
Generating Instances with Performance Differences
for More Than Just Two Algorithms

Jakob Bossek
Dept. of Information Systems

University of Münster, Germany
jakob.bossek@wi.uni-muenster.de

Markus Wagner
School of Computer Science

The University of Adelaide, Australia
markus.wagner@adelaide.edu.au

ABSTRACT

In recent years, Evolutionary Algorithms (EAs) have frequently

been adopted to evolve instances for optimization problems that

pose difficulties for one algorithm while being rather easy for a

competitor and vice versa. Typically, this is achieved by either min-

imizing or maximizing the performance difference or ratio which

serves as the fitness function. Repeating this process is useful to

gain insights into strengths/weaknesses of certain algorithms or

to build a set of instances with strong performance differences

as a foundation for automatic per-instance algorithm selection or

configuration.

We contribute to this branch of research by proposing fitness-

functions to evolve instances that show large performance differ-

ences for more than just two algorithms simultaneously. As a proof-

of-principle, we evolve instances of the multi-component Traveling

Thief Problem (TTP) for three incomplete TTP-solvers. Our results

point out that our strategies are promising, but unsurprisingly their

success strongly relies on the algorithms’ performance complemen-

tarity.

CCS CONCEPTS

• Applied computing → Transportation; • Theory of computa-

tion → Evolutionary algorithms.

KEYWORDS

Evolutionary algorithms, evolving instances, traveling thief prob-

lem (TTP), fitness function, instance hardness

ACM Reference Format:

Jakob Bossek and Markus Wagner. 2021. Generating Instances with Per-

formance Differences for More Than Just Two Algorithms. In 2021 Genetic

and Evolutionary Computation Conference Companion (GECCO ’21 Compan-

ion), July 10ś14, 2021, Lille, France. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3449726.3463165

1 INTRODUCTION

The usefulness of benchmarking suites is affected by four character-

istics [1]: the instance set should be diverse, representative, scalable

and tunable, and knowing the best solutions (or at least the best

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10ś14, 2021, Lille, France

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463165

performance) is beneficial as well. With our research, we target the

łdiversityž criterion, as this is a characteristic that is not always

immediately obvious from a quick inspection, in contrast to, for

example, scalability.

Instances can be diverse in the feature space and in the perfor-

mance space. In the former, the focus is on covering a range of

different problem characteristics; in the latter, the focus is on gener-

ating instances on which algorithms behave differently. Instances

with different characteristics can not only support our studies of

problem difficulty and lead to new approaches to the problem, but

they can also act as a tool for training and using per-instance algo-

rithm configurators [21] or algorithm selectors [26].

To create instances with desired characteristics, the manual gen-

eration is often labour-intensive, if not practically impossible: it

requires a substantial amount of domain knowledge together with

in-depth knowledge of the target solver and advanced mathemat-

ical skills, especially when dealing with randomized heuristics.

Moreover, as such instance engineers are (anecdotally) scarce, the

approach with the human-in-the-loop is often impractical. Hence,

to explore the space of instances in an automatic way, evolution-

ary algorithms are often used. Among the first to do so was van

Hemert [49], who initially evolved difficult instances for the binary

constraint satisfaction problem and later for other combinatorial

problems as well. Since then, many other researchers have explored

a number of research directions that build upon this general idea

of instance evolution: (1) transfer of the concept to other problem

domains, (2) creation of instances to broadly cover the feature space,

and (3) evolving instances on which pairs of solvers behave as dif-

ferently as possible (i.e., instances would be difficult for one solver

but easy for the other).

With this present article, we address an open problem in the

third research direction: how can we evolve instances for sets of

more than just two algorithms? This extension is not trivial, as one

needs to consider performance rankings for 𝑁 solvers as well as the

discriminatory performance aspect. To achieve this, we introduce

several fitness functions that can guide evolutionary algorithms

in the generation of instances for more than two algorithms si-

multaneously. As a proof-of-principle, we generate instances for

the permutation-based Travelling Thief Problem, assess the effec-

tiveness of our approaches, and raise awareness for a number of

issues that researchers might come across when conducting similar

studies in the future.

2 RELATED WORK

In recent years Evolutionary Algorithms (EAs) have frequently

been adopted to evolve instances for optimization problems. Among

the first was van Hemert [49] who evolved difficult instances for

1423

https://doi.org/10.1145/3449726.3463165
https://doi.org/10.1145/3449726.3463165

GECCO ’21 Companion, July 10ś14, 2021, Lille, France Jakob Bossek and Markus Wagner

the binary constraint satisfaction problem. Later, this work was

extended [50] to the generation of hard instances for binary con-

straint satisfaction, Boolean satisfiability and the traveling salesper-

son problem (TSP), where he also pointed out structural properties

that make instances hard for certain algorithms.

Interestingly, the TSP has been a popular domain for instance

generation, possibly because instances could easily inspected by

humans, and because the definition of instance features based on

point clouds (i.e. the locations of cities) is relatively easy in itself.

What has changed over time for the TSP were the fitness functions

ś first, the number of local search operations as a proxy for diffi-

culty [48], then approximation quality [34, 35], and also multiple

objectives [23] ś and the heuristics ś Bossek et al. [7, 8] started

to target state-of-the-art heuristics with small instances, and em-

ployed disruptive operators in order to be able to evolve instances

for current state-of-the-art heuristics with strong feature diversity

without relying on explicit diversity preservation Bossek et al. [6].

Other domains besides the TSP that have also been subject to the

evolution of instances; they include the knapsack problem [43], the

quadratic knapsack problem [25], the graph colouring problem [9],

and the Hamiltonian completion problem [29].

Most of these mentioned works had as the primary goal the

evolution of instances on which a pair of solvers behaves differ-

ently. As this purely performance-focused view at diversity has the

potential of resulting in sets of highly similar instances, research

has begun to incorporate the diversity of features into the process.

Again, the TSP has been the first target [18], where diverse instance

sets (with respect to a single selected feature at a time) could be

achieved in the evolution. Along similar lines, but for machine learn-

ing problems, it was shown that it is possible to guide the evolution

of an instance to a particular target vector in a high-dimensional

space [36]. A very similar approach was recently demonstrated for

continuous black-box optimization problems [37]. To address the

challenge of simultaneously achieving diverse sets with respect to

multiple features, several schemes were proposed that operate in

the multi-dimensional feature space and are thus independent of

the problem domain [39, 40].

In summary, while the field has come a long way, it still seems

to be an open problem of how one can efficiently generate instance

sets for more than two solvers.

3 PROBLEM FORMULATION

The major scheme of this paper is the process of evolving problem

instances for a combinatorial optimization problem. We are given

a set of 𝑁 algorithms A = {𝐴1, . . . , 𝐴𝑁 }. We denote by 𝑝𝐴 (𝐼) the

performance of algorithm 𝐴 on input instance 𝐼 (w.l.o.g. we assume

the performance to be maximized). If a subset of the algorithms

is randomized we assume that 𝑝 is some adequate aggregated per-

formance such as the median performance score. In order to keep

formulas clean we often identify algorithms by natural numbers, i.e.

A = {1, . . . , 𝑁 } and we write short 𝑝𝑖 if the instance can be derived

easily from the context. Note that for 𝑁 algorithms there are 𝑁 !

possible rankings of the algorithm performances 𝑝1, . . . , 𝑝𝑁 , e.g. for

𝑁 = 3 we have 𝑝1 ≥ 𝑝2 ≥ 𝑝3, 𝑝1 ≥ 𝑝3 ≥ 𝑝2, . . ., 𝑝3 ≥ 𝑝2 ≥ 𝑝1. The

goal is to generate a set of 𝐿 instances where (approximately) 𝐿/𝑁 !

of the instances follow each of the 𝑁 ! rankings and in addition, the

Algorithm 1: Outline of instance evolving (1 + 1)-EA.

input :Fitness function 𝐹

1 Initialize instance 𝐼 randomly;

2 while budget not depleted do ⊲ Often time-limit

3 Generate 𝐼 ′ by applying mutation to 𝐼 ;

4 if 𝐹 (𝐼 ′) ≥ 𝐹 (𝐼) then

5 Replace 𝐼 with 𝐼 ′;

6 return 𝐼 ;

performance of the algorithms on each instance differ substantially.

Hence, we aim for instances with diverse algorithmic rankings.

4 EVOLVING INSTANCES

We approach the setting formulated in Section 3 by adopting a

simple (1 + 1)-EA which is outlined in Algorithm 1. The EA first

generates a random problem instance 𝐼 . Next, a copy of 𝐼 is subject

to mutation. The resulting instance 𝐼 ′ is compared to 𝐼 by means of

a suitable fitness function 𝐹 . If 𝐼 ′ is no worse than 𝐼 with respect to

fitness, it replaces 𝐼 , otherwise it is discarded. This simple random

process is repeated until some stopping condition, usually a gener-

ous time limit, is met. Certainly, initialization, variation and many

implementation details are highly problem-dependent. In addition,

the success depends on the fitness function that serves as a driver

for the process and ideally guides the EA towards better instances.

