜎 ∈ 𝑆𝑛 . In order
to facilitate the decomposition, we rewrite Equation (1) as follows:

𝑓 (𝜎) =
𝑛∑

𝑖, 𝑗,𝑝,𝑞=1
𝜓𝑖, 𝑗,𝑝,𝑞𝜑 (𝑖, 𝑗) (𝑝,𝑞) (𝜎) (3)

where 𝜓𝑖, 𝑗,𝑝,𝑞 = 𝑑𝑖, 𝑗ℎ𝑝,𝑞 and 𝜑 (𝑖, 𝑗) (𝑝,𝑞) (𝜎) = 𝛿
𝑝

𝜎 (𝑖)𝛿
𝑞

𝜎 ( 𝑗) , consider-

ing that 𝛿𝑏𝑎 is the Kronecker’s delta function that returns 1 if 𝑎 = 𝑏

and 0 otherwise. In this new formulation, 𝜓𝑖, 𝑗,𝑝,𝑞 is the instance-
related part while 𝜑 (𝑖, 𝑗) (𝑝,𝑞) (𝜎) is the problem-related part that
varies depending on 𝜎 . According to [17], 𝑓 can be decomposed as
the sum of three elementary functions:

𝑓1 (𝜎) =
𝑛∑

𝑖, 𝑗,𝑝,𝑞=1
𝑖≠𝑗
𝑝≠𝑞

𝜓𝑖, 𝑗,𝑝,𝑞

𝜙1
(𝑖, 𝑗) (𝑝,𝑞) (𝜎)

2𝑛
(4)

𝑓2 (𝜎) =
𝑛∑

𝑖, 𝑗,𝑝,𝑞=1
𝑖≠𝑗
𝑝≠𝑞

𝜓𝑖, 𝑗,𝑝,𝑞

𝜙2
(𝑖, 𝑗) (𝑝,𝑞) (𝜎)
2(𝑛 − 2) (5)

𝑓3 (𝜎) =
𝑛∑

𝑖,𝑝=1
𝜓𝑖,𝑖,𝑝,𝑝𝜑 (𝑖,𝑖) (𝑝,𝑝) (𝜎) +

𝑛∑
𝑖, 𝑗,𝑝,𝑞=1

𝑖≠𝑗
𝑝≠𝑞

𝜓𝑖, 𝑗,𝑝,𝑞

𝜙3
(𝑖, 𝑗) (𝑝,𝑞) (𝜎)

𝑛(𝑛 − 2)

(6)
where 𝜙1

(𝑖, 𝑗) (𝑝,𝑞) , 𝜙
2
(𝑖, 𝑗) (𝑝,𝑞) and 𝜙

3
(𝑖, 𝑗) (𝑝,𝑞) are defined as:

𝜙𝑚(𝑖, 𝑗) (𝑝,𝑞) (𝜎) =



𝛼 if 𝜎 (𝑖) = 𝑝 ∧ 𝜎 ( 𝑗) = 𝑞

𝛽 if 𝜎 (𝑖) = 𝑞 ∧ 𝜎 ( 𝑗) = 𝑝

𝛾 if 𝜎 (𝑖) = 𝑝 ⊕ 𝜎 ( 𝑗) = 𝑞

𝜖 if 𝜎 (𝑖) = 𝑞 ⊕ 𝜎 ( 𝑗) = 𝑝

𝜁 if 𝜎 (𝑖) ≠ 𝑝, 𝑞 ∧ 𝜎 ( 𝑗) ≠ 𝑝, 𝑞

(7)

where 1 ≤ 𝑖, 𝑗, 𝑝, 𝑞 ≤ 𝑛 and 𝛼, 𝛽,𝛾, 𝜖, 𝜁 ∈ R. The operator ⊕ stands
for the exclusive OR operator. The set of parameters for each of the
functions𝑚 = 1, 2, 3 is:

𝛼 𝛽 𝛾 𝜖 𝜁

𝜙1 n-3 1-n -2 0 -1
𝜙2 n-3 n-3 0 0 1
𝜙3 2n-3 1 n-2 0 -1

By definition, 𝑓 (𝜎) = 𝑓1 (𝜎) + 𝑓2 (𝜎) + 𝑓3 (𝜎) for all 𝜎 ∈ 𝑆𝑛 . The
functions 𝑓1, 𝑓2 and 𝑓3 form three elementary landscapes together
with the search space and the neighborhood function of 𝐿. These

three elementary landscapes, denoted as 𝐿1, 𝐿2 and 𝐿3 respectively,
are the elementary components of the decomposition of the QAP.

4 ANALYSIS OF THE QAP
In this section we experimentally analyze the characteristics of
the elementary landscapes of the decomposition of the QAP on
a benchmark of instances. The benchmark is composed of sym-
metric, semi-symmetric and asymmetric instances so as to find the
particularities and influences of each type of QAP problem.

