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ABSTRACT
Detecting anomalies in telemetry data captured on-board satellites
is a pivotal step towards their safe operation. The data-driven al-
gorithms for this task are often heavily parameterized, and the
incorrect hyperparameters can deteriorate their performance. We
tackle this issue and introduce a genetic algorithm for evolving
a dynamic thresholding approach that follows a long short-term
memory network in an unsupervised anomaly detection system.
Our experiments show that the genetic algorithm improves the abil-
ities of a detector operating on multi-channel satellite telemetry.
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1 INTRODUCTION
Detecting anomalies in spacecraft telemetry is a critical aspect of its
safe operation. There are three main types of anomalies that should
be considered for complex missions—in point anomalies, telemetry
values fall outside the nominal operational range. The collective
anomalies refer to the overall sequences of consecutive telemetry
values that are anomalous, whereas in contextual anomalies, the
single values are anomalous within their neighborhood [1].
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The out-of-limit detection engines can spot point anomalies, and
various expert systems cover other events [2]. Since generating new
ground-truth sets is extremely costly, unsupervised algorithms have
become the mainstream. In Telemanom [1], the expected telemetry
values are extracted using long short-term memory (LSTM) nets.
Then, an unsupervised thresholding of differences between the ex-
pected and actual values is used to detect events. As separate LSTMs
process different telemetry channels, Telemanom offers traceability
and interpretability which are crucial in Space applications.

Data-driven algorithms for detecting telemetry anomalies are
commonly heavily parameterized, and the incorrect hyperparame-
ters deteriorate their performance. We build upon [1], and propose
a genetic algorithm (GA) to evolve the hyperparameters of its un-
supervised thresholding part (Sect. 2). The experiments indicate
that GA improves the Telemanom’s abilities (Sect. 3). We show that
assessing the quality of detectors should be revisited, as the metrics
that capture temporal aspects of detected anomalies (with respect
to the ground truth) convey very important information.

2 GENETIC OPTIMIZATION OF DYNAMIC
THRESHOLDING PARAMETERS

In our GA, an initial population of 𝑁 individuals 𝑝𝑖 , where 𝑖 =

1, 2, . . . , 𝑁 , each encoding a set of hyperparameters (Table 1; for
details, see [1]), is evolved. The values for each 𝑝𝑖 are randomly
sampled from the uniform distribution for each hyperparameter, ac-
cording to their pre-defined feasible ranges. Thefitness𝜂 quantifies
the quality of the underlying parameterization of the thresholding
calculated over the set of training sequences 𝑻 . To ensure safe op-
eration of a spacecraft, the anomalies should be detected as fast as
possible to timely take actions, and the number of false positives
should be low, especially in semi-automatic systems, in which the
action is taken by a human. We exploit DICE and 𝐹𝛽 as the fit-
ness, and DICE(𝐴, 𝐵) = 2 · |𝐴 ∩ 𝐵 |/( |𝐴| + |𝐵 |), where 𝐴 and 𝐵 are
two anomalous regions, i.e., manual and automated, within the sig-
nal, whereas 𝐹𝛽 =

[
(1 + 𝛽2) · TP

]
/
[
(1 + 𝛽2) · TP + 𝛽2 · FN + FP

]
,

where TP, FN, and FP are true positives, false negatives, and false
positives in the anomaly. To prioritize precision, we have 𝛽 = 0.5.

In crossover, we generate two children for each (out of𝑁 /2) pair
of parental solutions (𝑝𝑎, 𝑝𝑏 ), where 𝑎 ≠ 𝑏, and each chromosome is
selected to act as a parent from (C𝑠 · 𝑁 ) best individuals. Here, we
always pre-select 𝑝best to be included in at least one parental pair.
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The hyperparameter values in offspring individuals are inherited
with an equal probability from each parent. Next, the first child is
mutated through changing the hyperparameters (with probability
P𝑚) to the random ones drawn from the corresponding range of fea-
sible values. In the second child, we pick a random hyperparameter
from the range limited by the parents’ current values. All children,
alongside 𝑝best survive to the next generation. The evolution con-
tinues until the maximum number of generations 𝐺max have been
processed, or 𝜂 (𝑝best) has not changed for 𝐺ES generations.

Table 1: The hyperparameters that undergo evolution. We
include the default and GA-evolved (for best DICE) values.