5 FITNESS FUNCTIONS TO GUIDE THE EA

In existing work the goal was to either (a) generate instances that

are particularly difficult to solve for a single solver 𝐴 (e.g., [49, 50])

or (b) easy for one solver𝐴 and hard(er) for a competitor 𝐵 (e.g., [35],

[6]) by means of evolutionary search. Note that for both goals, the

fitness function that guides the EA is rather straight-forward and

natural. For option (a) wemay take the ratio 𝑝𝐴 (𝐼)/𝑂𝑃𝑇 where𝑂𝑃𝑇

is an optimal solution to the problem and maximize this ratio. For

option (b) we may maximize 𝑝𝐴 (𝐼)/𝑝𝐵 (𝐼) to guide the EA towards

instances which are easier for 𝐴 and maximize the reciprocal to

obtain instances that are harder for 𝐴. Likewise we can maximize

the difference 𝑝𝐴 (𝐼)−𝑝𝐵 (𝐼) the one or the other way around. Recall

that for 𝑁 = 2 there are just two possibilities (neglecting the case

of equal performance): either 𝐴 is better than 𝐵 or 𝐵 is better than

𝐴. For the general case with 𝑁 ≥ 3 there are 𝑁 ! possibilities we

aim to cover.1 Thus, there is no single straight-forward way to

directly transfer the notion of łdirectionž to the general case. In

the following we discuss three ways to generate a balanced set of 𝐿

instances with performance differences for 𝑁 ≥ 3 algorithms.

Pairwise approach. This naive approach relies on option (b) for

two algorithms discussed above. Consider all𝑁 (𝑁−1) ordered pairs

of algorithms (𝑖, 𝑗) and evolve instances that are easy for 𝐴𝑖 and

hard for 𝐴 𝑗 by maximizing the respective performance difference

or ratio. The obvious drawback of this approach is that we have no

influence on the performance of all other algorithms in A \ {𝑖, 𝑗}

on the evolved instance which may hinder the aimed diversity of

1While having a single outstanding solver per instance is a good goal for the purpose
of eventual algorithm selection, full permutations can enable deeper analytical dives
to understand when algorithms perform mediocrely or badly.

1424

Generating Instances with Performance Differences for More Than Just Two Algorithms GECCO ’21 Companion, July 10ś14, 2021, Lille, France

𝑝 (1) 𝑝 (2) 𝑝 (3)

(𝑝 (2) − 𝑝 (1)) (𝑝 (3) − 𝑝 (2))

𝐹 (𝑝1, 𝑝2, 𝑝3) = (𝑝 (2) − 𝑝 (1)) · (𝑝 (3) − 𝑝 (2))

Figure 1: Illustration of no-order fitness calculation.

the instance set. In fact, the evolved problem can be very easy (or

hard) for all those algorithms. This is undesirable.

No order. This approach ignores explicit rankings. Instead, the

performance values 𝑝1, . . . , 𝑝𝑁 are sorted in increasing order such

that 𝑝 (1) ≤ 𝑝 (2) ≤ . . . ≤ 𝑝 (𝑁) where 𝑝 (𝑖) is the 𝑖-th order statistic.

Eventually, the fitness is calculated as

𝐹 (𝑝1, . . . , 𝑝𝑁) =

𝑁−1
∑

𝑖=2

(𝑝 (𝑖) − 𝑝 (𝑖−1)) · (𝑝 (𝑖+1) − 𝑝 (𝑖)). (1)

See Figure 1 for an example. A similar approach was used by

Gao et al. [18] to evolve TSP instances with diverse feature val-

ues in the context of evolutionary diversity optimization.

This approach is simple, but in order to obtain a set with each

𝐿/𝑁 ! instances of an explicit ranking we need to be lucky since

again there is no way to explicitly enforce a certain ranking.

Explicit ranking. The name already suggests the idea. Here, the

EA explicitly tries to establish a certain parameterizable ranking

/ performance permutation 𝜋 = (𝜋 (1), . . . , 𝜋 (𝑁)) in a two-phase

approach. The first phase aims to come up with an instance with

the desired ranking, while the second phase aims to maximize the

performance difference once the ranking is achieved. Formally, let

𝑝1, . . . , 𝑝𝑁 be the performance values of the algorithms and let 𝜋

describe the desired ranking. Let 𝐺 = {(𝑖, 𝑖 + 1) | 𝑝𝜋 (𝑖) ≥ 𝑝𝜋 (𝑖+1) }

and 𝐵 = {(𝑖, 𝑖 + 1) | 𝑝𝜋 (𝑖) < 𝑝𝜋 (𝑖+1) } be the set of good and bad

directions respectively; i.e.𝐺 contains all pairs of algorithms which

are in the right order according to 𝜋 whereas the pairs in 𝐵 violate

𝜋 . With this notation the goal is to maximize the vector-valued

fitness function

𝐹 (𝑝1, . . . , 𝑝𝑛 ;𝜋) = (|𝐺 |, 𝑓𝐵, 𝑓𝐺) (2)

in lexicographic order where

𝑓𝐵 =

{

∑

(𝑖, 𝑗) ∈𝐵 (𝑝𝜋 (𝑖) − 𝑝𝜋 (𝑗)) if |𝐵 | > 0

0 otherwise,

and

𝑓𝐺 =

{

∑

(𝑖, 𝑗) ∈𝐺 (𝑝𝜋 (𝑖) − 𝑝𝜋 (𝑗)) if |𝐺 | > 0

−∞ otherwise.

The first component is simply the number of good directions

|𝐺 | ∈ {0, 1, . . . , 𝑁 − 1}. The second component is given by the

sum of differences between pairs of bad directions. Hence, by def-

inition of 𝐵, every single additive term is negative and so is the

sum in case 𝐵 is non-empty. Once there are no bad directions any-

more, the value takes its maximum value zero. Note that once this

happens |𝐺 | = 𝑁 − 1 and 𝑓𝐵 = 0 hold and the EA will not ac-

cept any solution which is lexicographically inferior in subsequent

𝑝3 = 8 𝑝2 = 10 𝑝1 = 13

(𝑝1 > 𝑝2) -

(𝑝3 < 𝑝1) ,

Figure 2: Illustration of explicit ranking fitness calculation

with 𝜋 = (3, 1, 2).

iterations (the first two components will not change anymore).

The last component, 𝑓𝐺 , adds up the performance differences of

good directions and becomes relevant once the desired ranking

is reached. For example, consider 𝑝1 = 13, 𝑝2 = 10, 𝑝3 = 8 and

𝜋 = (3, 1, 2). Then 𝐺 = {(2, 3)} because 𝑝𝜋 (2) = 𝑝1 ≥ 𝑝2 = 𝑝𝜋 (3)
and likewise 𝐵 = {(1, 2)} (see Figure 2). The fitness vector is hence

𝐹 (𝑝1, 𝑝2, 𝑝3;𝜋) = (1,−5, 3). Now consider another instance with

performance values 𝑝 ′
1
= 13, 𝑝 ′

2
= 10, 𝑝 ′

3
= 15. It follows 𝐵 = ∅

and in consequence 𝐹 (𝑝 ′
1
, 𝑝 ′

2
, 𝑝 ′

3
;𝜋) = (2, 0, 5). Thus, the instance

resulting in the latter performance values would be accepted.

We stress that for this approach to be successful it must be

possible to achieve the desired ranking. This requires a portfolio of

algorithms where there is no strongly dominating algorithm which

outperforms its competitors by orders of magnitude on (almost) all

instances. If such an algorithm existed, it would be impossible to

achieve a ranking in phase one where it would perform worst. We

will get back to possible pitfalls and issues we experienced during

(preliminary) experiments later in Section 7.

6 PROOF-OF-CONCEPT STUDY

In the upcoming two sections ś as a proof of concept ś we adopt

our approach to generate instances with performance differences

for three heuristics (𝑁 = 3) for the Traveling Thief Problem.

6.1 The Traveling Thief Problem

Real-world optimization problems often consist of several NP-

hard combinatorial optimization problems that interact with each

other [5, 28]. Such multi-component optimization problems are

difficult to solve not only because of the contained hard optimiza-

tion problems, but in particular, because of the interdependencies

between the different components. Interdependence complicates

decision-making by forcing each sub-problem to influence the qual-

ity and feasibility of solutions of the other sub-problems. Examples

of multi-component problems are vehicle routing problems under

loading constraints [22, 44], maximizing material utilization while

respecting a production schedule [11, 53], and relocation of con-

tainers in a port while minimizing idle times of ships [17, 20, 24].

In 2013, Bonyadi et al. [3] introduced the Traveling Thief Prob-

lem (TTP) as an academic multi-component problem. The academic

‘twist’ of it is particularly important because it combines the classi-

cal Traveling Salesperson Problem (TSP) and the Knapsack Problem

(KP) ś both of which are very well studied in isolation ś and because

of the interaction of both components can be adjusted.

Formal Definition. We are given a set of 𝑛 cities, the associated

matrix of distances 𝑑𝑖 𝑗 , and a set of 𝑚 items distributed among

1425

GECCO ’21 Companion, July 10ś14, 2021, Lille, France Jakob Bossek and Markus Wagner

these cities. Each item 𝑘 is defined by a profit 𝑝𝑘 and a weight𝑤𝑘 .

A thief must visit all the cities exactly once, stealing some items on

the road, and return to the starting city.