The experiments are divided into two groups. First, we estimate
the number of local optima of the elementary landscapes as a mea-
sure of their complexity when solving them using local search
algorithms. We take into account the plateaus formed by the lo-
cal optima in order to better understand the ruggedness of the
landscapes. This experimentation helps us to decide which compo-
nents of the decomposition are easier to optimize using local search
strategies. Secondly, we quantify the relative contribution of each
of the elementary landscapes to both the objective function and the
local optima of the overall problem. This experimentation allows us
to investigate the relevance of each elementary component when
solving QAP instances.

4.1 Benchmark of instances
The experimental framework used in this work consists of the
following instances:

• 20 instances extracted from the QAPLIB library [7]: 8 sym-
metric instances (chr15a, chr20a, esc16a, esc16b, had18, had20,
rou15, rou20), 8 semi-symmetric instances (lipa20a, lipa20b,
lipa30a, lipa30b, tai15b, tai20b, tai25b, tai30b), 4 asymmetric
instances (bur26a, bur26b, bur26c, bur26d).

• 4 asymmetric instances specifically generated for the experi-
mentation (xab20a, xab20b, xab20c, xab20d).

The digits in the instance names indicate the size of the problems.
Due to the lack of asymmetric instances in the QAPLIB library,
we generate 4 additional asymmetric instances in order to have a
more diverse benchmark for the analysis2. The instance generation
technique used is loosely inspired by the one proposed in [47]:

• Distance matrix (𝐷): First, 𝑛 uniform random points are
generated in a 100×100 rectangle, and the euclidean distance
𝑒 (𝑖, 𝑗) between every pair of points 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is computed.
Then, for every 1 ≤ 𝑖, 𝑗 ≤ 𝑛 such that 𝑖 ≠ 𝑗 , 𝑑𝑖 𝑗 = 𝑣 · 𝑒 (𝑖, 𝑗)
where 𝑣 is a uniform random value between 0.85 and 1.15.
Finally, the matrix is scaled so that 0 ≤ 𝑑𝑖 𝑗 ≤ 100 for every
1 ≤ 𝑖, 𝑗 ≤ 𝑛. All the values are rounded to the closest integer.

• Flow matrix (𝐻 ): For every 1 ≤ 𝑖, 𝑗 ≤ 𝑛 such that 𝑖 ≠ 𝑗 ,
a uniform random value 𝑥 between 0 and 1 is sampled. If
𝑥 > 𝑠𝑝 , where 𝑠𝑝 is a parameter that indicates the sparsity of
the matrix, ℎ𝑖 𝑗 is set to a uniform random integer between 0
and 100. Otherwise, ℎ𝑖 𝑗 = 0.

The entries on the main diagonals of both matrices are set to
0. Using this technique, we obtain instances that are formed by
two asymmetric matrices: a semi-structured distance matrix and
a random flow matrix. In order to enhance the diversity of the

2The generated instances are available in https://github.com/XB-Repositories/
GECCO-Algorithms/tree/main/Instances.
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benchmark, the generated instances are created using different
parameter settings: 𝑠𝑝 = 0 (xab20a), 𝑠𝑝 = 0.25 (xab20b), 𝑠𝑝 = 0.5
(xab20c) and 𝑠𝑝 = 0.75 (xab20d). The higher the value of 𝑠𝑝 , the
higher the sparsity of the flow matrix.

4.2 Number of local optima
The number of local optima of a combinatorial landscape can be
related to the difficulty of finding the global optima using local
search algorithms [26, 32]; therefore, it can be used as an indirect
measure of complexity. However, it is unfeasible to exhaustively
calculate the number of local optima of the benchmark instances
due to the size of their search spaces. For that reason, in this study
the ChaoLee2 [14] estimator that is reviewed in [32] has been con-
sidered. This estimation technique approximates the total number
of local optima from a sample of local optima that is obtained by
performing a basic local search starting from𝑀 random solutions.
The considered local search works under the swap neighborhood
and chooses the best solution at each step. From the𝑀 initial solu-
tions, 𝑟 unique local optima𝛩 = {𝜎∗1 , 𝜎

∗
2 , ..., 𝜎

∗
𝑟 } ⊂ 𝑆𝑛 (𝑟 ≤ 𝑀) are

obtained. Based on this sample, the estimator makes a distinction
between easy-to-find and hard-to-find optima, which is defined by
a 𝛿 parameter that indicates the minimum number of times an opti-
mum must be observed to be considered easy-to-find. The number
of easy-to-find and hard-to-find optima in the sample is then used
to estimate the total number of local optima. For the sake of brevity,
we do not explain the exact formula used by ChaoLee2, so we refer
the interested reader to [32].

According to [32], when all the obtained local optima are differ-
ent (𝑟 = 𝑀), the ChaoLee2 method does not work. In these cases,
the strategy followed is to take a random sample of solutions, and
the proportion of local optima in the sample is used as an estimator
of the proportion of local optima in the entire search space. This
alternative estimation method is called CountOptima.

