
Exploratory Analysis of the Monte Carlo Tree Search For Solving
The Linear Ordering Problem

Andoni I. Garmendia
University of the Basque Country

UPV-EHU
Donostia-San Sebastian, Spain

andoni.irazusta@ehu.eus

Josu Ceberio
University of the Basque Country

UPV-EHU
Donostia-San Sebastian, Spain

josu.ceberio@ehu.eus

Alexander Mendiburu
University of the Basque Country

UPV-EHU
Donostia-San Sebastian, Spain
alexander.mendiburu@ehu.eus

ABSTRACT
Monte-Carlo Tree Search has delivered great results in two-player
game-playing and its current success has turned it into a popular
choice of study in different use cases. Recently, many works have
applied MCTS and, especially, its neural variant, as an end-to-end
approach to solve Combinatorial Optimization Problems. However,
its efficiency for solving regular Combinatorial Problems has still
to be studied.

In this paper, we investigate the capability of the Monte-Carlo
Tree Search algorithm to optimize permutation-based problems,
making use of problem-specific knowledge. Particularly, we focus
on the well-known Linear Ordering Problem (LOP), taking advan-
tage of the easy computation of the expected and upper bound
fitness of partial permutations. Moreover, we introduce a Multi-
Objective Optimization approach to deal with the exploration-
exploitation dilemma during the tree search. Conducted experi-
ments show that MCTS obtains better results than classical con-
structive algorithms, though its performance is not obviously com-
parable to state-of-the-art results. Based on its ability for guiding
structured searches, its scalability, convergence and search space
coverage, MCTS could open new research trends in the optimization
area.

CCS CONCEPTS
• Mathematics of computing→ Permutations and combina-
tions; • Computing methodologies→ Game tree search; Dis-
crete space search; Artificial intelligence.

KEYWORDS
Monte-Carlo Tree Search, Combinatorial Optimization, Linear Or-
dering Problem
ACM Reference Format:
Andoni I. Garmendia, Josu Ceberio, and Alexander Mendiburu. 2021. Ex-
ploratory Analysis of the Monte Carlo Tree Search For Solving The Linear
Ordering Problem. In 2021 Genetic and Evolutionary Computation Conference
Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3449726.3463163

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463163

1 INTRODUCTION
Combinatorial optimization (CO) is a branch of applied mathe-
matics and computer science that studies how to find the optimal
solution from a finite or countable infinite set of solutions. In order
to solve Combinatorial Optimization Problems (COPs), scientists
have developed a broad set of algorithms, which can be classified as
exact and approximate methods. Exact methods perform a thorough
search of the space and they are able to find the optimal solution to
the problem, however, due to the exponential growth of the state
space, the use of exact methods is computationally unaffordable and
their usage is limited to small problem sizes. Among exact methods,
tree search algorithms use the tree structure to traverse the state
space in a organized manner. Especially, in those problems where
obtaining upper and lower bounds of the solution for each node is
easy, sub-trees can be efficiently discarded, and thus, the search is
directed to a reduced space. In this context, Branch and Bound (BB)
is an extension of the tree search algorithm that consists of visit-
ing branches of the tree and checking if the bounds of the current
branch can produce a better solution while discarding the rest.

Conversely, approximate methods, often called heuristic algo-
rithms, try to find good (not necessarily optimal) solutions in a
given computational budget. Among the approximation methods,
metaheuristics are probably the most relevant [32]. Metaheuris-
tics are defined as high level procedures that control lower level
heuristics in an intelligent manner in order to efficiently explore
and exploit the state space. They include, but are not limited to:
local search [1], genetic algorithms [12], estimation of distribution
algorithms [10], simulated annealing [2], tabu search [15], and their
hybrids [8].

Besides the mentioned frameworks, recent works have tried to
apply Machine Learning (ML) techniques to face COPs [7], using
end-to-end schemes or combining ML with other optimization al-
gorithms. Among the ML community, Reinforcement Learning (RL)
has attracted the attention of researchers due to the fact that it is
surprisingly capable of learning tasks or behaviours with neither
previous domain knowledge nor labeled data. In a recent survey
[23], the authors investigate the use of RL methods for COPs. RL
algorithms have been applied to learn heuristics to solve combi-
natorial problems such as the Travelling Salesman [18], Vehicle
Routing [24], Graph Coloring [16], Maximum Independent Set [3],
Bin Packing [19] and the Knapsack problem [6] among others.

Monte-Carlo Tree Search (MCTS) is a tree search method com-
bined with RL procedures that has shown a great performance in
board games such as chess and GO [30]. MCTS records and es-
timates the statistics of problem states while exploring the most
promising regions of the tree. MCTS can be divided in four stages:

1433

https://doi.org/10.1145/3449726.3463163
https://doi.org/10.1145/3449726.3463163

GECCO ’21 Companion, July 10–14, 2021, Lille, France Garmendia et al.

Selection, Expansion, Evaluation and Backpropagation. A selection
policy selects nodes until it reaches a leaf. Then, the leaf node is
expanded, and a simulation policy performs a rollout to receive a
reward. Finally, the reward is backpropagated to the visited nodes
in such a way that the algorithm estimates an expected reward for
each node.

Due to the recent success of MCTS, the machine learning com-
munity has applied it to solve COPs. The majority of works have
used it as an end-to-end procedure, i.e., training the model to output
solutions directly from the input instance [7]. However, the viability
of using MCTS as an end-to-end procedure for large, real-world
problems has not been demonstrated yet.

