An empirical evaluation of permutation-based policies for
stochastic RCPSP

Olivier Regnier-Coudert
AIRBUS Al Research
Toulouse, France
olivier.regnier-coudert@airbus.com

ABSTRACT

While optimization methods used for deterministic scheduling such
as Linear Programming, Constraint Programming or Evolution-
ary Algorithms can be very successful at optimizing scheduling
problems, the resulting schedules may not always be feasible and
applicable at execution on domains with uncertainty. In this paper,
we focus on the Stochastic Resource Constrained Project Sched-
uling Problem (SRCPSP) and propose several adaptive scheduling
policies that use task priorities as input to a schedule generation
scheme (SGS) at execution. In particular, we focus on the use of
Genetic Programming (GP) to evolve robust heuristics that can
assign priority levels to scheduling tasks online. The benefit of this
approach is two-fold. First, it enables the adaptation of the SGS per-
mutation input during the execution. Second, because the evolved
heuristic uses task features rather than domain features, it offers the
advantage to be applicable on completely unseen domains, poten-
tially of higher dimension and complexity. Experiments on domains
with stochastic durations show that using GP-evolved heuristics
yield better makespan than using fixed permutations derived from
optimal schedules. They also demonstrate that the update of the
permutation is key to getting full benefit from SGS policies.

CCS CONCEPTS

+ Theory of computation — Evolutionary algorithms; Sched-
uling algorithms; Genetic programming;

ACM Reference Format:

Olivier Regnier-Coudert and Guillaume Povéda. 2021. An empirical evalu-
ation of permutation-based policies for stochastic RCPSP. In 2021 Genetic
and Evolutionary Computation Conference Companion (GECCO ’21 Com-
panion), July 10-14, 2021, Lille, France. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3449726.3463154

1 INTRODUCTION

Scheduling is a vast topic concerned with the optimized allocation
of resources to tasks under a set of constraints. There exist many
scheduling problems which are broadly studied from different per-
spectives. Operational research methods [12] can produce optimal
solutions but the use of Evolutionary Algorithms (EAs) [10, 11, 19]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10-14, 2021, Lille, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07...$15.00
https://doi.org/10.1145/3449726.3463154

1451

Guillaume Povéda
AIRBUS Al Research
Toulouse, France
guillaume.poveda@airbus.com

or hybrid approaches such as Large Neighborhood Search (LNS)
[21] is often required to scale up to large dimensions or specific
variants of scheduling with large search spaces. Regardless of the
method used, a schedule produced by any optimization method may
face challenges when executed in an environment that presents
uncertainty, for example an environment where the duration of
tasks is not precisely known, or where resource availability may
vary unexpectedly in time or where additional tasks may need to
be inserted at execution in the schedule. On such domains, an op-
timized schedule may quickly become unfeasible requiring repair
or re-computation. Both approaches have pros and cons. Where
repairing a schedule by applying local changes to it will ensure that
it remains close to the initial schedule, it may also not be possible
to do so easily, especially in the face of highly disruptive events. On
the other hand, re-optimization taking into account the up-to-date
problem data will likely produce a solution of high quality but it
will also be time-consuming.

In order to address this issue, there are alternatives to fixed sched-
ules. First, efforts have been put in producing flexible schedules
where options are pre-computed and optimized. For example, such
schedules can allow the possible permutations of groups of tasks
at execution without impact on the final objectives [2]. Flexible
scheduling solutions reduce the re-computation needed at execu-
tion although some may still be required if events lead to a state
where the pre-computed options are no longer applicable.

In this paper, we focus on another type of scheduling output:
scheduling policies. The term policies is often used in reinforce-
ment learning and planning to define a procedure that recommends
an action given a state of the system. Such policies are typically
optimized offline using training data and can then be used in most
states of a system without the need for online computation. As
a concrete example, in a simple robot control policy, the state is
defined by the measurement of a robot’ sensors (e.g. camera in-
put) and the actions are linked to the robot’s actuators (e.g. joints’
movements). In the scheduling context, we propose policies where
a state is defined using what is known about the scheduling domain
at execution (i.e. tasks already started, tasks completed, current
resource allocations...) and an action can either be to start a task or
to do nothing at the current time.