Until now, we have assumed that all the local optima are indepen-
dent from each other, so we have purposely put aside some aspects
that greatly influence the structure of the landscapes. One of the
most important factors is the plateaus formed by local optima [33].
A plateau in a combinatorial landscape is a set of solutions 𝑃 ⊆ Ω
such that, for every pair of solutions 𝑥,𝑦 ∈ 𝑃 , satisfies 𝑓 (𝑥) = 𝑓 (𝑦)
and there is a path (𝑥 = 𝑎1, 𝑎2, ..., 𝑎𝑘 = 𝑦) such that 𝑎𝑖 ∈ 𝑃 and
𝑎𝑖+1 ∈ 𝑁 (𝑎𝑖 ). A plateau that is formed by multiple local optima
can be considered as a unique local optimum when applying local
search based algorithms, so a landscape in which most of the local
optima are clustered on plateaus may be much less rugged than the
estimates suggest.

Thus, in order to validate the obtained results, the local optima
found in the sample (𝛩 ) are grouped into plateaus. Given any pair
of local optima 𝜎∗1 , 𝜎

∗
2 ∈ 𝛩 , we consider that 𝜎∗1 and 𝜎∗2 are part

of the same plateau if 𝑓 (𝜎∗1 ) = 𝑓 (𝜎∗2 ) and there is a path (𝜎∗1 =

𝑎∗1, 𝑎
∗
2, .., 𝑎

∗
𝑘
= 𝜎∗2 ) such that 𝑎∗

𝑖
∈ 𝛩 and 𝑎∗

𝑖+1 ∈ 𝑁 (𝑎∗
𝑖
). Although

considering only the local optima found in the sample speeds up the
computations, the results are less precise since we could consider
as different plateaus two sets of solutions that are connected by a
path of local optima (𝑏∗1, 𝑏

∗
2, ..., 𝑏

∗
𝑘
) such that 𝑏𝑖 ∉ 𝛩 . Nevertheless,

this strategy provides an approximate upper bound for the number
of plateaus in the sample in a reasonable amount of time.

4.2.1 Results. The number of local optima of each of the el-
ementary landscapes for the benchmark instances are estimated
based on a sample of 200.000 local searches per instance and land-
scape. The cutoff parameter of the ChaoLee2 estimator is set to
𝛿 = 10 according to the recommendations of [15]. When 100% of
the encountered local optima appear only once in the sample, the
alternative CountOptima method is used based on 200.000 random
solutions. The obtained results are shown in Table 1.

As can be observed, the CountOptima method estimates that
100% of the solutions in the search space of 𝐿1 are local optima
in all the symmetric and semi-symmetric benchmark instances.
Although this could lead us to believe that 𝐿1 is a very rugged
landscape, this is not really the case. According to [50], the objective
function of 𝐿1 turns out to be constant (𝑓1 (𝜎1) = 𝑓1 (𝜎2) for all
𝜎1, 𝜎2 ∈ 𝑆𝑛) when at least one of the matrices that form the instance
is symmetric, which explains why every solution in the search space
of the symmetric and semi-symmetric instances is a local optimum
itself. This affirmation has already been formally demonstrated in
[50], but, for the sake of completeness, we provide an alternative
mathematical proof in Appendix A.

Table 2 shows the results for the plateaus formed by the local
optima found in the samples. As the method used only computes
an upper bound for the number of plateaus, when a landscape is
constant it may return misleading results (more than 1 plateau).
Therefore, to avoid confusion, we omit the 𝐿1 landscape in symmet-
ric and semi-symmetric instances when grouping the local optima.

In asymmetric benchmark instances, 𝐿1 seems to be a very
rugged landscape, since the estimated number of local optima and
plateaus is much higher than in the rest of the elementary land-
scapes. Moreover, as not all the solutions in the search space of
𝐿1 are local optima, we also know that in these cases 𝐿1 is not
constant. This is the major difference with respect to symmetric
and semi-symmetric instances.

The results also show that, independently of the symmetry of
the instance, the 𝐿3 landscape is, in general, much less rugged than
𝐿1 and 𝐿2. In fact, in almost all the symmetric and semi-symmetric
benchmark instances, 𝐿3 seems to have just 1 plateau formed by
local optima. Two exceptions are the esc16 instances, in which the
estimated proportion of local optima in the search space is 100%.
However, we suspect that in these cases the objective function of
𝐿3 is constant, just like in the case of 𝐿1.

4.3 Contribution of the elementary
components

The second analysis focuses on the study about the relative contri-
bution of the elementary components of the decomposition to the
structure of the problem. The aim is to find out the elementary land-
scapes that have the greatest influence in each type of instance. For
this purpose, we first compute the spectral amplitudes [18, 35, 46]
of the eigenvalues of 𝑓1, 𝑓2 and 𝑓3 for the benchmark instances. The
spectral amplitudes can be considered as a measure of the relative
contribution of each of the elementary landscapes to the variance
of the general objective function 𝑓 , and are calculated as:

𝑊𝑖 =
𝑓 2
𝑖
− 𝑓𝑖

2

𝑓 2 − 𝑓
2 (8)
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Table 1: Estimated number of local optima. In the cases where CountOptima is used (italic), the results are shown as the
estimated percentage of local optima in the search space.