The knapsack has a capacity limit of𝑊 , i.e. the total weight of

the collected items must not exceed𝑊 . In addition, we consider

a renting rate 𝑅 that the thief must pay at the end of the travel,

and the maximum and minimum velocities denoted 𝑣𝑚𝑎𝑥 and 𝑣𝑚𝑖𝑛

respectively. Furthermore, each item is available in only one city,

and 𝐴𝑖 ∈ {1, . . . , 𝑛} denotes the availability vector. 𝐴𝑖 contains the

reference to the city that contains the item 𝑖 .

A TTP solution is typically coded in two parts: the tour 𝑋 =

(𝑥1, . . . , 𝑥𝑛), a vector containing the ordered list of cities, and the

picking plan 𝑍 = (𝑧1, . . . , 𝑧𝑚), a binary vector representing the

states of items (1 for packed, 0 for unpacked).

To establish a dependency between the sub-problems, the TTP

was designed such that the speed of the thief changes according to

the knapsack weight. To achieve this, the thief’s velocity at city 𝑐 is

defined as 𝑣𝑥 = 𝑣𝑚𝑎𝑥 −𝐶 ×𝑤𝑥 , where𝐶 =
𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛

𝑊 is a constant

value, and𝑤𝑥 is the weight of the knapsack at city 𝑥 .

The total value of items is 𝑔(𝑍) =

∑

𝑚 𝑝𝑚 × 𝑧𝑚 , such that
∑

𝑚𝑤𝑚×𝑧𝑚 ≤𝑊 . The total travel time is 𝑓 (𝑋,𝑍) =
∑𝑛−1
𝑖=1 𝑡𝑥𝑖 ,𝑥𝑖+1 +

𝑡𝑥𝑛,𝑥1 , where 𝑡𝑥𝑖 ,𝑥𝑖+1 =
𝑑𝑥𝑖 ,𝑥𝑖+1
𝑣𝑥𝑖

is the travel time from 𝑥𝑖 to 𝑥𝑖+1.

The TTP’s objective is to maximize the total travel gain function,

which is the total profit of all items minus the travel time multiplied

with the renting rate: 𝐹 (𝑋,𝑍) = 𝑔(𝑍) − 𝑓 (𝑋,𝑍) × 𝑅.

For a worked example, we refer the interested reader to the initial

TTP article by Bonyadi et al. [3].

TTP Solvers. The TTP has been gaining attention due to its

challenging interconnected multi-component structure, and also

propelled by several competitions organized to solve it, which

have led to significant progress in improving the performance

of solvers. Among these are iterative and local search heuris-

tics [30, 45], solution approaches based on co-evolutionary strate-

gies [4, 13, 38], memetic algorithms [14, 33], swarm-intelligence

approaches [51, 59], simulated annealing [15] and estimation of

distribution approaches [32]. Exact approaches were considered,

however, they are limited to address very small instances [41, 55].

Moreover, dynamic TTP variants have been explored [19, 47], as

well as various multi-objective formulations [2, 10, 54, 57]. To better

understand the effect of operators on a more fundamental level,

fitness-landscape analyses [56, 58] presented correlations and char-

acteristics that are potentially exploitable.

TTP Instances. Almost all articles known to the authors rely on

the 9 720 instances introduced by Polyakovskiy et al. [45] in 20142

ś a small number of other instances is either created randomly or

by following the scheme in [45]. Even though Polyakovskiy et al.

[45] created them systematically and with the intention to łkeep a

balance between two components of the problemž, an inspection of

the good solutions created across various papers reveals that they

appear to greatly favour near-optimal TSP tours over near-optimal

KP packing plans. This in turn seems to often affect the design

decisions that an algorithm’s creator makes; for example, many of

the above-mentioned approaches create a good TSP tour first ś and

independent of the KP/TTP ś as a starting point, and only then

2http://cs.adelaide.edu.au/~optlog/CEC2014COMP_InstancesNew/

consider both interdependent components together; the other way

around, i.e. starting with a good packing plan and then trying to

make it work with a tour has not yet been fruitful, to the best of

our knowledge.

In our opinion, this bias limits algorithm development as well

as research on inter-dependencies, which the TTP is supposed to

facilitate in the first place. Instance generation for the TTP ś which

has not been done before, and which we use here for a proof-of-

principle ś can thus open up opportunities for future research,

as we will then be able to create instance sets specialized for the

investigation of performance differences of single (or multiple)

algorithmic design decisions.

6.2 Experimental setup

Heuristics A. We select the following three heuristics from [16]

due to their high similarity as well as due to their structural differ-

ences:

• S2: run Chained Lin-Kernigham (CLK), then PackIterative,

then repeat Bitflip until converged;

• S4: run CLK, then PackIterative, then repeat Insertion until

converged;

• C2: run CLK, then PackIterative, then repeat łone Bitflip

pass, one (1+1)-EA pass, one Insertion passž.

PackIterative is a fast, mostly constructive packing heuristic that

takes into account the items’ values and weights as well as the

distance that they have to travel to the end along the given tour.

Bitflip and (1+1)-EA operate exclusively on the packing plan, and

either toggle the packing status in a deterministic fashion, or toggle

the status of each item with probability 1/𝑚. Similarly, Insertion

searches deterministically over the TSP part of a TTP solution by

enumerating permutation-based insertions.

The rationale is as follows. Even though all three algorithms

share the same first phase, the subsequent iterative hill-climbing

differs in an important aspect: the simple heuristic S2 focuses exclu-

sively on the packing plan, S4 focuses exclusively on the tour, and

the more complex C2 incorporates components of both S2 and S4.

While C2 can be seen as generally superior to the other two, there is

the potential for C2 to be outperformed depending on the structure

of the instance that strictly łfavoursž one problem component over

the other. However, as it is apriori unclear what such instances

would have to look like in order to put C2 at a disadvantage (when

compared to the simpler S2 and S4), we leave it up to the evolution

to tackle this challenge.

EA components. Due to the large number of components of the

TTP problem, the EA operators are quite involved. The EA is ini-

tialized with a random TTP instance with 𝑛 nodes and IPN number

of items per node. Random in this context means that 𝑛 points are

placed uniformly at random in the Euclidean sub-plane [0, 10 000]2

to account for the TSP-component. Moreover, the renting rate 𝑅 is

chosen uniformly at random from the real-valued interval [0, 1 000]

to allow for the influence of the travel time on the overall objective

score to vary from small to large; this interval’s upper bound is the

result of considering the maximum value of 𝑅 across already known

TTP instances and then increasing it further to allow for a broader

range of interdependence. Item weights are sampled from [0, 4 040]

1426

http://cs.adelaide.edu.au/~optlog/CEC2014COMP_InstancesNew/

Generating Instances with Performance Differences for More Than Just Two Algorithms GECCO ’21 Companion, July 10ś14, 2021, Lille, France

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

0

2500

5000

7500

10000

0 2500 5000 7500 10000

node x−coordinate

n
o

d
e

 y
−

c
o

o
rd

in
a

te

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

0

1000

2000

3000

4000

0 1000 2000 3000 4000

weight
p

ro
fi
t

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

0

2500

5000

7500

10000

0 2500 5000 7500 10000

node x−coordinate

n
o

d
e

 y
−

c
o

o
rd

in
a

te

Mutated

●

yes

no

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0

1000

2000

3000

4000

0 1000 2000 3000 4000

weight

p
ro

fi
t

Mutated

●

yes

no

Figure 3: An initial random TTP instance (left plots) and mutation applied to it (explosion mutation to the node coordinates,

linear projection mutation to the weight-profit combination; right plots).

and profits are sampled from [0, 4 400].3 Lastly, and in line with

[45], the initial knapsack capacity is𝑊 = ⌈(𝐷/11) ·
∑

𝑚𝑤𝑚⌉ with

𝐷 chosen uniformly at random from [1, . . . , 10], and the minimum

and maximum speeds are kept constant at 𝑣𝑚𝑖𝑛 = 0.1 and 𝑣𝑚𝑎𝑥 = 1.

We build upon work in the context of instance generation for the

TSP and adopt mutation operators introduced in [6]. The authors

proposed a set of mutation operators that aim for rather extreme

changes to the node coordinates. This was motivated by the fact

that earlier work in the context of evolutionary-guided TSP instance

generation, using just small local changes to node coordinates, used

to produce instances that in fact showed the aimed strong perfor-

mance difference, but did not differ much from random uniform

instances in terms of visual structure and instance characteristics.

One illustrative example for the łcreativež mutation operators is the

explosion mutation where a center of explosion 𝑐 and an explosion

radius 𝑟 > 0 are sampled and all points within Euclidean distance

at most 𝑟 from 𝑐 are moved away from the explosion center. For

an exhaustive description of all operators we refer the interested

reader to [6]. Note that weights and profits (𝑤𝑖 , 𝑝𝑖), 1 ≤ 𝑖 ≤ 𝑚

can be interpreted as a point cloud, too. Therefore, we apply the

same operators to these values. Figure 3 illustrates an exemplary

initial TTP instance and a mutant based on two different mutation

operators. Here, the rather disruptive nature of the mutation oper-

ators becomes obvious. We apply Gaussian mutation to the renting

rate 𝑅, i.e., we add a random number stemming from a normal

distribution with mean value zero and standard deviation 10 to

it. Mutation of the knapsack capacity𝑊 follows its random ini-

tialization scheme discussed above and is thus more disruptive.