In order to investigate the feasibility of using MCTS as an end-
to-end procedure, in this work, we analyze and explore the per-
formance of the MCTS algorithm for permutation-based problems
when problem-specific knowledge is available. Particularly, we fo-
cus on the Linear Ordering Problem (LOP), as expected rewards
for a given node can be easily computed. Thus, this avoids the
need to use neural networks to estimate the reward, making the
algorithm simpler and more scalable. Furthermore, a property of
the LOP allows sub-trees to be discarded if the partial permutation
described by the root of the sub-tree cannot generate a local optima.
The features above allow an efficient bounding procedure to be
designed while navigating the tree. Finally, for the sake of maxi-
mizing the potential of MCTS on the LOP, and in order to better
balance the exploration-exploitation trade-off during the search,
we propose modifying the MCTS, multi-objectivizing the selection
of the actions to take.

The remainder of the article is organized as follows. Section 2
gives a detailed description of the Linear Ordering Problem, and
Section 3 provides some background about multi-objective opti-
mization, which will be needed for later contributions. Afterwards,
in Section 4, we describe the principles of the Monte-Carlo Tree
Search algorithm. We present our approach in Section 5, putting
together the knowledge we gained in previous sections. Next, in
Section 6, the experimental setting and results are shown. A discus-
sion on the potential of MCTS and future lines are given in Section
7, and the paper concludes in Section 8.

2 LINEAR ORDERING PROBLEM
The Linear Ordering Problem (LOP) [11, 21] is a classical Combi-
natorial Optimization Problem (COP). The LOP is a permutation
problem that, in 1979, was proven to be NP-hard by Garey and
Johnson [14]. Given a matrix 𝐵 = [𝑏𝑖 𝑗]𝑛𝑥𝑛 , the goal is to find a
simultaneous permutation of rows and columns such that the sum
of the upper triangle entries is maximized. The objective function
can be defined formally as in Eq. (1) where 𝜎 represents the per-
mutation that simultaneously re-orders rows and columns of the
original matrix and 𝑛 is the problem size.

𝑓 (𝜎) =
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

𝑏𝜎𝑖𝜎 𝑗
(1)

For illustration purposes, Fig. 1 shows an instance of size 𝑛 = 5.
If rows and columns were ordered as they are, that is, the identity
permutation 𝜎 = (1, 2, 3, 4, 5), summing up the entries in the upper
triangle we get the objective value 𝑓 (𝜎) = 138. The optimal solution

Figure 1: (a) Identity permutation and (b) optimum permu-
tation of a 𝑛 = 5 instance.

for this instance is obtained with 𝜎∗ = (5, 3, 4, 2, 1) which has an
optimal objective value of 𝑓 (𝜎∗) = 247.

In what follows, we present a number of features of the LOP
that will allow information of the problem to be incorporated into
the design of the algorithm in latter sections. The first term of
study is the contribution of an index to the objective value of the
solution. Let item 𝑘 be in the 𝑖𝑡ℎ position of the permutation 𝜎 ,
the contribution of item 𝑘 to the objective value can be expressed
as 𝑐 (𝜎, 𝑖) = ∑𝑖−1

𝑗=1 𝑏𝜎 𝑗𝜎𝑖 +
∑𝑛

𝑗=𝑖+1 𝑏𝜎𝑖𝜎 𝑗
where 𝑏 refers to the entry

of the original matrix 𝐵. Note that the contribution of item 𝑘 is
independent of the ordering of the previous and posterior items.

The second term is the vector of differences, which is defined
as the difference between the column-row pairs associated to each
item of the permutation. Let 𝑑𝑖 account for the vector of differences
of item 𝑖 as 𝑑𝑖 = (𝑏𝜎𝑖1 − 𝑏1𝜎𝑖 , ..., 𝑏𝜎𝑖𝑛 − 𝑏𝑛𝜎𝑖), that is to say, the
element-wise difference between row 𝑖 and column 𝑖 .

The vector of differences can be used to determine whether,
having a given item in certain position, that solution can be a local
optimum or not 1. Note that a solution 𝜎∗ is a local optimum if all
neighbouring solutions have a lower objective value. As stated in
[11], given a local optimum solution𝜎∗, for every item𝜎∗

𝑖
, 𝑖 = 1, ..., 𝑛,

all the partial sums of the differences between the associated entries
located before 𝑖 must be positive, while those located after 𝑖 must
be negative:

𝑧∑
𝑗=𝑖−1
(𝑏𝜎∗

𝑗
𝜎∗
𝑖
− 𝑏𝜎∗

𝑖
𝜎∗
𝑗
) ≥ 0, 𝑧 = 𝑖 − 1, ..., 1 (2)

𝑧∑
𝑗=𝑖−1
(𝑏𝜎∗

𝑗
𝜎∗
𝑖
− 𝑏𝜎∗

𝑖
𝜎∗
𝑗
) ≤ 0, 𝑧 = 𝑖 + 1, ..., 𝑛 (3)

Indeed, with the help of the aforementioned property, discarding
item-to-position assignments that can not be present in local optima
solutions is straightforward. Specifically, item 𝑘 does not generate a
local optima at position 𝑖 if Eq. (4) is true. Fig. 2 shows the calculation
of the restricted positions for a particular item.