More precisely, we build on the work by [6] and define per-
mutation based scheduling policies where task priority levels are
modelled into a permutation used as input to a schedule generation
scheme (SGS). This approach offers the advantage to generate a
schedule at minimal computational cost whenever the execution
domain changes and to do so based on the results of an offline opti-
mization. The main algorithm presented in this study uses Genetic
Programming to evolve hyper-heuristics (GPHH) to specify task

https://doi.org/10.1145/3449726.3463154
https://doi.org/10.1145/3449726.3463154

GECCO ’21 Companion, July 10-14, 2021, Lille, France

priority levels. The optimization is done in a robust way, using
several training instances. It is compared on the Stochastic Re-
source Constrained Project Scheduling Problem (SRCPSP) against
permutation-based policies where the permutation is optimized
once and fixed.

In order to obtain feasible schedules, the heuristics produced by
GP generate permutations that are used as inputs to a decoding
procedure (i.e. SGS). This characteristics makes GPHH a case of
indirect search. While we can argue that indirect search prevents the
full search space from being explored, there is also a large body of
literature on the topic, revealing that it has been successfully applied
to many areas of computational intelligence including set covering
problems [1], constraint satisfaction and graph colouring problems
[13], routing and sequencing [18], project scheduling [4] or earth
observation satellite mission planning [22]. It has also been shown
that indirect search is a good compromise between exploration of
the search space and integration of domain knowledge [20].

The paper is organised as follows. First, in section 2, the SRCPSP
variant used in this study is detailed. In section 3, we describe
the SGS procedure and permutation-based policies. In section 4,
details on GPHH are given. Finally, sections 5 and 6 present the
experimental setup and the analysis of the results.

2 STOCHASTIC RESOURCE CONSTRAINED
PROJECT SCHEDULING

2.1 RCPSP

A resource-constrained project scheduling problem (RCPSP) con-
siders resources of limited availability and activities of known du-
rations and known resource need, linked by precedence relations.
The problem consists of finding a schedule of minimal duration
by assigning a start time to each activity such that the precedence
relations and the resource availabilities are respected.

Formally a RCPSP is defined by a set of tasks T, a set of resource
types R and a set of precedence relation pairs P of dimension |T|X|T|.
P;j = 1if task i needs to be completed before task j can be started,
0 otherwise. The quantity of resource of type k required to perform
task i is given by r; ;.. We denote by Ry the total number of resources
of type k available at any time. In RCPSP, this level of resource does
not vary. Finally the duration of a task i is given as d;.

Solving RCPSP consists in assigning a start time x; to all tasks
in T such that the makespan expressed in (1) is minimized.

1

max

v d
ie[l,lT\](xl +d;)

It is subject to the following constraints: the precedence con-
straints (2), the number of resources used at any time should not
exceed the resources available for any resource type k (3), where h
is the time horizon (a reasonably large number fitting most feasible
schedules) and ¢y ; the amount of resource of type k used by active
tasks at time ¢ as expressed in (4).

xi+di <xjVi,jeTifPij=1 (2)

cir <R Vt € [0,h] Vk € R 3)

1452

Regnier-Coudert and Povéda

> (@)

i€T, x; <t<x;+d;

For more information on RCPSP, we refer the reader to [3].

Cht = ik Vk € R

2.2 SRCPSP and MDP formulation

In this paper, we focus on a stochastic version of the RCPSP where
the duration d; of a task i is unknown until the task is started. Thus,
the RCPSP previously described is made stochastic by sampling d;
in the uniform distribution X ~ U(max(1,d{ - §), d +) where
dy is the duration in the original RCPSP instance and § a noise level.
Because setting § to 10 yields a variety of distinct instances while
remaining close enough to the original durations, this settings was
used for this work.