All variation operations are finalized with a repair step (random

re-positioning within the bounds) that ensures that the respective

coordinates/points/parameters stay within their initially defined

bounds (see initialization). In each iteration, the EA chooses one

out of 10 mutation operators with equal probability to generate

a mutant where all components are subject to mutation in every

iteration.

Further parameters. We consider 𝑛 = 200 nodes and IPN ∈

{1, 3, 5, 10} items per node. With respect to the proposed fitness

functions we generate for each combination of 𝑛, IPN and fitness

3These łunusualž ranges are an artefact of the knapsack generator by Martello et al.
[31] that Polyakovskiy et al. [45] used: said generator multiplies the generated weights
and profits by up to a factor of four (in order to create harder łcoresž of the knapsacks),
which can be observed in the 9 720 TTP instances, however, this detail had not been
reported by Polyakovskiy et al. [45], who only mention the intended upper bounds of
∼ 1 000, and not the actual ∼ 4 000.

function approach 240 instances: for the two fitness functions where

rankings actually matter, the set contains each 10 instances for

each of the 24 (𝑛, IPN , ranking)-combinations. In total the gener-

ated benchmark set contains 𝑁 = 720 instances. Within the fitness

function evaluation each relevant heuristic is run 𝑘 = 5 times

independently with a time-limit of 10 seconds per run.4 The perfor-

mance of an algorithm is defined as the unique median over all 𝑘

runs.5 Each run of the evolving EA is given a wall-time of 48 hours

as the single termination criterion: the EA terminates after ≈ 47

hours and the last hour is used to run each of the three TTP heuris-

tics 30 times independently on the evolved TTP instance for final

evaluation. All experiments were run on the High-Performance-

Cluster <anonymous>. We implemented the EA in the statistical

programming language R [46] in version 4.0.0; for the TTP heuris-

tics we rely on existing Java implementations kindly provided by

the original authors of [16]. All scripts and data are made available

in a public GitHub.6

7 DISCUSSION OF RESULTS

We now discuss observations based on detailed data analysis of

the generated instance set. Saying it right away: the results in the

considered TTP setting are less pleasing than expected and may

thus partially be considered as negative results. However, we have

plausible explanations for these artifacts and feel like the lessons

learned in the course of preparing this manuscript are of high

scientific interest for researchers in the field.

7.1 Desired versus actual rankings

We first consider the results for the fitness function pairwise and

explicit-ranking where the ranking is a parameter of the fitness

function. Figure 4 shows the rate of łsuccessfulž jobs for each rank-

ing for the pairwise and explicit-ranking setting. Successful in this

context means that the final evaluations reflect the desired rank-

ing used by the fitness function. We observe a clear trend. In the

pairwise-setting (right plot in Figure 4) the EA succeeds in 85%

and even 97.5% of the cases in generating instances where C2 per-

forms better than S4 and S2 respectively. All other cases are far

less successful. In particular, it seems difficult to evolve instances

4Actually, this time-limit is never hit because solvers terminated after at most one
second.
5Actually, we would have liked to increase 𝑘 to 10 or even 30. However, in order to
obtain a reasonable number of iterations of the evolving EA within the wall-time of
each job, we relied on this rather small value.
6Code and data: https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

1427

https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

GECCO ’21 Companion, July 10ś14, 2021, Lille, France Jakob Bossek and Markus Wagner

explicit−ranking pairwise

C2 > S2 > S4

C2 > S4 > S2

S2 > C2 > S4

S2 > S4 > C2

S4 > C2 > S2

S4 > S2 > C2

C2 > S2

C2 > S4

S2 > C2

S2 > S4

S4 > C2

S4 > S2

0

25

50

75

100

Ranking

S
u

c
c
e

s
s
 [

in
 p

e
rc

e
n

t]

Figure 4: Percentage of successful evolving jobs, i.e., jobs

where the median of the final 30 evaluations in fact reflects

the ranking that was aimed for.

0

20

40

60

80

100

120

C2 > S2 > S4

C2 > S4 > S2

S2 > C2 > S4

S2 > S4 > C2

S4 > C2 > S2

S4 > S2 > C2

Ranking

N
u

m
b

e
r

o
f

in
s
ta

n
c
e

s

Fitness fun explicit−ranking no−order pairwise

Figure 5: Number of instances evolved for each ranking split

by fitness-function. The dashed line indicates the number

of instances that the experimental setup aimed for for each

ranking.

where S2 or S4 outperform C2 (success rates of 10% and 20% respec-

tively). This observation indicates that C2 is clearly dominating the

algorithm portfolio and can be attributed to the more sophisticated

working principles of C2 in direct comparison to S2 and S4. Looking

at the left plot in Figure 4 we see that this issue directly transfers

to the success rate of jobs guided by the explicit-ranking fitness

function. This is plausible: if S2 > C2 is hardly possible, we cannot

expect S2 > C2 > S4 to be any easier.

Figure 5 shows a different perspective. Here, the ranking on the

𝑥-axis is the actual ranking based on the final evaluations after the

evolving process completed. This allows to integrate the results for

the third fitness function, no-order, into the plot. The plot reveals

that most evolved instances are easiest for C2 with each more than

110 instances in total showing the ranking C2 > S4 > S2 and about

80 instances reflecting C2 > S2 > S4. Instances where algorithms

S2/S4 score first place are rather scarce (far less than the anticipated

40 instances for each ranking). Note however, that at least for S2

the results for the pairwise and explicit-ranking are superior to the

plain no-order setting.

7.2 Investigating issues

We now take a closer look at the performance of the algorithms

on a representative subset of the evolved instances. Figure 6 shows

boxplots of the performance of all three algorithms (each 30 runs)

on eight representative evolved instances for each of the three fit-

ness functions: pairwise, no-order and explicit ranking from top to

bottom.We can identify two repeating patterns that pose difficulties

to the EA; each alone can fool the EA and in particular the combi-

nation of both aspects. The first one is due to (roughly) bi-modal

behavior of all or a subset of the algorithms. We can observe this,

e.g. in the first three plots of the first row, the first plot in the second

row and the sixth plot in the third row of (blue triangles indicate

the raw performance values). Here, the algorithms seemingly run

in either one of two local optima or at least multiple optima with

very similar objective scores with roughly equal probability. Recall

that the EA works with aggregated median performance values

(based on each 𝑘 = 5 independent runs) and the fitness value in

all cases is a composition of differences of median values. Now,

for example assume, that algorithm S2 takes the raw performance

values (10, 10, 1, 1, 10) on some instance 𝐼 : the median value is 10.

For S4 we have (10, 1, 1, 10, 1) and the median value is 1. In the

pairwise setting for the ranking S2 > S4 the fitness value would be

10 − 1 = 9 and the instance might get accepted as the new incum-

bent instance in the course of optimization. Let us assume that this

incumbent is not replaced anymore in subsequent iterations of the

EA and the EA returns 𝐼 . Now, due to the described issue, in the

final 30 evaluations, the median difference on 𝐼 might be exactly

the other way around indicating S4 > S2. This is what actually

happens very often. The other aspect is a high variance of objective

scores intermingled with the fact that there are few cases where

one algorithm always outperforms its competitors. In fact, on al-

most all instances, the best objective scores of the worst algorithm

(with respect to median performance) are equal to the best scores of

the best algorithm. In combination, both discussed issues have the

potential to misguide the EA. In fact, looking a the development of

the fitness values over time reveals that all EA-runs make progress

łin the right directionž. However, final evaluations in most cases

show the vice-versa. One could argue that these issues might by

overcome by increasing the number 𝑘 of runs of each algorithm in

the fitness-function evaluation. However, follow-up investigations

with 𝑘 = 30 did not change the overall picture.

7.3 Properties of evolved instances

Next, we characterise the so-called features of the evolved instances.

Useful features describe high-level properties of an instance that are

(a) computationally undemanding to calculate (at least in compari-

son to costly runs of optimization algorithms) and (b) well-suited to

distinguish algorithm performance. These features can then ideally

be used in the context of automatic per-instance algorithm selec-

tion to predict the most likely best-performing algorithm from a

portfolio (see [27] for a recent survey on algorithm selection).