1∑
𝑧=𝑖−1

(𝑏𝜎𝑧𝑘 − 𝑏𝑘𝜎𝑧) < 0 𝑜𝑟

𝑛∑
𝑧=𝑖+1

(𝑏𝜎𝑧𝑘 − 𝑏𝑘𝜎𝑧) > 0 (4)

This condition can be extended to every item-position pair of
values composing a binary restrictions matrix that can be computed
with a computational complexity of 𝑂 (𝑛2𝑙𝑜𝑔(𝑛)). Fig. 3 shows the
restrictions matrix corresponding to our example instance. A null
1By default, the neighborhood used to carry out studies and implement algorithms for
the LOP is the "insert" neighborhood

1434

Exploratory Analysis Of The Monte Carlo Tree Search For Solving The Linear Ordering Problem. GECCO ’21 Companion, July 10–14, 2021, Lille, France

Figure 2: (a) Second row and column of the identity matrix.
(b) The vector of differences associated to the second item.
(c) Sorted differences in descending order. (d) The vector of
differences in each position, the fourth and fifth positions
are valid, the rest are restricted.

Figure 3: restrictionsmatrix of our example instance of n=5.

entry, 𝑟𝑖 𝑗 = 0, means that a local optimum will never have item 𝑖 in
position 𝑗 .

The LOP, as a permutation problem, has 𝑛! different solutions.
The objective values of those solutions have a symmetrical distri-
bution, i.e., each objective value is reflected around the average
value of all the solutions. Let E[𝑓] be the expected objective value
of the problem, the objective value of half of the solutions in the
search space is greater than E[𝑓], while the other half has a lower
objective value. In fact, each solution of the LOP can be obtained
by reversing its opposite solution. This is an intuitive result since
maximizing the upper triangle is the same as minimizing the lower
triangle of the original matrix.

The computation of the expected value of 𝑓 is shown in Eq. (5)
where 𝑏𝑖 𝑗 denotes the entry of the identity matrix of row 𝑖 and
column 𝑗 and 𝑛 is the problem size 2.

E[𝑓] =
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑏𝑖 𝑗

2
(5)

A permutation whose positions have not been fully determined,
are known as partial permutations. For instance, (2, 3,−,−,−) is a
partial permutation of our 𝑛 = 5 sized problem, in which only the
first two items have been placed.

Note that computing the expected objective value of a partial
permutation (denoted by �̂�) is straightforward: fixed items con-
tribute with the corresponding entries on the upper triangle, while
the sum of non-fixed entries is divided by two and added to the
expected objective value. This is shown in Eq. (6) where𝑚 is the
size of the partial permutation and 𝑏 refers to the set of non-fixed

2We assume that the values in the diagonal are zero. If this is not the case, these values
should be subtracted.

entries.

E[𝑓 (�̂�)] =
𝑚−1∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝑏𝜎𝑖𝜎 𝑗
+
∑
𝑏

2
(6)

In a similar manner, an Upper Bound (UB) objective value for the
problem (Eq. (7)) can be computed by taking the maximum values
between pairs 𝑏𝑖 𝑗 and 𝑏 𝑗𝑖 .

𝑈𝐵 [𝑓] =
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

max{𝑏𝑖 𝑗 , 𝑏 𝑗𝑖 } (7)

Given a partial permutation �̂� with the first𝑚 positions fixed,
the Upper Bound is computed by summing up the already placed
entries in the upper triangle and the maximum values between
non-fixed pairs ˆ𝑏𝑘𝑙 and ˆ𝑏𝑙𝑘 as shown in Eq. (8).

𝑈𝐵 [𝑓 (�̂�)] =
𝑚−1∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝑏𝜎𝑖𝜎 𝑗
+

𝑛−1∑
𝑘=𝑚+1

𝑛∑
𝑙=𝑘−1

max{ ˆ𝑏𝑘𝑙 , ˆ𝑏𝑙𝑘 } (8)

3 MULTI-OBJECTIVE OPTIMIZATION
Multi-Objective Optimization (MOO) deals with problems in which
the optimum is given by more than one objective-variable [13].
While single objective optimization tries to find the solution with
the optimum objective value, the goal of MOO is to search for a set
of optimal solutions called the Pareto optimal set. A solution being
in the Pareto Optimal Set means that is not possible to find another
solution superior to it with respect to all objectives.

Let 𝑅 be a 𝑑-dimensional objective value vector corresponding
to one of the solutions, where 𝑅 = (𝑟1, 𝑟2, ..., 𝑟𝑑). For simplicity, it
is assumed that each one of the 𝑑 objectives is to be maximized.
It is said that a solution 𝑥 dominates or Pareto-dominates another
solution 𝑦 if and only if [31]:

𝑟𝑖 (𝑥) ≥ 𝑟𝑖 (𝑦) ∀𝑖 = 1, 2, ..., 𝑑 (9)

and
𝑟𝑖 (𝑥) > 𝑟𝑖 (𝑦) for at least one objective 𝑑 . (10)

In the case when these two conditions do not apply, both solu-
tions are said to be equally good. Thus, the Pareto Optimal Set is
composed of solutions that are not dominated between themselves.

There are several approaches to tackle MOO problems. Although
weighting the sum of the objective values is a classical approach
to the problem that creates one single objective [20], this method
implies properly adjusting the weights based on subject area knowl-
edge or experimental trials and it only provides a linear approxima-
tion of the function. Instead, considering the whole Pareto Front
as a set of values with equal probability of being chosen is a more
conservative and secure idea, even though dominated solutions are
never considered.

4 MONTE-CARLO TREE SEARCH
Monte-Carlo Tree Search is a heuristic algorithm used to solve
problems with vast search spaces [9]. The algorithm is divided in
four phases as shown in Fig. 4:

(1) Selection. The algorithm starts at the root node and descends
the tree selecting a child based on a selection policy until it
reaches a leaf node.

1435

GECCO ’21 Companion, July 10–14, 2021, Lille, France Garmendia et al.

Figure 4: The four phases of the Monte-Carlo Tree Search
Algorithm

(2) Expansion. Once a leaf node is found, new children nodes
are expanded and added to the tree.