Symmetric Instances
chr15a chr20a esc16a esc16b had18 had20 rou15 rou20

L1 100,00 % 100,00 % 100,00 % 100,00 % 100,00 % 100,00 % 100,00 % 100,00 %
L2 72.730 3.628.387 47.831.068 9.999.900.000 81.995 445.134 150.772 6.153.458
L3 4 8 100,00 % 100,00 % 1.152 768 1 1

Semi-symmetric Instances
lipa20a lipa20b lipa30a lipa30b tai15b tai20b tai25b tai30b

L1 100,00 % 100,00 % 100,00 % 100,00 % 100,00 % 100,00 % 100,00 % 100,00 %
L2 9.311.635 10.453.678 167.744.885.090 198.743 5.787 28.443 300.217 3.188.513
L3 9.999.900.000 32 0,00 % 48 2 1 1 1

Asymmetric Instances
bur26a bur26b bur26c bur26d xab20a xab20b xab20c xab20d

L1 5.458.734 999.900.000 6.971.361 1.999.900.000 16.750.465 11.065.476 13.993.626 7.358.769
L2 279.060 1.147.427 145.420 716.890 261.008 240.978 484.125 222.968
L3 13.823 21.324.218 41.400 7.763.110 7 6 16 4

Table 2: Approximate upper bound for the number of plateaus in the samples compared to the number of local optima (in
brackets). 𝐿1 is omitted in symmetric and semi-symmetric instances.

Symmetric Instances
chr15a chr20a esc16a esc16b had18 had20 rou15 rou20

L1 - - - - - - - -
L2 41.892 (41.892) 189.658 (189.736) 191.971 (199.581) 199.803 (199.998) 15.533 (34.165) 49.842 (95.928) 61.009 (61.009) 193.591 (193.591)
L3 1 (4) 1 (8) 200.000 (200.000) 200.000 (200.000) 1 (1.152) 1 (768) 1 (1) 1 (1)

Semi-symmetric Instances
lipa20a lipa20b lipa30a lipa30b tai15b tai20b tai25b tai30b

L1 - - - - - - - -
L2 192.030 (192.312) 191.735 (191.739) 199.977 (199.979) 198.743 (198.743) 5.125 (5.125) 17.942 (17.942) 81.067 (81.067) 181.475 (181.475)
L3 199.691 (199.998) 1 (32) 200.000 (200.000) 1 (48) 1 (2) 1 (1) 1 (1) 1 (1)

Asymmetric Instances
bur26a bur26b bur26c bur26d xab20a xab20b xab20c xab20d

L1 174.259 (190.492) 199.580 (199.980) 185.442 (195.253) 199.834 (199.990) 198.397 (198.398) 197.194 (197.194) 198.067 (198.067) 195.557 (195.557)
L2 38.555 (83.135) 77.423 (141.690) 22.415 (55.346) 49.067 (126.507) 72.958 (72.960) 67.401 (67.402) 96.562 (96.564) 70.006 (70.011)
L3 2 (13.823) 169.852 (199.058) 6 (40.837) 120.587 (197.439) 7 (7) 6 (6) 16 (16) 4 (4)

where𝑊𝑖 is the spectral amplitude that measures the contribution
of 𝐿𝑖 . By definition,𝑊1 +𝑊2 +𝑊3 = 1.

Once the contribution of each of the elementary components to
the overall fitness is quantified, the next step is to study the rela-
tionship between the local optima of 𝐿 and the local optima of the
elementary landscapes. In particular, we estimate the percentage of
the local optima of 𝐿 that are also local optima of 𝐿1, 𝐿2 or 𝐿3, for
each of the benchmark instances. This measure provides informa-
tion about the relative contribution of the elementary landscapes
to the local optima of the overall problem, which is relevant when
working with local search based algorithms.

4.3.1 Results. The exact values of the spectral amplitudes for
the benchmark instances are calculated as explained in [18]. The
obtained results are shown as heat maps in Figure 1.

As the results show, the 𝐿2 landscape seems to be especially
important on symmetric and semi-symmetric benchmark instances.
In fact, in almost all the cases, the spectral amplitude of 𝐿2 is 0.7
or higher. On the other hand, the contribution of the 𝐿3 landscape
seems to be remarkable on asymmetric benchmark instances, since
its spectral amplitude is higher than 0.5 in half of them.

chr15a chr20a esc16a esc16b had18 had20 rou15 rou20

W
1

W
2

W
3

0 0 0 0 0 0 0 0

0.91 0.96 1 1 0.76 0.7 0.9 0.86

0.09 0.04 0 0 0.24 0.3 0.1 0.14

Symmetric Instances

lipa20a lipa20b lipa30a lipa30b tai15b tai20b tai25b tai30b

W
1

W
2

W
3

0 0 0 0 0 0 0 0

0.97 0.92 0.97 0.96 0 0.43 0.8 0.97

0.03 0.08 0.03 0.04 1 0.57 0.2 0.03

Semi-symmetric Instances

bur26a bur26b bur26c bur26d xab20a xab20b xab20c xab20d

W
1

W
2

W
3

0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02

0.36 0.41 0.34 0.38 0.8 0.63 0.83 0.61

0.61 0.56 0.63 0.58 0.18 0.35 0.15 0.37

Asymmetric Instances

Figure 1: Spectral amplitudes. The red color indicates that
the amplitude is closer to 0, while the blue color indicates
that the amplitude is closer to 1.
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chr15a chr20a esc16a esc16b had18 had20 rou15 rou20
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Semi-symmetric Instances

bur26a bur26b bur26c bur26d xab20a xab20b xab20c xab20d
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Asymmetric Instances

Figure 2: Estimated percentage of the local optima of 𝐿 that
are also local optima of 𝐿1, 𝐿2 or 𝐿3. The red color indicates
that the percentage is closer to 0%, while the blue color indi-
cates that the percentage is closer to 100%. 𝐿1 is omitted in
symmetric and semi-symmetric instances.