To the best of our knowledge there is no work on instance char-

acteristics for the TTP besides a brief investigation in the context of

algorithm selection [52]. Therefore, we treat the TSP and KP com-

ponents separately. For each instance we calculate a set of features

for the TSP taken from the literature. Features involve summary

statistics of the edge weights of a minimum spanning tree (e.g., the

depth), distance-based features calculated on basis of the distance

matrix (mean, median, standard deviation etc.) or properties of the

𝑘-Nearest-Neighbor Graph (NNG) like the number of weak/strong

1428

Generating Instances with Performance Differences for More Than Just Two Algorithms GECCO ’21 Companion, July 10ś14, 2021, Lille, France

●

●
●

●

●

●

●

●

●

●
●
●

●●
●

pairwise

#1 / S4 > S2

pairwise

#2 / S4 > C2

pairwise

#3 / S4 > C2

pairwise

#4 / C2 > S4

pairwise

#5 / C2 > S2

pairwise

#6 / S2 > S4

pairwise

#7 / C2 > S4

pairwise

#8 / C2 > S4

S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2

−6.3e+07

−6.1e+07

−5.9e+07

−4.1e+07

−4.0e+07

−3.9e+07

−3.8e+07

−3.7e+07

−3.9e+07

−3.8e+07

−3.7e+07

−4e+06

−3e+06

−2e+06

−5.4e+07

−5.2e+07

−5.0e+07

−4.8e+07

−1.8e+07

−1.6e+07

−1.4e+07

−1.2e+07

−6e+06

−4e+06

−2e+06

−9e+06

−8e+06

−7e+06

−6e+06

−5e+06

−4e+06

−3e+06

Algorithm

P
e
rf

o
rm

a
n
c
e

●●

●●
●

● ●

●

●

●
●

●●

●

●

no−order

#1 / no−order

no−order

#2 / no−order

no−order

#3 / no−order

no−order

#4 / no−order

no−order

#5 / no−order

no−order

#6 / no−order

no−order

#7 / no−order

no−order

#8 / no−order

S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2

−5.00e+06

−4.75e+06

−4.50e+06

−4.25e+06

−4.00e+06

−3.75e+06

−6.4e+07

−6.3e+07

−6.2e+07

−6.1e+07

−2.0e+06

−1.5e+06

−1.0e+06

−5.0e+05

−1.04e+08

−1.02e+08

−1.00e+08

−9.80e+07

−7.0e+07

−6.8e+07

−6.6e+07

−6.4e+07

−8.6e+07

−8.4e+07

−8.2e+07

−8.0e+07

−7.8e+07

−5e+06

−4e+06

−3e+06

−2e+06

−1e+06

−2.3e+07

−2.2e+07

−2.1e+07

Algorithm

P
e
rf

o
rm

a
n
c
e

●

●
●

●

●●
●●●

●
●

●

●
●

explicit−ranking

#1 / C2 > S4 > S2

explicit−ranking

#2 / C2 > S4 > S2

explicit−ranking

#3 / S2 > S4 > C2

explicit−ranking

#4 / S2 > S4 > C2

explicit−ranking

#5 / S4 > S2 > C2

explicit−ranking

#6 / S2 > C2 > S4

explicit−ranking

#7 / S2 > S4 > C2

explicit−ranking

#8 / S2 > C2 > S4

S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2 S2 S4 C2

−3.3e+07

−3.2e+07

−3.1e+07

−4.8e+07

−4.6e+07

−4.4e+07

−5.2e+07

−5.0e+07

−4.8e+07

−4.6e+07

−2.80e+07

−2.75e+07

−2.70e+07

−2.65e+07

−4.8e+07

−4.7e+07

−4.6e+07

−4.5e+07

−4.4e+07

−6.4e+07

−6.3e+07

−6.2e+07

−6.1e+07

−6.0e+07

−7.6e+07

−7.4e+07

−7.2e+07

−7.0e+07

−6e+06

−4e+06

−2e+06

Algorithm

P
e
rf

o
rm

a
n
c
e

Figure 6: Distribution of performance values for each eight instances evolved by fitness function pairwise (top row), no-order

(middle row) and explicit-ranking (bottom row).

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●

● ●

●

●

−0.10

−0.05

0.00

0.05

−0.15 −0.10 −0.05 0.00 0.05 0.10

PC1 (16.98%)

P
C

2
 (

1
0
.5

9
%

)

Ranking
●

C2 > S2 > S4

C2 > S4 > S2

S2 > C2 > S4

S2 > S4 > C2

S4 > C2 > S2

S4 > S2 > C2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−0.10

−0.05

0.00

0.05

−0.10 −0.05 0.00 0.05 0.10

PC1 (24.06%)

P
C

2
 (

1
0
.7

6
%

)

Ranking
●

C2 > S2 > S4

C2 > S4 > S2

S2 > C2 > S4

S2 > S4 > C2

S4 > C2 > S2

S4 > S2 > C2

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●●
●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

−0.1

0.0

0.1

0.2

−0.10 −0.05 0.00 0.05

PC1 (23.07%)

P
C

2
 (

1
6
.0

1
%

)

Ranking
●

C2 > S2 > S4

C2 > S4 > S2

S2 > C2 > S4

S2 > S4 > C2

S4 > C2 > S2

S4 > S2 > C2

Figure 7: First two principal components results of a principal component analysis on both TSP and KP features (left), only

TSP features (center) and only KP features (right).

components it is composed of. In particular the latter 𝑘-NNG based

feature-set proved useful in algorithm selection approaches for

the TSP [42]. The KP-related weight/profit combination is treated

as another TSP and we calculate the same features for the knap-

sack component of the TSP. This approach results in a set of more

than 400 features in total given. We apply principal component

analysis (PCA) to the features and project the instances into the 2-

dimensional space spanned by the first two components.7 Figure 7

shows the 2-dimensional embeddings if PCA was applied with the

union of TSP and KP features, TSP features only and KP-features

only. The points are colored by their actual ranking based on the

7Prior to PCA, in order to obtain tidy numerical input data for the method, we removed
constant features and rare cases where the calculation of certain features yielded
infinity. These artifacts are due to the evolving process not avoiding duplicate node
coordinates.

final evaluation. Notably, in line with observations made at the

beginning of the experimental evaluation, the majority of points

represents instances that are easiest for C2 (cf. Figure 5). The total

variance in the data explained by the first two principal components

(PCs) is not tremendous, but neither is it low. We have ≈ 27.5%

in case we use both feature sets, ≈ 34.7 for TSP-only features and

≈ 39% for KP-only features. In the first and last plot we can identify

four (partly overlapping) clusters which can be attributed to the

four values {1, 3, 5, 10} used for the number of items per node (IPN).

This makes sense because many of the features are no normalized

and thus affected by the number of observations (note that the

bounding box for the items is [0, 4 040] × [0, 4 400] regardless of

the choice for IPN). Taking a close look at the plots we can see that

instances which are easiest for S2 are located in another area of the

1429

GECCO ’21 Companion, July 10ś14, 2021, Lille, France Jakob Bossek and Markus Wagner

●

●

●●●●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●●●
●
●

●

●
●

●●

●

●●
●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●
●

● ●

●

●

●●

●●●●

●
●

●

●

●

●

●

●

●
●●
●

●●

●●

●
●●

●

●

●●●●● ●●●

●

●●

●

●●●●

●

●

●
●

●

●●

●

●●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●●●●

●●
●

●
●●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

0

2500

5000

7500

10000

0 2500 5000 7500 10000

node x−coordinate

n
o
d
e
 y

−
c
o
o
rd

in
a
te

●

●

●

●

●●
●

●

●

●

●●●
●
●

●

●

●

●

●

●

●●●

●
●

●
●
●

●

●●●
●●

●

●

●

●

●

●
●

●

●

●
●●●

●
●

●

●●●

●

●

●

●

●

●●●
●

●

●
●

●

●
●

●

●●

●●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●
●●●
●

●

●

●

●

●

●

●●
●●

●

●●●
●●
●●●●

●

●●

●

●●

●

●

●

●

●●●●
●●●●
●●

●

●

●

●

●

●●●●●●

●

●

●

●
●
●●

●●

●

●
●●●

●

●
●●

●

●●
●
●

●

●

●●●
●
●●●●●●
●●
●●
●

●

●

●
●

●

●

●
●
●
●
●

●

●●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●
●
●●●●

●

●●●

●

●

●
●

●

●

●

●

●●
●
●
●●
●

●

●
●●●

●

●

●
●

●
●●
●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●●
●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●
●

●

●

●

●●●

●

●
●

●
●
●
●●●
●

●

●●
●

●

●
●

●

●

●
●

●
●●●

●

●
●●●●●

●

●●●
●

●

●
●
●●●

●
●

●

●●●

●

●

●

●
●●

●
●
●
●
●

●

●●●

●

●

●●

●

●

●

●
●
●
●

●●

●

●●●

●

●

●●●

●●
●
●
●●

●

●●●●

●

●
●

●

●●

●

●

●

●●●●●●●●

●

●●

●

●

●
●

●

●
●●●●●
●●●

●

●

●●

●

●
●

●

●

●
●●
●●●●

●●

●
●
●●●

●

●●

●

●
●
●

●

●●●●●●
●●

●

●

●
●●

●
●●●

●

●

●

●●

●

●●●

●

●

●●●
●

●
●
●●●●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●●●
●●

●

●

●

●

●●
●

●

●

●

●
●●●●
●

●●
●

●
●●

●

0

1000

2000

3000

4000

0 1000 2000 3000 4000

weight
p
ro

fi
t

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

● ●
●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

0

2500

5000

7500

10000

0 2500 5000 7500 10000

node x−coordinate

n
o
d
e
 y

−
c
o
o
rd

in
a
te

●●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●
● ●●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●
●●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●●
●

●
● ●

●

●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●● ●●●

●

●

●

●

●

●

●

●
●●●

●

●
●● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●●
●●
●
●●

●

●

●

●
●
●

●
●

●
●
●●
●

●

●

●

●

●●●

●

●

●

● ●●
●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●
●
●●●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●

●●●●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

● ●

● ●

●

●● ●

●●

●

●

●●
●

●
●
●

●

●

●

●

●●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●
●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●●●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
● ●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●●●