(3) Simulation. This phase starts from the expanded leaf node
and travels down the tree until a final node is reached and a
reward is obtained. Usually, action selection is performed by
a random policy or heuristically.

(4) Backpropagation. The outcome is backpropagated through
the previously selected nodes and node statistics are updated.

The algorithm starts from the root node and selects the most
promising child recursively. This is done until a leaf node, or a
non-visited node is found. Child selection is a multi-armed bandit
problem. The policy selects an action (child) among the set of ad-
missible actions based on maximizing the Upper Confidence Bound
(UCB) vector defined by a sum of two elements, describing the
exploitation and exploration factors [4]. Let 𝑆 be the score value
obtained by summing up the exploration and exploitation terms.
Originally, the algorithm uses a constant 𝑐𝑒 to balance both terms,
𝑆 = 𝑄 + 𝑐𝑒 ∗𝑈 where 𝑄 and𝑈 are the exploitation and exploration
terms respectively. The exploitation is usually given by the expected
reward of a node, however, other values such as the upper-bound
or a combination of both may be also used, while the exploration
factor makes use of the visit count.

Eq. (11) depicts the original UCB score from [4]. The exploitation
factor 𝑄 = 𝑟𝑠𝑎 is the average reward when selecting child 𝑎 in
node 𝑠 , while the exploration is given by a function of 𝑛𝑠 and 𝑛𝑠𝑎 ,
referring to the total visit count of node 𝑠 and the number of times
child 𝑎 has been selected in node 𝑠 , respectively.

𝑈𝐶𝐵 = 𝑟𝑠𝑎 + 𝑐𝑒

√
𝑙𝑛(𝑛𝑠)
𝑛𝑠𝑎

(11)

According to [17], and assuming the reward values range from
0 to 1, the exploration-exploitation ratio parameter value of 𝑐𝑒 =√
2 satisfies the Hoeffding inequality and is widely used in the

literature.
Note that a child with no visits has an infinite UCB score, ensur-

ing that all children must be visited at least once before exploring
any other already visited child. As mentioned in [25], this behaviour
results in a form of a local search. Conversely, in the recent work
by DeepMind [29], called AlphaGO, they make use of an alternative
score function replacing 𝑛𝑠𝑎 by 1 + 𝑛𝑠𝑎 where a non-visited child
has a finite score value and, therefore, the local search component
is reduced. Particularly, in [29] they introduce a new exploration

factor, which is a variant of the original PUCT algorithm [26] and
uses prior probabilities (𝑃𝑠,𝑎) to control the exploration term (see
Eq. (12)).

𝑈𝑃𝑈𝐶𝑇 = 𝑟𝑠𝑎 + 𝑐𝑒 ∗ 𝑃𝑠𝑎 ∗
√

𝑛𝑠

1 + 𝑛𝑠𝑎
(12)

Back in the MCTS procedure, once a leaf node is reached, chil-
dren nodes are expanded and evaluated based on node statistics.
Statistical information of nodes, i.e., either expected reward, visit
counts or prior probabilities are gathered from a different phase
called simulation-phase. In [29] two models were trained to infer
the exploitation value and the prior probabilities. However, and
based on the original MCTS algorithm, node statistics are obtained
from random simulations (also known as rollouts).

Simulations (or rollouts) are performed from the expanded node
until the terminal node. The policy to follow during the simula-
tions can be stochastic, or it can follow some specific heuristic that
helps incorporating problem knowledge to the decision-making.
Simulations give an approximate view of the rest of the tree.

Once each rollout ends up reaching a terminal state, the final
outcome is evaluated and propagated backwards through the visited
nodes. The objective value is saved in the tree for future use. Often,
the tree saves statistics about the total reward obtained from the
current node and the number of times this node has been visited.
That way, the expected reward of the node can be approximated
dividing the total reward by the number of visits.

5 MO-MCTS FOR LOP
Once the LOP and MCTS have been introduced, in this section, we
describe the design proposed for MCTS that takes advantage of in-
corporating the problem specific knowledge presented in Section 2.
First, the general MCTS procedure is described, then, the Selection
and Expansion phases are introduced and, finally, an unconven-
tional procedure for the Simulation and Backpropagation phases
is explained. This is an exploratory approach on the use of MCTS,
thus, many other parameters, metrics and rules could be used. In
order to illustrate the explanation, Fig. 5 is depicted.

The tree is defined as follows: The root node is equivalent to
an empty solution and from there, 𝑛 children are expanded, each
one referring to put a particular item on the first position of the
permutation. At the next level, any of the remaining 𝑛− 1 items can
be chosen, and so on (see the tree in Fig. 5). The tree is composed
of 𝑛 levels, corresponding to the number of positions. However, we
may consider that the selection of the item in the last position is
straightforward, so only the first 𝑛 − 1 levels really deserve our at-
tention. The 𝑛𝑡ℎ level is composed of 𝑛! nodes, one per permutation
solution of the search space, while the total number of nodes in the
whole tree is given by:

1 +
𝑛−1∑
𝑖=0

𝑖∏
𝑗=0
(𝑛 − 𝑗) (13)

Conventional MCTS chooses actions based on the score value 𝑆 .
Balancing the trade-off between exploitation,𝑄 , and exploration,𝑈
is not straightforward, and it is a critical point for the MCTS. Thus,
in this work, instead of searching for an appropriate 𝐶𝑒 value, we
redefine the problem as a bi-objective decision problem with two
independent functions to be maximized, 𝑄 and 𝑈 . Therefore, in

1436

Exploratory Analysis Of The Monte Carlo Tree Search For Solving The Linear Ordering Problem. GECCO ’21 Companion, July 10–14, 2021, Lille, France