In all cases, the least important landscape is 𝐿1. As we have al-
ready explained, the objective function of this landscape is constant
in symmetric and semi-symmetric instances (𝑊1 = 0), and its con-
tribution in asymmetric benchmark instances is very limited, with
a spectral amplitude that ranges from 0.02 to 0.03.

Next, we estimate the percentage of the local optima of 𝐿 that are
also local optima of 𝐿1, 𝐿2 or 𝐿3 for each of the benchmark instances
from the local optima found in the samples of Section 4.2. As the
𝐿1 landscape is entirely composed of local optima in symmetric
and semi-symmetric instances (constant objective function), we
omit this case in order to avoid confusion. The obtained results are
shown as heat maps in Figure 2.

In the view of the results, 𝐿2 shares a significant number of local
optima with 𝐿 in the majority of symmetric and semi-symmetric
benchmark instances. However, the percentage of shared local op-
tima varies greatly from one instance to another, ranging from as
low as 0.03% to as high as 100.00%. Be that as it may, it seems that
the 𝐿2 landscape has the most important influence on the local
optima of 𝐿 in these types of instances. The only exceptions in
which the 𝐿3 landscape also shares a high percentage of the local
optima with 𝐿 (100%) are the esc16 instances, but, as we have already
mentioned, we suspect that this is because 𝐿3 is constant.

In asymmetric benchmark instances, on the other hand, none
of the elementary landscapes shares a significant number of local
optima with 𝐿 (< 1.00% in all cases). Therefore, in these cases there
does not seem to be a single elementary landscape that predomi-
nantly influences the local optima of the overall problem.

4.4 Discussion
The experiments carried out show that the symmetry of the in-
stances has an important impact on the difficulty and relative con-
tribution of the elementary landscapes that form the decomposition

of the QAP. All these characteristics might be exploited when de-
signing specific meta-heuristic approaches.

We have proven that in symmetric and semi-symmetric instances
the objective function of 𝐿1 is constant. Therefore, for optimiza-
tion purposes these types of instances are composed of just two
elementary landscapes. Among the non-constant landscapes, 𝐿2 is
generally the elementary landscape that has the greatest relative
contribution to both the fitness and the local optima of the prob-
lem. Thus, it might be good idea to focus on 𝐿2 when optimizing
symmetric and semi-symmetric instances. In asymmetric instances,
however, there is not a clearly predominant elementary landscape.
This suggests that in these cases all the elementary landscapes
should be considered during optimization, especially 𝐿2 and 𝐿3.

As we can see, symmetric and semi-symmetric instances seem
to have similar characteristics. This is due to the fact that any semi-
symmetric instance can be converted into a symmetric instance
without modifying its fitness landscape [22]. Thus, semi-symmetric
instances are, in fact, special cases of the symmetric QAP.

In addition to the aforementioned differences, we have also found
some interesting characteristics that are common to all the consid-
ered types of instances. For example, 𝐿3 has in general fewer local
optima (and plateaus formed by local optima) than the rest of the
elementary landscapes regardless of the symmetry of the instance,
although this feature is especially evident in symmetric and semi-
symmetric problems. This characteristic makes 𝐿3 a particularly
easy landscape for local search optimization.

5 LOCAL SEARCH BASED ALGORITHM
Based on the analysis made in the previous section, we propose a
specific local search based algorithm [48] that uses the elementary
landscape decomposition of the problem to efficiently optimize
the QAP. Our main goal is to use this algorithm to experimentally
verify the conclusions of the previous analysis. To this end, in this
section we explain the proposed method and study its performance
on a benchmark of instances3.

5.1 Variable Function Search
One of the main problems of the local search algorithms is that
they can get stuck in poor quality local optima. Because of that,
when developing local search based algorithms, most of the work
consists of finding strategies to efficiently escape from local optima
in order to reach better solutions. In this work, we propose a strategy
that is based on the elementary landscape decomposition of the
QAP. Specifically, the proposed local search based algorithm, called
Variable Function Search (VFS), consists of the following steps:

1. Starting from a random solution 𝜎 ∈ 𝑆𝑛 , a basic local search
is applied. The considered local search works under the swap
neighborhood (𝑁 ) and selects the best solution at each step
until a local optimum 𝜎∗ ∈ 𝑆𝑛 is reached.

2. In order to escape from the local optimum, the swap neigh-
borhood 𝑁 (𝜎∗) is explored according to the objective func-
tions of the decomposition (𝑓1,𝑓2,𝑓3).