●●

●

●

●

●● ●

●

●

●

●

●
●

●

● ●●

●● ●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●

●

●

●
● ●●

●

●

●●
●●

●●●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●

● ●● ●●

●

●

●

●

●●
●

●

● ●
●

●
●

●

●

●

●
●
●

●●

●

●

●

●

● ●

●
● ●●

●

●

●

●
●●

●

●

● ●●

●

●

●
●

● ●

●

●

●

● ●

●

●

●
●

●

●●
●

●●

●

●

●
●

● ●●●
●

●

●

●●

●

●

●

●

●
●

●
●

●●●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●●

●

● ●●● ●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●●
●

●● ●●

●

●
●

●

●● ●
●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●● ● ●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●●●●

●

●

●

●

●

●●

●
●

●
●
●

●
●

●●●

●

●

●●
●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●●

●●●●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●
●

●● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●●
●

●●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●●
●●

●

●●
●
●

● ●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
● ●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●
●
●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●
●
●

●

●

●

●

● ●●

●

●●

●

●

●●

●

●● ●●●● ●●

●

●

●

● ● ●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●●

●

●●●
●

●●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●
●

●

●

●●
●

●●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●●

●
●●●●●●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
● ●
● ●●●

●

●

●
●

●
●

● ●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

0

1000

2000

3000

4000

0 1000 2000 3000 4000

weight

p
ro

fi
t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

0

2500

5000

7500

10000

0 2500 5000 7500 10000

node x−coordinate

n
o
d
e
 y

−
c
o
o
rd

in
a
te ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1000

2000

3000

4000

0 1000 2000 3000 4000

weight

p
ro

fi
t

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

2500

5000

7500

10000

0 2500 5000 7500 10000

node x−coordinate

n
o
d
e
 y

−
c
o
o
rd

in
a
te

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1000

2000

3000

4000

0 1000 2000 3000 4000

weight

p
ro

fi
t

Figure 8: Evolved TTP instances where the desired ranking was achieved successfully for 𝑆2 > 𝑆4 > 𝐶2 (top-left), 𝑆4 > 𝐶2 > 𝑆2

(top right), 𝐶2 > 𝑆2 > 𝑆4 (bottom left) and 𝐶2 > 𝑆4 > 𝑆2 (bottom right).

plot (violet triangles and orange dots) quite well separated from

the large clusters where most C2-dominated instances lie.

For example, in the left-most embedding the majority of these

instances have a PC1-value below −0.025. Making sense of the so-

called loadings of the PCA is difficult. There are many features that

influence the first and second principal component and it is out of

scope of this paper to dive deeper into machine learning models.

However, it opens a path for deeper instance-feature analysis and

paves the way for a better understanding of TTP-instance hard-

ness. We stress that these observations are particularly nice given

the discouraging and unpromising results discussed earlier in this

section.

Finally, Figure 8 gives a visual impression of four representa-

tive evolved instances. The instances are very diverse owing the

disruptive nature of the adopted mutation operators. The overall

impression is that S2 works best on instances with rather densely

clustered node weights and items, i.e., where there exist subsets of

items with similar weights and profits. In contrast, C2 copes better

with a wider weight/profit spread.

8 CONCLUSION AND TAKE-AWAY MESSAGES

We have studied the task of generating a set of benchmark instances

for combinatorial optimization problems by means of evolutionary

algorithms. Such a set can aid researchers to get a better under-

standing of the problem and develop better algorithms. Ideally, such

a set is diverse with respect to (1) complementary algorithm per-

formance on a set of algorithms and (2) structural properties of the

instances. We aimed for the first goal and targeted the problem of

evolving instances where the performance on at least three algo-

rithms follows a given ranking. To this end we proposed fitness

functions suited to guide the evolutionary search process in a way

that it is balanced with respect to the ranking of solver performance.

As part of a proof-of-concept study we adopted our approach to

evolve a benchmark set for the Traveling Thief Problem (TTP) and

three TTP-heuristics.

The results clearly show that the effectiveness of our approach

strongly depends on the algorithm portfolio. As a take-away mes-

sage we want to make the reader aware of the following potential

pitfalls in this branch of research:

(1) Unsurprisingly, it is easy to evolve instances that are most

reliably solved by the dominating algorithm in the portfolio,

but the reverse can be difficult, if not even impossible. Hence,

the proposed portfolio necessarily needs to be composed of

solvers with strong complementary behavior.

(2) The proposed fitness functions can be fooled by certain sta-

tistical artifacts of the solver performance. In this work, most

notably, severe bi-modality of the performance distribution

of single solvers led to a misdirection of the evolutionary

search even though the robust median value was used to

aggregate over multiple runs.

In future work, we will apply our approach to other optimization

problems, and we will improve the algorithm used for the evolution:

while a population-based approach will enable us to evolve diverse

instances in parallel, we will need to investigate how to evenly

distribute them in the space of 𝑁 ! target permutations. For this,

established distance measures (see e.g. [12]) might prove useful.

Moreover, the formulated take-away messages suggest interest-

ing avenues for further investigations, such as: how do task-specific

mutation operator have to be constructed that are better suited to

generate instances that are indeed hard for the dominating algo-

rithm; how can alternative summary statistics (e.g., 𝑝-quantiles)

assist to aggregate solver performance?

Acknowledgements. Jakob Bossek acknowledges support by

the European Research Center for Information Systems (ERCIS).

Markus Wagner acknowledges support by the Australian Research

Council projects DP200102364 and DP210102670.

1430

https://www.ercis.org

Generating Instances with Performance Differences for More Than Just Two Algorithms GECCO ’21 Companion, July 10ś14, 2021, Lille, France

REFERENCES
[1] Thomas Bartz-Beielstein, Carola Doerr, Daan van den Berg, Jakob Bossek,

Sowmya Chandrasekaran, Tome Eftimov, Andreas Fischbach, Pascal Kerschke,
William La Cava, Manuel Lopez-Ibanez, Katherine M. Malan, Jason H. Moore,
Boris Naujoks, Patryk Orzechowski, Vanessa Volz, Markus Wagner, and Thomas
Weise. 2020. Benchmarking in Optimization: Best Practice and Open Issues.
arXiv:cs.NE/2007.03488

[2] Julian Blank, Kalyanmoy Deb, and SanazMostaghim. 2017. Solving the Bi-objective
Traveling Thief Problem with Multi-objective Evolutionary Algorithms. Springer,
46ś60. https://doi.org/10.1007/978-3-319-54157-0_4

[3] M. R. Bonyadi, Z. Michalewicz, and L. Barone. 2013. The travelling thief problem:
The first step in the transition from theoretical problems to realistic problems. In
IEEE Congress on Evolutionary Computation (CEC). 1037ś1044. https://doi.org/
10.1109/CEC.2013.6557681

[4] Mohammad Reza Bonyadi, Zbigniew Michalewicz, Michal Roman Przybylek, and
Adam Wierzbicki. 2014. Socially Inspired Algorithms for the TTP. In Genetic and
Evolutionary Computation Conference (GECCO). ACM, 421ś428. https://doi.org/
10.1145/2576768.2598367

[5] Mohammad Reza Bonyadi, Zbigniew Michalewicz, Markus Wagner, and Frank
Neumann. 2019. Evolutionary Computation for Multicomponent Problems: Oppor-
tunities and Future Directions. Springer, 13ś30. https://doi.org/10.1007/978-3-
030-01641-8_2

[6] Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neu-
mann, and Heike Trautmann. 2019. Evolving diverse TSP instances by means
of novel and creative mutation operators. In Foundations of Genetic Algorithms
(FOGA). ACM, 58ś71. https://doi.org/10.1145/3299904.3340307

[7] Jakob Bossek and Heike Trautmann. 2016. Evolving Instances for Maximizing
Performance Differences of State-of-the-Art Inexact TSP Solvers. In Learning and
Intelligent Optimization (LION) (Lecture Notes in Computer Science), Vol. 10079.
Springer, 48ś59. https://doi.org/10.1007/978-3-319-50349-3_4

[8] Jakob Bossek and Heike Trautmann. 2016. Understanding characteristics of
evolved instances for state-of-the-art inexact TSP solvers with maximum per-
formance difference. In AI*IA 2016 Advances in Artificial Intelligence, Vol. 10037
LNAI. Springer, 3ś12. https://doi.org/10.1007/978-3-319-49130-1_1

[9] Simon Bowly. 2013. Evolving Hard Instances for Graph Colouring Problems.
(2013). Australian Mathematical Sciences Institute.