Figure 5: Illustration of the selection of an item in the secondposition after item2has beenplaced in thefirst position. Children
nodes are expanded and expected and upper values are computed. a) If item 3 is selected in the second position, �̂� = (2, 3,−,−,−),
the sum of fixed entries of the upper triangle, called S, is S = 14 + 21 + 15 + 9 + 26 + 26 + 12 = 123. b) The expected and the upper
objective values are computed as follows: E[�̂�] = S + (15 + 7 + 22 + 13 + 30 + 24)/2 = 178.5 and UB[�̂�] = S + (22 + 30 + 24) = 199. c)
Matrix N represents the marginal visit count, where each entry ni,j denotes the number of times item i has been placed in
the jth position. As it is the first rollout, only two entries have a non-zero value. d) Finally, R is the restrictions matrix of the
partial permutation �̂� = (2,−,−,−,−), where entry ri,j denotes that a local optimum for the insert neighborhood can have item
i in position j only when ri,j = 1. Therefore, it will be pruned whenever ri,j = 0. The algorithm first calculates the restrictions
matrix, and computes the expected and upper values only for those non-pruned children nodes. After selecting a child, the
visit count matrix is updated.

each step all children are evaluated to form the pareto front, and an
action among the set of non-dominated solutions (children nodes)
is chosen. In this particular case, the probabilities of all the nodes
in the Pareto Optimal Set are distributed uniformly.

The two objective functions make reference to the exploitation
(𝑄) and exploration (𝑈) factors, defined in Eq. (14) and 15 respec-
tively.

In Eq. (14), 𝑢 (�̂�) refers to a function that, given a partial per-
mutation �̂� , yields its Upper Bound value. Similarly, 𝑒 (�̂�) and 𝑏 (�̂�)
denote the functions that return the expected value and the best
value found passing from the current node. The upper bound being
the main guiding factor on the exploitation term, those children
nodes with a higher value 𝑏 (�̂�) have an extra score. Thus, this
gives advantage to already visited nodes where good solutions
were found.

𝑄 (�̂�) = 𝑢 (�̂�) + (𝑏 (�̂�) − 𝑒 (�̂�)) (14)

Regarding the exploration factor defined in Eq. (15), due to the
large size of the tree and sparsity of the search paths, the visit
count of a node rarely surpasses a single count when running short-
time executions. Therefore, we will compute a marginal visit count
matrix 𝑁 in which a value 𝑛𝑖 𝑗 represents the number of times item
𝑖 has been placed in position 𝑗 . Note that 𝑖 is the last fixed item and

𝑗 is its position in the partial permutation �̂� .

𝑈 (�̂�) = 1
1 + 𝑛𝑖 𝑗

(15)

In the second step of the MCTS, the expansion phase, we intro-
duce two tree-pruning schemes, which similarly to B&B, allow the
number of nodes in the tree to be reduced by pruning sub-trees
where the optimal solution cannot be found. As mentioned previ-
ously, the restrictions matrix of the LOP declares the positions at
which items do not generate a local optimum solution for the insert
neighborhood and, thus, neither for the global optimum [11]. Our
algorithm performs a pruning of the tree whenever an expanded
child is restricted. In the example of Fig. 5, only two items (3 and
5) can be placed in the second position, based on the restrictions
matrix 𝑅 (see Fig. 5d).

In addition, the second pruning strategy discards every child
with an upper bound value lower than the value of the best solu-
tion found so far. This is an intuitive pruning strategy, since the
maximum obtainable value is lower than the best found so far.

In the classical MCTS algorithm, once a child is expanded, a sim-
ulation phase starts and it collects statistics of the current sub-tree.
However, we found that performing rollouts from the root node
until the final node of the tree instead of using simulation phases
obtained much better results. The reason for this may be the use of
harsh restrictions in areas where the algorithm has been searching

1437

GECCO ’21 Companion, July 10–14, 2021, Lille, France Garmendia et al.

for a while. Therefore, those efforts are wasted when reaching a
node with restricted children. This may appear to be an unconven-
tional MCTS algorithm, but the fact that rollouts repeatedly start
from the root reduces the local search nature of the algorithm, and
instead, focuses on a more global search.

The backpropagation, which is the final phase of an iteration of
the MCTS, consists of gathering the final outcome and navigating
back to the visited nodes to estimate how good a path is compared
to others.We do not feel the need to save all the final outcomes since
we already have the real expected value of each node, instead, the
final objective valuewill be back-propagated only if it is greater than
the best value found so far. In the example in Fig. 5, the best found
value is initialized as the expected objective value (𝑏 (�̂�) = 170),
however, once the last level is reached and a better solution is found,
𝑏 (�̂�) is updated.

6 EXPERIMENTATION
In order to prove the validity of MCTS for solving the LOP, in
what follows, a set of experiments is performed. First, a general
performance analysis of the algorithm is presented together with
a comparison to other methods. Then, the scalability of MCTS is
studied, specifically focusing on its memory usage for different
sized problems. Finally, an analysis of the search space coverage is
conducted in order to give an intuition of the pruning efficiency.

6.1 Experimental setting
The experimental benchmark consists of a set of 30 instances from
the LOLIB benchmark [22], 20 of them are from the RandomB type
of size 𝑛 = 50 and the other 10 instances are from the RandomAI
sub-type, where the size of instances is 𝑛 = 100. We also considered
39 instances of size 𝑛 = 150 and 10 instances of size 𝑛 = 250 from
xLOLIB, a more challenging library generated by Schiavinotto et al.
[28]. The best known values are taken from the supplementary ma-
terial in [27] and correspond to the state-of-the-art values obtained
by the CD-RVNS in that work.