Symbol Range Step Def. GA Meaning

𝑛B [10, 200] 10 70 110 Number of values analyzed in a single telemetry batch.

𝑛W [5, 100] 5 30 50 The number of consecutive batches analyzed together.

𝑛E [0.005, 0.1] Cont. 0.05 0.01 The window size used in the error smoothing
(being the percentage of all values in a series).

𝒆 [50, 500] 10 100 50 The number of values surrounding errors (it may
promote grouping of nearby error sequences).

𝑝 [0.05, 0.2] Cont. 0.13 0.06 Min. percent difference between subsequent anomalies.

3 EXPERIMENTS
We exploit the set of 82 telemetry time series, where each sequence
is split into train (without anomalies) and test (containing manually
annotated anomalies, with their starting and termination points)
parts [1]. The test sequences are of variable length (410−8380, with
an average of 5962). GA was run 20× for each configuration (DICE
and 𝐹0.5 as 𝜂), and its hyperparameters were manually-tuned and
kept unchanged through the experimentation: 𝑁 = 20,𝐺max = 103,
𝐺ES = 10, P𝑚 = 0.1, and C𝑠 = 0.3 (we executed GA with and
without early stopping, the 𝐺ES and 𝐺max variants, respectively).
Every fifth sequence is included in 𝑻 which is used for quantifying
the fitness. We report the results averaged over all sequences.
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Figure 1: There are hyperparameters that render signifi-
cantly better DICE. We show three Isomap dimensions [3].
Dark blue shows the highest DICE, dark red—the lowest.

We confronted GA with the default hyperparameters [1], and
with random search (RS) in which we perform 𝑁 ·𝐺max = 2 · 104
evaluations. There are parts of the solution space encompassing
hyperparameters that render notably better scores (Figure 1).

In Table 2, we gather DICE and 𝐹0.5 averaged across all series.
Also, we present the average (Δavg

B ) and maximum (Δmax
B ) differ-

ence between the starting points of the detected and ground-truth
anomalies. To increase the usability of the detector in practical
spacecraft scenarios, both Δ

avg
B and Δmax

B should be minimized—
their negative values indicate that the sequence was annotated as
anomalous before the anomaly actually happened (in such cases,
we predict anomalies). The results show that evolved hyperparame-
ters elaborate the high-quality detection. Also, GA converges much
faster than RS—with our early stopping, we executed 28× and 40×
less evaluations than RS for DICE and 𝐹0.5 as 𝜂, respectively.

Table 2: The results obtained over all sequences (we report
the average DICE and 𝐹0.5). For each metric, the best value is
boldfaced, and the second best is underlined.

Algorithm DICE 𝐹0.5 Δ
avg
B Δmax

B Evaluations

Default 0.3945 0.8071 −78 141 —
Random search 0.4639 0.8535 −205 433 2.00 · 104

GA(DICE,𝐺ES) 0.4289 0.7686 −110 20 0.05 · 104
GA(DICE,𝐺max) 0.4659 0.8052 −75 77 2.00 · 104
GA(𝐹0.5 ,𝐺ES) 0.3763 0.7566 −98 334 0.07 · 104
GA(𝐹0.5 ,𝐺max) 0.3641 0.7592 −81 121 2.00 · 104

Although RS delivered large 𝐹0.5, there exist anomalous sequences
in which the events were spotted at their late stage (see Δmax

B )—it
hampers the applicability of this approach in practice. Our GA not
only retrieved the parameterizations that enable us to capture the
anomalies with a significant time margin on average, but also the
GA variants with the DICE fitness led us to the best Δmax

B ’s. Finally,
the experiments show that introducing new temporal-based metrics
to assess the quality of anomaly detection is pivotal in understand-
ing its applicability, as large DICE or 𝐹0.5 would not reflect how fast
an anomaly can be detected (or even predicted), hence it is unclear
how much time we can allow for taking appropriate actions.

4 CONCLUSIONS
We introduced a GA to evolve the hyperparameters of a threshold-
ing step in a deep learning anomaly detection engine, and showed
that it improves the abilities of this technique. We shed more light
on the problem of assessing the anomaly detectors, and we claim
that incorporating the temporal aspect in the quantitative metrics
is crucial in Space applications.
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