[10] Jonatas B. C. Chagas, Julian Blank, Markus Wagner, Marcone J. F. Souza, and
Kalyanmoy Deb. 2020. A non-dominated sorting based customized random-
key genetic algorithm for the bi-objective traveling thief problem. Journal of
Heuristics (2020). https://doi.org/10.1007/s10732-020-09457-7

[11] Bayi Cheng, Yanyan Yang, and Xiaoxuan Hu. 2016. Supply chain scheduling
with batching, production and distribution. International Journal of Computer
Integrated Manufacturing 29, 3 (2016), 251ś262. https://doi.org/10.1080/0951192X.
2015.1032354

[12] Vincent A. Cicirello. 2018. JavaPermutationTools: A Java Library of Permutation
Distance Metrics. Journal of Open Source Software 3, 31 (2018), 950. https:
//doi.org/10.21105/joss.00950

[13] Mohamed El Yafrani and Belaïd Ahiod. 2015. Cosolver2B: an efficient local search
heuristic for the travelling thief problem. In International Conference of Computer
Systems and Applications (AICCSA). IEEE, 1ś5. https://doi.org/10.1109/AICCSA.
2015.7507099

[14] Mohamed El Yafrani and Belaïd Ahiod. 2016. Population-based vs. single-solution
heuristics for the travelling thief problem. In Genetic and Evolutionary Compu-
tation Conference (GECCO). ACM, 317ś324. https://doi.org/10.1145/2908812.
2908847

[15] Mohamed El Yafrani and Belaïd Ahiod. 2018. Efficiently solving the Traveling
Thief Problem using hill climbing and simulated annealing. Information Sciences
432 (2018), 231ś244. https://doi.org/10.1016/j.ins.2017.12.011

[16] Hayden Faulkner, Sergey Polyakovskiy, Tom Schultz, and Markus Wagner. 2015.
Approximate approaches to the traveling thief problem. In Genetic and Evolution-
ary Computation Conference (GECCO). ACM, 385ś392. https://doi.org/10.1145/
2739480.2754716

[17] Florian Forster and Andreas Bortfeldt. 2012. A tree search procedure for the
container relocation problem. Computers & Operations Research 39, 2 (2012),
299ś309. https://doi.org/10.1016/j.cor.2011.04.004

[18] Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. 2016. Feature-Based
Diversity Optimization for Problem Instance Classification. In Parallel Problem
Solving fromNature (PPSN) (Lecture Notes in Computer Science), Vol. 9921. Springer,
869ś879. https://doi.org/10.1007/978-3-319-45823-6_81

[19] Daniel Herring, Michael Kirley, and Xin Yao. 2020. Dynamic Multi-objective
Optimization of the Travelling Thief Problem. arXiv:cs.NE/2002.02636

[20] Andre Hottung, Shunji Tanaka, and Kevin Tierney. 2020. Deep learning assisted
heuristic tree search for the container pre-marshalling problem. Computers &
Operations Research 113 (2020), 104781. https://doi.org/10.1016/j.cor.2019.104781

[21] Frank Hutter, Holger H. Hoos, and Thomas Stützle. 2007. Automatic Algorithm
Configuration Based on Local Search. In AAAI Conference on Artificial Intelligence.
AAAI Press, 1152ś1157. http://www.aaai.org/Library/AAAI/2007/aaai07-183.

php
[22] Manuel Iori and Silvano Martello. 2010. Routing problems with loading con-

straints. Top 18, 1 (2010), 4ś27. https://doi.org/10.1007/s11750-010-0144-x
[23] He Jiang, Wencheng Sun, Zhilei Ren, Xiaochen Lai, and Yong Piao. 2014. Evolv-

ing Hard and Easy Traveling Salesman Problem Instances: A Multi-objective
Approach. In Simulated Evolution and Learning. Springer, 216ś227. https:
//doi.org/10.1007/978-3-319-13563-2_19

[24] Bo Jin, Wenbin Zhu, and Andrew Lim. 2015. Solving the container relocation
problem by an improved greedy look-ahead heuristic. European Journal of
Operational Research 240, 3 (2015), 837ś847. https://doi.org/10.1016/j.ejor.2014.
07.038

[25] Bryant A. Julstrom. 2009. Evolving Heuristically Difficult Instances of Combinato-
rial Problems. In 11th Annual Conference on Genetic and Evolutionary Computation.
ACM, 279ś286. https://doi.org/10.1145/1569901.1569941

[26] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann.
2019. Automated Algorithm Selection: Survey and Perspectives. Evolution-
ary Computation 27, 1 (2019), 3ś45. https://doi.org/10.1162/evco_a_00242
arXiv:https://doi.org/10.1162/evco_a_00242 PMID: 30475672.

[27] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2019.
Automated Algorithm Selection: Survey and Perspectives. Evolutionary Compu-
tation 27, 1 (2019), 3ś45. https://doi.org/10.1162/evco_a_00242

[28] Kathrin Klamroth, Sanaz Mostaghim, Boris Naujoks, Silvia Poles, Robin Pur-
shouse, Günter Rudolph, Stefan Ruzika, Serpil Sayın, Margaret M. Wiecek, and
Xin Yao. 2017. Multiobjective optimization for interwoven systems. Journal of
Multi-Criteria Decision Analysis 24, 1-2 (2017), 71ś81. https://doi.org/10.1002/
mcda.1598

[29] Thibault Lechien, Jorik Jooken, and Patrick De Causmaecker. 2021. Evolving test
instances of the Hamiltonian completion problem. arXiv:cs.AI/2011.02291

[30] Alenrex Maity and Swagatam Das. 2020. Efficient hybrid local search heuristics
for solving the travelling thief problem. Applied Soft Computing (2020), 106284.
https://doi.org/10.1016/j.asoc.2020.106284

[31] Silvano Martello, David Pisinger, and Paolo Toth. 1999. Dynamic Programming
and Strong Bounds for the 0-1 Knapsack Problem. Management Science 45, 3
(March 1999), 414ś424. https://doi.org/10.1287/mnsc.45.3.414

[32] Marcella S. R. Martins, Mohamed El Yafrani, Myriam R. B. S. Delgado, Markus
Wagner, Belaïd Ahiod, and Ricardo Lüders. 2017. HSEDA: A Heuristic Selection
Approach Based on Estimation of Distribution Algorithm for the Travelling Thief
Problem. In Genetic and Evolutionary Computation Conference (GECCO). ACM,
361ś368. https://doi.org/10.1145/3071178.3071235

[33] Yi Mei, Xiaodong Li, and Xin Yao. 2014. On investigation of interdependence
between sub-problems of the TTP. Soft Computing 20, 1 (2014), 157ś172. https:
//doi.org/10.1007/s00500-014-1487-2

[34] Olaf Mersmann, Bernd Bischl, Jakob Bossek, Heike Trautmann, Markus Wagner,
and Frank Neumann. 2012. Local Search and the Traveling Salesman Problem: A
Feature-Based Characterization of Problem Hardness. In Learning and Intelligent
Optimization (LION). Springer, 115ś129.

[35] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob Bossek,
and Frank Neumann. 2013. A novel feature-based approach to characterize
algorithm performance for the traveling salesperson problem. Ann. Math. Artif.
Intell. 69, 2 (2013), 151ś182. https://doi.org/10.1007/s10472-013-9341-2

[36] Mario A. Muñoz, Laura Villanova, Davaatseren Baatar, and Kate Smith-Miles.
2018. Instance spaces for machine learning classification. Machine Learning 107,
1 (2018), 109ś147. https://doi.org/10.1007/s10994-017-5629-5

[37] Mario A. Muñoz and Kate Smith-Miles. 2020. Generating New Space-
Filling Test Instances for Continuous Black-Box Optimization. Evolution-
ary Computation 28, 3 (2020), 379ś404. https://doi.org/10.1162/evco_a_00262
arXiv:https://doi.org/10.1162/evco_a_00262

[38] Majid Namazi, Conrad Sanderson, M. A. Hakim Newton, and Abdul Sattar. 2019.
A Cooperative Coordination Solver for Travelling Thief Problems. arXiv e-print,
available at https://arxiv.org/abs/1911.03124.

[39] Aneta Neumann,Wanru Gao, Carola Doerr, Frank Neumann, andMarkusWagner.
2018. Discrepancy-Based Evolutionary Diversity Optimization. In Genetic and
Evolutionary Computation Conference (GECCO). ACM, 991ś998. https://doi.org/
10.1145/3205455.3205532

[40] Aneta Neumann, Wanru Gao, Markus Wagner, and Frank Neumann. 2019. Evo-
lutionary Diversity Optimization Using Multi-Objective Indicators. In Genetic
and Evolutionary Computation Conference (GECCO). ACM, 837ś845. https:
//doi.org/10.1145/3321707.3321796

[41] Frank Neumann, Sergey Polyakovskiy, Martin Skutella, Leen Stougie, and Junhua
Wu. 2019. A Fully Polynomial Time Approximation Scheme for Packing While
Traveling. In Algorithmic Aspects of Cloud Computing. Springer, 59ś72. https:
//doi.org/10.1007/978-3-030-19759-9_5

[42] Josef Pihera and Nysret Musliu. 2014. Application of Machine Learning to Algo-
rithm Selection for TSP. In Proceedings of the IEEE 26th International Conference
on Tools with Artificial Intelligence (ICTAI). IEEE press, Washington, DC, USA,
47ś54. https://doi.org/10.1109/ICTAI.2014.18

[43] Luis Fernando Plata-González, Ivan Amaya, JoséCarlos Ortiz-Bayliss, Santiago En-
rique Conant-Pablos, Hugo Terashima-Marín, and Carlos A. Coello Coello. 2019.