We compare our algorithm with a classical constructive heuristic
proposed by Becker et al. [5]. We also introduce a simple heuris-
tic that tries to imitate our method in a naive manner. The so-
called Upper Greedy algorithm is a deterministic constructive al-
gorithm that selects the available item that would maximize the
upper bound if selected and positioned in the partial permutation.
Algorithm 1 shows the procedure of the Upper Greedy algorithm,
where 𝑈𝐵(𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝑖𝑡𝑒𝑚) refers to the Upper Bound of the
partial 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 when appending 𝑖𝑡𝑒𝑚 to the first non-fixed
position.

Finally, with the intention of putting into perspective where the
obtained results are, i.e., what is the relative difficulty of an instance,
a random search algorithm has been run. This method produces
random permutations during the time limit while a record of the
best solution found is saved.

We establish a computation time limit of 20 minutes as the stop-
ping criterion for the algorithms, which are executed in a set of
20 repetitions, with the exception of Becker and Upper Greedy,
due to their deterministic nature. Experiments are run on a cluster
of 55 nodes, each one of which is equipped with two Intel Xeon

Algorithm 1: Upper Greedy constructive heuristic
1 permutation← Empty List;
2 for 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 1 to 𝑁 do
3 𝑚𝑎𝑥 ← 0;
4 for 𝑖𝑡𝑒𝑚 in Valid Items do
5 𝑢 = 𝑈𝐵(𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝑖𝑡𝑒𝑚);
6 if 𝑢 > 𝑚𝑎𝑥 then
7 𝑚𝑎𝑥 ← 𝑢;
8 𝑖 ← 𝑖𝑡𝑒𝑚;
9 end

10 end
11 permutation.append(i);
12 end

Figure 6: Overall performance of MCTS, Upper Greedy,
Becker and Random Search algorithms, given by the Av-
erage Relative Error w.r.t. the best known objective value
found by the CD-RVNS algorithm.

X5650 CPUs and 64GB of memory, while the algorithms have been
implemented in Python 3.6.

6.2 Experiment 1 - Performance Analysis
Fig. 6 presents the results obtained with MCTS, Becker and Upper
Greedy for all 79 instances. The figure reveals that overall, MCTS
performs better than Becker. In fact, MCTS obtained better results
in 75 instances out of 79 (94.9%). However, MCTS is still far from
state-of-the-art results obtained by more powerful and hybrid meta-
heuristics [27]. In particular, the overall results obtained by MCTS
are 6% worse than those presented by CD-RVNS [27]. Regarding
the Upper Greedy constructive method, it surpasses Becker only 20
of the times (25.3%). MCTS improves the solution given by Upper
Greedy for all the instances, thus, the MCTS procedure contributes
positively compared to the Upper Greedy algorithm.

6.3 Experiment 2 - Scalability
In order to analyze the capability of the algorithm to scale for
larger sized problems, Fig. 7 divides the instances in 4 sub-groups
based on instance size 𝑛 = {50, 100, 150, 250}. In view of the results,
we conclude that MCTS is the best performing algorithm for the
four problem sizes. Upper Greedy and Random Search algorithms
produce worse results as the problem size increases, while MCTS

1438

Exploratory Analysis Of The Monte Carlo Tree Search For Solving The Linear Ordering Problem. GECCO ’21 Companion, July 10–14, 2021, Lille, France

Table 1: Memory consumption comparison for different in-
stance sizes in a 20 minute execution.

Instance Size Tree Size Nodes/s Memory MB/s

50 291691 243.07 1209 MB 1.01
100 67131 55.94 1064 MB 0.89
150 27451 22.88 793 MB 0.66
250 8375 6.98 666 MB 0.56

and Becker show a better scalability maintaining the performance
nearly uniform.

However, one of the drawbacks of MCTS is the amount of mem-
ory needed to run the algorithm. The main factor on the memory
use is the growth of the tree and data stored in it. For each visited
node, a set of statistics are saved (the expected objective value and
the upper bound of the partial permutation described by the node)
and they are calculated once, at the time of the expansion of the
node. On the contrary, the visit count and the best value found of
the current node are initialized to zero and to the expected value re-
spectively at node expansion. Those values are updated during the
execution. Table 1 shows a summary of the memory usage during
the MCTS execution of 20 minutes. The node-discovery rate and
the memory consumption rate are computed based on the values
at the end of the execution, assuming they stay constant during
execution (which is indeed the case). The algorithm is capable of
visiting a larger set of nodes in smaller instances, since the node-
processing time is reduced. Even though saved statistics in bigger
sized instances have greater memory requirements, small instances
present a higher memory consumption for the same amount of
time, as they are able to visit significantly more branches of the
tree.

6.4 Experiment 3 - Search Space Coverage
The percentage of visited and discarded nodes may give an idea of
how capable MCTS is of finding the optimal solution. Fig. 8 shows
the percentage of the tree that has been pruned during the 20
minute execution. Note that depending on the size of the problem,
the shape of the curve is different.

At the beginning of the execution, when the root node is pro-
cessed, a noticeable amount of sub-trees are discarded based on the
restrictions matrix. Consider that discarding a child in the first level
of the tree removes 1

𝑛

𝑡ℎ of the tree, and, thus, of the search space
of solutions. Then, while the optimization goes on, fewer nodes are
discarded since the restrictions come from lower levels of the tree.
Once the majority of the nodes in the initial levels are removed
using the restrictions matrix, the pruning rate decreases as it can
be seen for the 𝑛 = 50 instance in Fig. 8. Comparing both pruning
strategies, on average, the upper bound strategy prunes smaller
sub-trees, corresponding to lower levels, while the restrictions ma-
trix strategy prunes the first levels. In fact, more than 99.99% of the
pruned nodes have been discarded by the restrictions matrix.