2.1. If the algorithm finds a solution 𝜎 ′ ∈ 𝑁 (𝜎∗) that is bet-
ter than 𝜎∗ in at least one of the objective functions of

3The implemented algorithms are available in https://github.com/XB-Repositories/
GECCO-Algorithms/tree/main/MetaHeuristics.
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the decomposition, it returns to step 1 with 𝜎 = 𝜎 ′. If
there is more than one neighbor solution that satisfies this
condition, the algorithm selects the best one among them
according to 𝑓 .

2.2. Otherwise, the algorithm stops and returns the best solu-
tion found according to 𝑓 .

In order to avoid cycles, the VFS uses a tabu list [30] that stores
the most recent neighborhood movements. Those movements can-
not be undone until they leave the tabu list.

Although the VFS has been designed in the context of the QAP,
it can be easily adapted to any problem for which an elementary
landscape decomposition is known. This can be done by simply
modifying the neighborhood and objective functions.

5.2 Experimental Study
In what follows, an experimental study is carried out in order to
check whether the symmetry of the instances affects the perfor-
mance of the proposed local search based algorithm. To this end,
we compare the VFS with a classical Tabu Search (TS) [30] on the
same benchmark of instances explained in Section 4.

For an instance of size 𝑛, the maximum tabu list size is set to 𝑛 in
both algorithms. With respect to the stopping criterion, a number of
solution evaluations have been set: 1000𝑛2. Taking this into account,
each pair algorithm-instance is run 100 times. In Table 3, we show
for each case the median of the obtained objective function values
and relative errors.

The median results show that the TS is equal to or better than the
VFS in all the symmetric benchmark instances. In semi-symmetric
and asymmetric benchmark instances, however, both algorithms
seem to have a more similar performance. In fact, in these cases
the VFS outperforms the TS in a significant number of instances
(3 semi-symmetric instances, 4 asymmetric instances). Although
we cannot affirm that these differences are exclusively due to the
symmetry of the instances, we firmly believe that it is an important
factor.

5.3 Statistical Analysis
In order to further compare the VFS and the TS, we carry out a sta-
tistical analysis using the Bayesian signed-rank test [3, 10], which
is the Bayesian equivalent of the Wilcoxon test [52]. This technique
considers the experimental data and computes the expected prob-
ability of each algorithm being the best among all the compared
methods. The used implementation is available in the scmamp R
package [11].

As it is our aim to study the differences between different types
of instances, instead of performing one global statistical analysis we
carry out three independent analyses, one per instance type (sym-
metric, semi-symmetric, asymmetric). The experimental data used
in the statistical analyses is composed of the relative errors obtained
in the experimentation of Section 5.2. The Bayesian signed-rank
test requires the definition of the region of practical equivalence
(Rope), that is, the interval in which the performance of two al-
gorithms is considered equivalent. In this work, we consider that
the performance of two algorithms is equivalent if the difference
between their relative errors is smaller than 10−6. The results of
the performed statistical analyses are shown in Figure 3.

Table 3: Median of the fitness and relative errors obtained
in 100 runs of the algorithms. The best algorithm for each
of the benchmark instances is highlighted in green. If there
is a tie, both algorithms are highlighted in yellow. The best-
known solutions for xab20a, xab20b, xab20c and xab20d are
the best solutions found in the experimentation.

VFS Tabu SearchBest known Fitness Rel. Error Fitness Rel. Error
chr15a 9.896 10.037 0,014248 9.936 0,004042
chr20a 2.192 2.404 0,096715 2.383 0,087135
esc16a 68 70 0,029412 68 0,000000
esc16b 292 292 0,000000 292 0,000000
had18 5.358 5.370 0,002240 5.370 0,002240
had20 6.922 6.948 0,003756 6.941 0,002745
rou15 354.210 354.210 0,000000 354.210 0,000000

S
y
m
m
et
ri
c

rou20 725.522 728.258 0,003771 726.988 0,002021
lipa20a 3.683 3.683 0,000000 3.683 0,000000
lipa20b 27.076 27.076 0,000000 27.076 0,000000
lipa30a 13.178 13.178 0,000000 13.178 0,000000
lipa30b 151.426 151.426 0,000000 151.426 0,000000
tai15b 51.765.268 51.765.268 0,000000 51.765.268 0,000000
tai20b 122.455.319 135.121.165 0,103432 135.431.383 0,105966
tai25b 344.355.646 390.736.718 0,134689 391.656.357,5 0,137360

S
em

i-
S
y
m
m
et
ri
c

tai30b 637.117.113 713.843.365,5 0,120427 716.630.590 0,124802
bur26a 5.426.670 5.435.393 0,001607 5.435.461 0,001620
bur26b 3.817.852 3.828.150 0,002697 3.829.348,5 0,003011
bur26c 5.426.795 5.437.167,5 0,001911 5.437.623 0,001995
bur26d 3.821.225 3.831.026 0,002565 3.831.146,5 0,002596
xab20a 847.472 851.780 0,005083 851.150 0,004340
xab20b 465.155 465.598 0,000952 465.598 0,000952
xab20c 382.155 383.740 0,004148 383.679,5 0,003989A

sy
m
m
et
ri
c

xab20d 96.815 97.787 0,010040 97.787 0,010040

(a) Symmetric instances. (b) Semi-symmetric instances.