1431

http://arxiv.org/abs/cs.NE/2007.03488
https://doi.org/10.1007/978-3-319-54157-0_4
https://doi.org/10.1109/CEC.2013.6557681
https://doi.org/10.1109/CEC.2013.6557681
https://doi.org/10.1145/2576768.2598367
https://doi.org/10.1145/2576768.2598367
https://doi.org/10.1007/978-3-030-01641-8_2
https://doi.org/10.1007/978-3-030-01641-8_2
https://doi.org/10.1145/3299904.3340307
https://doi.org/10.1007/978-3-319-50349-3_4
https://doi.org/10.1007/978-3-319-49130-1_1
https://doi.org/10.1007/s10732-020-09457-7
https://doi.org/10.1080/0951192X.2015.1032354
https://doi.org/10.1080/0951192X.2015.1032354
https://doi.org/10.21105/joss.00950
https://doi.org/10.21105/joss.00950
https://doi.org/10.1109/AICCSA.2015.7507099
https://doi.org/10.1109/AICCSA.2015.7507099
https://doi.org/10.1145/2908812.2908847
https://doi.org/10.1145/2908812.2908847
https://doi.org/10.1016/j.ins.2017.12.011
https://doi.org/10.1145/2739480.2754716
https://doi.org/10.1145/2739480.2754716
https://doi.org/10.1016/j.cor.2011.04.004
https://doi.org/10.1007/978-3-319-45823-6_81
http://arxiv.org/abs/cs.NE/2002.02636
https://doi.org/10.1016/j.cor.2019.104781
http://www.aaai.org/Library/AAAI/2007/aaai07-183.php
http://www.aaai.org/Library/AAAI/2007/aaai07-183.php
https://doi.org/10.1007/s11750-010-0144-x
https://doi.org/10.1007/978-3-319-13563-2_19
https://doi.org/10.1007/978-3-319-13563-2_19
https://doi.org/10.1016/j.ejor.2014.07.038
https://doi.org/10.1016/j.ejor.2014.07.038
https://doi.org/10.1145/1569901.1569941
https://doi.org/10.1162/evco_a_00242
http://arxiv.org/abs/https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1002/mcda.1598
https://doi.org/10.1002/mcda.1598
http://arxiv.org/abs/cs.AI/2011.02291
https://doi.org/10.1016/j.asoc.2020.106284
https://doi.org/10.1287/mnsc.45.3.414
https://doi.org/10.1145/3071178.3071235
https://doi.org/10.1007/s00500-014-1487-2
https://doi.org/10.1007/s00500-014-1487-2
https://doi.org/10.1007/s10472-013-9341-2
https://doi.org/10.1007/s10994-017-5629-5
https://doi.org/10.1162/evco_a_00262
http://arxiv.org/abs/https://doi.org/10.1162/evco_a_00262
https://arxiv.org/abs/1911.03124
https://doi.org/10.1145/3205455.3205532
https://doi.org/10.1145/3205455.3205532
https://doi.org/10.1145/3321707.3321796
https://doi.org/10.1145/3321707.3321796
https://doi.org/10.1007/978-3-030-19759-9_5
https://doi.org/10.1007/978-3-030-19759-9_5
https://doi.org/10.1109/ICTAI.2014.18

GECCO ’21 Companion, July 10ś14, 2021, Lille, France Jakob Bossek and Markus Wagner

Evolutionary-based tailoring of synthetic instances for the Knapsack problem.
Soft Computing 23, 23 (2019), 12711ś12728. https://doi.org/10.1007/s00500-019-
03822-w

[44] Hanne Pollaris, Kris Braekers, An Caris, Gerrit K Janssens, and Sabine Limbourg.
2015. Vehicle routing problems with loading constraints: state-of-the-art and
future directions. OR Spectrum 37, 2 (2015), 297ś330. https://doi.org/10.1007/
s00291-014-0386-3

[45] Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew
Michalewicz, and Frank Neumann. 2014. A Comprehensive Benchmark Set and
Heuristics for the Traveling Thief Problem. In Genetic and Evolutionary Com-
putation Conference (GECCO). ACM, 477ś484. https://doi.org/10.1145/2576768.
2598249

[46] R Core Team. 2020. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

[47] Ragav Sachdeva, Frank Neumann, and Markus Wagner. 2020. The Dynamic Trav-
elling Thief Problem: Benchmarks and Performance of Evolutionary Algorithms.
arXiv:cs.NE/2004.12045

[48] Kate Smith-Miles and Jano I. van Hemert. 2011. Discovering the suitability of op-
timisation algorithms by learning from evolved instances. Annals of Mathematics
and Artificial Intelligence 61, 2 (2011), 87ś104. https://doi.org/10.1007/s10472-
011-9230-5

[49] J. I. van Hemert. 2003. Evolving binary constraint satisfaction problem instances
that are difficult to solve. In IEEE Congress on Evolutionary Computation (CEC),
Vol. 2. 1267ś1273 Vol.2. https://doi.org/10.1109/CEC.2003.1299814

[50] Jano I. van Hemert. 2006. Evolving Combinatorial Problem Instances That
Are Difficult to Solve. Evolutionary Computation 14, 4 (2006), 433ś462. https:
//doi.org/10.1162/evco.2006.14.4.433

[51] Markus Wagner. 2016. Stealing Items More Efficiently with Ants: A Swarm
Intelligence Approach to the Travelling Thief Problem. In Swarm Intelligence.

Springer, 273ś281. https://doi.org/10.1007/978-3-319-44427-7_25
[52] Markus Wagner, Marius Lindauer, Mustafa Mısır, Samadhi Nallaperuma, and

Frank Hutter. 2018. A case study of algorithm selection for the traveling thief
problem. Journal of Heuristics 24, 3 (2018), 295ś320. https://doi.org/10.1007/
s10732-017-9328-y

[53] Gang Wang. 2020. Integrated Supply Chain Scheduling of Procurement, Produc-
tion, and Distribution under Spillover Effects. Computers & Operations Research
(2020), 1ś14. https://doi.org/10.1016/j.cor.2020.105105

[54] Junhua Wu, Sergey Polyakovskiy, Markus Wagner, and Frank Neumann. 2018.
Evolutionary computation plus dynamic programming for the bi-objective travel-
ling thief problem. In Genetic and Evolutionary Computation Conference (GECCO).
ACM, 777ś784. https://doi.org/10.1145/3205455.3205488

[55] Junhua Wu, Markus Wagner, Sergey Polyakovskiy, and Frank Neumann. 2017.
Exact Approaches for the Travelling Thief Problem. In Simulated Evolution and
Learning. Springer, 110ś121. https://doi.org/10.1007/978-3-319-68759-9_10

[56] Rogier Hans Wuijts and Dirk Thierens. 2019. Investigation of the Traveling Thief
Problem. In Genetic and Evolutionary Computation Conference (GECCO). ACM,
329ś337. https://doi.org/10.1145/3321707.3321766

[57] Mohamed El Yafrani, Shelvin Chand, Aneta Neumann, Belaïd Ahiod, and Markus
Wagner. 2017. Multi-Objectiveness in the Single-Objective Traveling Thief Problem.
ACM, 107ś108. https://doi.org/10.1145/3067695.3076010

[58] Mohamed El Yafrani, Marcella S. R. Martins, Mehdi El Krari, MarkusWagner, Myr-
iam R. B. S. Delgado, Belaïd Ahiod, and Ricardo Lüders. 2018. A Fitness Landscape
Analysis of the Travelling Thief Problem. InGenetic and Evolutionary Computation
Conference (GECCO). ACM, 277ś284. https://doi.org/10.1145/3205455.3205537

[59] Wiem Zouari, Ines Alaya, and Moncef Tagina. 2019. A New Hybrid Ant
Colony Algorithms for the Traveling Thief Problem. In Genetic and Evolu-
tionary Computation Conference (GECCO) Companion. ACM, 95ś96. https:
//doi.org/10.1145/3319619.3326785

1432

https://doi.org/10.1007/s00500-019-03822-w
https://doi.org/10.1007/s00500-019-03822-w
https://doi.org/10.1007/s00291-014-0386-3
https://doi.org/10.1007/s00291-014-0386-3
https://doi.org/10.1145/2576768.2598249
https://doi.org/10.1145/2576768.2598249
https://www.R-project.org/
https://www.R-project.org/
http://arxiv.org/abs/cs.NE/2004.12045
https://doi.org/10.1007/s10472-011-9230-5
https://doi.org/10.1007/s10472-011-9230-5
https://doi.org/10.1109/CEC.2003.1299814
https://doi.org/10.1162/evco.2006.14.4.433
https://doi.org/10.1162/evco.2006.14.4.433
https://doi.org/10.1007/978-3-319-44427-7_25
https://doi.org/10.1007/s10732-017-9328-y
https://doi.org/10.1007/s10732-017-9328-y
https://doi.org/10.1016/j.cor.2020.105105
https://doi.org/10.1145/3205455.3205488
https://doi.org/10.1007/978-3-319-68759-9_10
https://doi.org/10.1145/3321707.3321766
https://doi.org/10.1145/3067695.3076010
https://doi.org/10.1145/3205455.3205537
https://doi.org/10.1145/3319619.3326785
https://doi.org/10.1145/3319619.3326785

	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Evolving instances
	5 Fitness functions to guide the EA
	6 Proof-of-concept study
	6.1 The Traveling Thief Problem
	6.2 Experimental setup

	7 Discussion of results
	7.1 Desired versus actual rankings
	7.2 Investigating issues
	7.3 Properties of evolved instances

	8 Conclusion and take-away messages
	References