7 DISCUSSION
In the performed experiments, MCTS has shown to be competi-
tive compared to the best performing classical heuristic for the

LOP. However, this is still far from being a state-of-the-art algo-
rithm. MCTS underperforms when compared to a metaheuristic,
such as CD-RVNS, proposed in [27]. This poses the question: is
MCTS a valid approach to tackle the Linear Ordering Problem? In
what follows we will try to answer to that question from different
viewpoints.

7.1 Scalability
Even thoughMCTS performs competitively in terms of scalability, a
key factor that limits its potential is the memory limit. Even though
the 20 minute execution occupies 1GB of memory, larger duration
executions would increase the memory consumption in an almost
linear way. The use of Neural Networks to learn the tree-data may
be a possible solution to reduce memory consumption, because
many node statistics would be inferred, and there would be no
need to save them. However, the goal of this paper is to study the
intrinsic capacity of the algorithm to explore good solutions in
vast search spaces, and adding an abstraction layer with neural
networks would aggregate noise in the results and hinder the main
objective.

7.2 Search Space Coverage
The rate in which sub-trees are pruned (pruning-rate) achieves its
maximum in the initial step when the root node is being processed
and goes decreasing in an asymptotic way. Conversely, the rate
in which new leaves are extended (discovery-rate) is in orders of
magnitude lower than the pruning rate at the beginning of the
execution, and it decreases due to the increase of distance to new
leaves. Taking as an example the instance of size 𝑛 = 100, Fig.
8 shows that in the first step 50% of the tree is discarded, while
at the end of the execution it increases to 80%. The tree has in
total 𝑛! = 100! = 9.33𝑒 + 157 possible solutions, thereby, MCTS is
capable of discarding 7.46𝑒 + 157 solutions. This may appear to be
a big percentage, however, the algorithm has still to explore among
1.87𝑒 + 157 solutions. In fact, Table 1 indicates that MCTS visits
67131 different nodes during the 20 minute execution, so assuming
a constant visit rate and that the discard rate is stopped, the search
algorithm would need a countless number of years (5.284562𝑒 +148)
to explore all the space.

7.3 Optimality
The exploration factor of the MOO approach in the node selection
phase guarantees that every unrestricted node can be selected at
least once. Some heuristics guarantee optimality if unlimited com-
putation time is given. In our case, apart from the time limitation,
we need to consider the growth of the tree and the memory needed
to save it.

The MCTS design presented in this work is optimality-driven. By
means of the restrictions matrix, those solutions that can not be (lo-
cally or even globally) optimum are discarded. However, we should
note that solutions belonging to the neighborhood of the global
optimum will never be considered, and thus solutions with (proba-
bly) good fitness values are ignored. On the other hand, thanks to
the restrictions matrix, a wide area of the search space is discarded,
focusing on the area in which the global optimum (optima) is. This
is an interesting aspect to be studied as future work.

1439

GECCO ’21 Companion, July 10–14, 2021, Lille, France Garmendia et al.

Figure 7: Performance comparison betweenMCTS, Upper Greedy, Becker andRandom Search. Results are grouped in different
instance sizes and shown as Average Relative Error w.r.t. the best known objective value found by CD-RVNS.

Figure 8: Discarded percentage space using restrictions for
instances of size 50, 100 and 150.

7.4 Future Work
Instead of applying MCTS as an end-to-end approach, we feel that
the use of collaborative schemes, i.e., MCTS alongside other op-
timization algorithms, may play a more promising role in future
works [7].

Given that MCTS limits quite quickly the search space based on
restrictions and Upper Bounds, it could be useful to launch another
algorithm on the reduced space after this restriction step. It would
be of interest to analyze whether making this first restriction step
would have an impact on the performance of the other algorithm.

From the restrictions matrix, the most restricted areas are the
beginning and the end of the permutation, making the selection
of those positions more "certain", while middle positions are "un-
certain". The fact that the LOP has this dual nature makes us think
about the possibility of creating two opposed trees that construct
a unique permutation. One begins from the first position and the

other from the last position and iteratively both trees select left and
right halves of the permutation.

8 CONCLUSION
In this work, we defined and explored the Monte Carlo Tree Search
as a constructive algorithm that employs Multi-Objective Optimiza-
tion to navigate the tree and balance the weight between explo-
ration and exploitation. We selected the Linear Ordering Problem
due to its properties which facilitate the computation of the ex-
pected objective value and the upper bound objective value of each
node.

Conducted experiments showed that MCTS is competitive when
compared to other constructive heuristics in terms of performance
and scalability. However, time and memory play a key factor, limit-
ing the performance of MCTS for large instances.

Moreover, our approach has shown a good capability pruning the
tree for small and medium instances. Especially, the processing of
the root node at the initial step discards around half of the solutions
on average. There are still many aspects that deserve more study
in order to gain more intuition about the possibilities of MCTS to
solve this kind of problem.

9 ACKNOWLEDGEMENTS
Andoni I Garmendia acknowledges a predoctoral grant from the
Basque Goverment (ref. PRE_2020_1_0023). This work has been
partially supported by the Research Groups 2019-2020 (IT1244-
19) and the Elkartek Program (Project Code KK-2020/00049) from
the Basque Government, the PID2019-104933GB-10 and PID2019-
106453GA-I00/AEI/10.13039/501100011033 research projects from
the SpanishMinistry of Science, and the European Research Council
H2020 (the EMPHATIC project).