(c) Asymmetric instances.

Figure 3: Results of the Bayesian signed-rank test for each
instance type shown as simplex plots.

In short, the points in the simplex plots represent a sampling of
the posterior distribution of the probability of win-lose-tie. That is,
the closer a point is to the VFS vertex, the higher the probability
that the VFS has a better performance, and vice versa. The same
applies for the TS and Rope vertices, where the last one indicates
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Table 4: Expected probabilities for each of the possibilities of
the Bayesian signed-rank tests. The option with the highest
probability in each test is highlighted in bold.

VFS TS Rope
Symmetric 0,2021 0,4978 0,3001
Semi-symmetric 0,2818 0,2636 0,4546
Asymmetric 0,4085 0,3013 0,2901

that both algorithms are practically equivalent. The dashed lines
delimit the dominance region of each possibility, that is, the area
where the highest probability corresponds to its vertex. In order to
better visualize the obtained results, the expected probabilities for
each possibility (TS-VFS-Rope) are shown in Table 4.

As we can see, different situations can be observed depending
on the symmetry of the instances. In symmetric instances, the
TS is the best algorithm with a 0.4978 probability, while in asym-
metric instances the VFS is better with a 0.4085 probability. In
semi-symmetric instances, however, both algorithms seem to have
a similar performance, since according to the statistical analysis the
TS and the VFS are practically equivalent with a 0.4546 probability.
As the spread of the points in the three plots is quite low, there is
almost no uncertainty about the results of the analysis, so we can
confirm that the VFS and the TS have different performances on
the different sets of benchmark instances. As previously stated, this
could be due to the symmetry of the instances.

Although we can only hypothesize the reason why this happens,
we think that it may be mainly due to some of the characteristics
that have been investigated in Section 4. For example, as the VFS
uses the objective functions of the elementary landscapes to escape
from the local optima, when one of the elementary landscapes is
constant the escape ability of the algorithm may worsen. Moreover,
when 𝐿 shares a high percentage of the local optima with an ele-
mentary landscape, the escape ability may also be impacted. All
these factors combined could explain why the performance of the
VFS is worse in symmetric and semi-symmetric instances compared
to asymmetric instances.

6 CONCLUSIONS AND FUTUREWORK
The symmetry of the distance and flow matrices is just one of the
characteristics of QAP instances. Nevertheless, in this work we have
seen that it has a great influence on the difficulty and importance
of the elementary components that form the elementary landscape
decomposition. As a result, the symmetry of the instances also
appears to be very important when deciding which meta-heuristic
strategies should be used to solve a particular QAP problem.

However, it is important to remark that this is only an exploratory
research, so there is still much work to be done to measure the real
influence of the symmetry of the QAP on the performance of opti-
mization algorithms. On the one hand, the experiments on which
we have based this paper have been performed on a relatively small
benchmark of instances. Therefore, in the future, the number of
instances considered in the experimentation should be increased in
order to verify the conclusions of the analysis. On the other hand,
this work has been mainly focused on local search based algorithms,
so it would be interesting to extend the analysis to other types of
meta-heuristics such as, for example, evolutionary algorithms.

APPENDIX A
In this appendix, we prove that the objective function of 𝐿1 is con-
stant when the distance matrix𝐷 or the flowmatrix𝐻 is symmetric.
As the demonstration is identical in both cases, we focus on the
first one (symmetric distance matrix, 𝑑𝑎,𝑏 = 𝑑𝑏,𝑎). First, we rewrite
Equation (4) as follows:

𝑓1 (𝜎) =
𝑛−1∑
𝑎=1

𝑛∑
𝑏=𝑎+1

𝑛−1∑
𝑐=1

𝑛∑
𝑑=𝑐+1

𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) (9)

where 𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) =
(
𝑑𝑎,𝑏ℎ𝑐,𝑑

𝜙1
(𝑎,𝑏) (𝑐,𝑑 ) (𝜎)

2𝑛 +𝑑𝑏,𝑎ℎ𝑐,𝑑
𝜙1
(𝑏,𝑎) (𝑐,𝑑 ) (𝜎)

2𝑛

+𝑑𝑎,𝑏ℎ𝑑,𝑐
𝜙1
(𝑎,𝑏) (𝑑,𝑐 ) (𝜎)

2𝑛 +𝑑𝑏,𝑎ℎ𝑑,𝑐
𝜙1
(𝑏,𝑎) (𝑑,𝑐 ) (𝜎)

2𝑛

)
with 𝑎 ≠ 𝑏, 𝑐 ≠ 𝑑 and

1 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 𝑛. If we can prove that 𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) always has
the same value regardless of 𝜎 , then we prove that 𝑓1 is a constant
function and, therefore, 𝐿1 is a constant landscape. To this end, we
analyze the five possible situations when 𝐷 is symmetric:

• 𝜎 (𝑎) = 𝑐 ∧ 𝜎 (𝑏) = 𝑑 The summands of 𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) are:

Summand Case Value

𝑑𝑎,𝑏ℎ𝑐,𝑑
𝜙1
(𝑎,𝑏) (𝑐,𝑑 ) (𝜎)

2𝑛 𝜎 (𝑖) = 𝑝 ∧ 𝜎 ( 𝑗) = 𝑞 𝑑𝑎,𝑏ℎ𝑐,𝑑
𝑛−3
2𝑛

𝑑𝑏,𝑎ℎ𝑐,𝑑
𝜙1
(𝑏,𝑎) (𝑐,𝑑 ) (𝜎)

2𝑛 𝜎 (𝑖) = 𝑞 ∧ 𝜎 ( 𝑗) = 𝑝 𝑑𝑏,𝑎ℎ𝑐,𝑑
1−𝑛
2𝑛

𝑑𝑎,𝑏ℎ𝑑,𝑐
𝜙1
(𝑎,𝑏) (𝑑,𝑐 ) (𝜎)

2𝑛 𝜎 (𝑖) = 𝑞 ∧ 𝜎 ( 𝑗) = 𝑝 𝑑𝑎,𝑏ℎ𝑑,𝑐
1−𝑛
2𝑛

𝑑𝑏,𝑎ℎ𝑑,𝑐
𝜙1
(𝑏,𝑎) (𝑑,𝑐 ) (𝜎)

2𝑛 𝜎 (𝑖) = 𝑝 ∧ 𝜎 ( 𝑗) = 𝑞 𝑑𝑏,𝑎ℎ𝑑,𝑐
𝑛−3
2𝑛

Therefore, we have 𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) = 𝑑𝑎,𝑏ℎ𝑐,𝑑
𝑛−3
2𝑛 + 𝑑𝑏,𝑎ℎ𝑐,𝑑

1−𝑛
2𝑛 +𝑑𝑎,𝑏ℎ𝑑,𝑐 1−𝑛

2𝑛 +𝑑𝑏,𝑎ℎ𝑑,𝑐 𝑛−3
2𝑛 = 𝒅𝒂,𝒃

(

−1
𝒏 𝒉𝒄,𝒅 + −1

𝒏 𝒉𝒅,𝒄
)

.
For the sake of brevity, from now on we omit the explicit
explanation of each of the summands. Their values can be
calculated from Equation (7) based on the parameters of 𝜙1.

• 𝜎 (𝑎) = 𝑑 ∧ 𝜎 (𝑏) = 𝑐 𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) = 𝑑𝑎,𝑏ℎ𝑐,𝑑
1−𝑛
2𝑛 + 𝑑𝑏,𝑎ℎ𝑐,𝑑

𝑛−3
2𝑛 +𝑑𝑎,𝑏ℎ𝑑,𝑐 𝑛−3

2𝑛 +𝑑𝑏,𝑎ℎ𝑑,𝑐 1−𝑛
2𝑛 = 𝒅𝒂,𝒃

(

−1
𝒏 𝒉𝒄,𝒅 + −1

𝒏 𝒉𝒅,𝒄
)

.

• 𝜎 (𝑎) = 𝑐 ⊕ 𝜎 (𝑏) = 𝑑 𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) = 𝑑𝑎,𝑏ℎ𝑐,𝑑
−2
2𝑛 +𝑑𝑏,𝑎ℎ𝑑,𝑐 −2

2𝑛

= 𝒅𝒂,𝒃
(

−1
𝒏 𝒉𝒄,𝒅 + −1

𝒏 𝒉𝒅,𝒄
)

.

• 𝜎 (𝑎) = 𝑑 ⊕ 𝜎 (𝑏) = 𝑐 𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) = 𝑑𝑏,𝑎ℎ𝑐,𝑑
−2
2𝑛 +𝑑𝑎,𝑏ℎ𝑑,𝑐 −2

2𝑛

= 𝒅𝒂,𝒃
(

−1
𝒏 𝒉𝒄,𝒅 + −1

𝒏 𝒉𝒅,𝒄
)

.

• 𝜎 (𝑎) ≠ 𝑐,𝑑 ∧ 𝜎 (𝑏) ≠ 𝑐,𝑑 𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) = 𝑑𝑎,𝑏ℎ𝑐,𝑑
−1
2𝑛 +𝑑𝑏,𝑎ℎ𝑐,𝑑

−1
2𝑛 + 𝑑𝑎,𝑏ℎ𝑑,𝑐 −1

2𝑛 + 𝑑𝑏,𝑎ℎ𝑑,𝑐 −1
2𝑛 = 𝒅𝒂,𝒃

(

−1
𝒏 𝒉𝒄,𝒅 + −1

𝒏 𝒉𝒅,𝒄
)

.

Thus, we have proved that𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) = 𝑑𝑎,𝑏

(
−1
𝑛 ℎ𝑐,𝑑+−1

𝑛 ℎ𝑑,𝑐

)
for all 1 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 𝑛 with 𝑎 ≠ 𝑏 and 𝑐 ≠ 𝑑 . That is, the value of
𝑔(𝑎,𝑏),(𝑐,𝑑) (𝜎) is independent of 𝜎 . Therefore, 𝑓1 is constant.
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