1440

Exploratory Analysis Of The Monte Carlo Tree Search For Solving The Linear Ordering Problem. GECCO ’21 Companion, July 10–14, 2021, Lille, France

REFERENCES
[1] Emile Aarts, Emile HL Aarts, and Jan Karel Lenstra. 2003. Local search in combi-

natorial optimization. Princeton University Press.
[2] Emile Aarts and Jan Korst. 1989. Simulated annealing and Boltzmann machines:

a stochastic approach to combinatorial optimization and neural computing. John
Wiley & Sons, Inc.

[3] Kenshin Abe, Issei Sato, and Masashi Sugiyama. 2019. Solving NP-Hard Problems
on Graphs by Reinforcement Learning without Domain Knowledge. Simulation
1 (2019), 1–1.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2 (2002), 235–256.

[5] O Becker. 1967. Das Helmstädtersche Reihenfolgeproblem—die Effizienz ver-
schiedener Näherungsverfahren. Computers uses in the social science (1967).

[6] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.
2016. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940 (2016).

[7] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. 2020. Machine learning for
combinatorial optimization: a methodological tour d’horizon. European Journal
of Operational Research (2020).

[8] Christian Blum, Jakob Puchinger, Günther R Raidl, and Andrea Roli. 2011. Hybrid
metaheuristics in combinatorial optimization: A survey. Applied soft computing
11, 6 (2011), 4135–4151.

[9] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.

[10] Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu, and Jose A Lozano. 2012.
A review on estimation of distribution algorithms in permutation-based com-
binatorial optimization problems. Progress in Artificial Intelligence 1, 1 (2012),
103–117.

[11] Josu Ceberio, Alexander Mendiburu, and Jose A Lozano. 2015. The linear ordering
problem revisited. European Journal of Operational Research 241, 3 (2015), 686–
696.

[12] Lawrence Davis. 1991. Handbook of genetic algorithms. (1991).
[13] Kalyanmoy Deb. 2014. Multi-objective optimization. In Search methodologies.

Springer, 403–449.
[14] Michael R Garey and David S Johnson. 1979. Computers and Intractability: A

Guide to the Theory of NP-Completeness. WH Freeman & Co. New York, NY,
USA. (1979).

[15] Fred Glover. 1989. Tabu search—part I. ORSA Journal on computing 1, 3 (1989),
190–206.

[16] Jiayi Huang, Mostofa Patwary, and Gregory Diamos. 2019. Coloring big graphs
with alphagozero. arXiv preprint arXiv:1902.10162 (2019).

[17] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning.
In European conference on machine learning. Springer, 282–293.

[18] Wouter Kool, Herke Van Hoof, and Max Welling. 2018. Attention, learn to solve
routing problems! arXiv preprint arXiv:1803.08475 (2018).

[19] Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David
Kas, Karl Hajjar, Hui Chen, Torbjørn S Dahl, Amine Kerkeni, and Karim Beguir.
2019. Ranked Reward: Enabling Self-Play Reinforcement Learning for Bin packing.
(2019).

[20] R Timothy Marler and Jasbir S Arora. 2010. The weighted sum method for
multi-objective optimization: new insights. Structural and multidisciplinary
optimization 41, 6 (2010), 853–862.

[21] Rafael Martí and Gerhard Reinelt. 2011. The linear ordering problem: exact and
heuristic methods in combinatorial optimization. Vol. 175. Springer Science &
Business Media.

[22] Rafael Martí, Gerhard Reinelt, and Abraham Duarte. 2012. A benchmark li-
brary and a comparison of heuristic methods for the linear ordering problem.
Computational optimization and applications 51, 3 (2012), 1297–1317.

[23] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. 2020.
Reinforcement learning for combinatorial optimization: A survey. arXiv preprint
arXiv:2003.03600 (2020).

[24] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence V Snyder, and Martin Takáč.
2018. Reinforcement learning for solving the vehicle routing problem. arXiv
preprint arXiv:1802.04240 (2018).

[25] Rui Jorge Rodrigues Rei. 2018. Monte Carlo Tree Search for Combinatorial
Optimization. (2018).

[26] Christopher D Rosin. 2011. Multi-armed bandits with episode context. Annals of
Mathematics and Artificial Intelligence 61, 3 (2011), 203–230.

[27] Valentino Santucci and Josu Ceberio. 2020. Using pairwise precedences for
solving the linear ordering problem. Applied Soft Computing 87 (2020), 105998.

[28] Tommaso Schiavinotto and Thomas Stützle. 2004. The linear ordering prob-
lem: Instances, search space analysis and algorithms. Journal of Mathematical
Modelling and Algorithms 3, 4 (2004), 367–402.

[29] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[30] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354–359.

[31] David AVan Veldhuizen and Gary B Lamont. 1998. Evolutionary computation and
convergence to a pareto front. In Late breaking papers at the genetic programming
1998 conference. Citeseer, 221–228.

[32] Mutsunori Yagiura and Toshihide Ibaraki. 2001. On metaheuristic algorithms
for combinatorial optimization problems. Systems and Computers in Japan 32, 3
(2001), 33–55.

1441

	Abstract
	1 Introduction
	2 Linear Ordering Problem
	3 Multi-Objective Optimization
	4 Monte-Carlo Tree Search
	5 MO-MCTS for LOP
	6 Experimentation
	6.1 Experimental setting
	6.2 Experiment 1 - Performance Analysis
	6.3 Experiment 2 - Scalability
	6.4 Experiment 3 - Search Space Coverage

	7 Discussion
	7.1 Scalability
	7.2 Search Space Coverage
	7.3 Optimality
	7.4 Future Work

	8 Conclusion
	9 Acknowledgements
	References