Sequentially searching for a strategy that optimises long-term
rewards (or minimises costs) under probabilistic uncertain events is
a long-standing research problem dating back to the mid-twentieth
century and Bellman’s work on stochastic dynamic programming
[5]. To handle such dynamic environments and define strategies,
the problem can be expressed as a Markov Decision Process (MDP)
[23]. A MDP is defined by sets of states and actions, a probability
transition function describing noised transitions between states
depending on the chosen action, and a reward (or cost) function
labelling the transitions. The aim of typical MDP methods such as
Policy Iteration [23] or Q-Learning [25] is to find a policy (ie. a
function mapping states to actions) which maximises the average
discounted sum of cumulated rewards when executing this policy
from a given state. Despite their efficiency, MDP solvers rely on an
efficient modelling of the problem with search and action spaces
of reasonable size, which is not the case with scheduling problems
where the state space dimension exponentially increases with the
number of tasks [8], illustrating the famous curse of dimension-
ality. Dealing with SRCPSP’s uncertainty is nevertheless possible
using MDP approaches. In [24], the authors formulated a MDP of a
SRCPSP with uncertain task arrival during execution and used an
approximate policy iteration to deal with the high dimension of the
state space. Similar MDP formulations for RCPSP had been used
in [8] and [7] for SRCPSP with stochastic task duration. In those
studies, the authors reduced the state space by using heuristics
before optimizing the policy on this subspace.

The algorithms presented in this paper circumvent the high
dimension issue of the SRCPSP by not using the standard MDP
solvers but by still using the MDP formulation as a backbone to
provide executable policies.

In this section, we provide the definition of the states and actions
as modelled in the stateful MDP formulation of the SRCPSP used
in this paper.

2.2.1 State space. The scheduling state s is defined by the at-
tributes described below.

e s.time, t € [0, h]: the time associated with the state

o s.status; € {REMAINING,ONGOING,ENDED}, Vi € T:
the status of any task i.

e s.start; € [0,h], Vi € T: the start time of any task i. We
assume s.start; = @ if i has not started.

e s.end; € [0,h], Vi € T: the end time of any task i. We assume
s.end; = @ if i has not been completed.

An empirical evaluation of permutation-based policies for stochastic RCPSP

o s.duration;, Vi € T: the sampled duration of any task i. In a
deterministic setting, s.duration; = d;

e s.progress; € [0,1], Vi € T: the progress of any task ex-
pressed as a percentage. The progress is calculated as a linear
function of the active time given a task’ sampled duration.

° s.res]lc‘sed, Vk € R: the amount of resources used across all
active tasks.

° s.res]‘:““il, Vk € R: the amount of resources available.

2.2.2 Actions. An action a is defined by :

e a.type € {START, PROGRESS}: the type of action to per-
form. An action can either lead to starting a task or progress-
ing in time.

e a.task € T: the task on which to apply the action. This
attribute is only considered when a.type = START (i.e. pro-
gressing in time is not an action associated with any task in
particular).

We show in Figure 1 an example of how actions and states interact
and in particular how many actions can be used in sequence to
perform changes on several tasks at the same time step before
eventually progressing in time.

3 SCHEDULE GENERATION SCHEME AND
FIXED PERMUTATION-BASED POLICIES

SGS procedures are commonly used as a component of the opti-
mization pipelines for the different variants of RCPSP. SGS uses as
input a permutation of tasks in order to create a feasible schedule
taking into consideration the problem data. SGS has been widely
used to enable the use of EAs on RCPSP problems, allowing them
to search in the space of permutations rather than in the space of
schedules [4, 26]. There are two main SGS procedures. In the serial
SGS, tasks are considered in the order of the input permutation and
inserted in the schedule at their earliest possible slot. On the other
hand, the parallel SGS inserts all the tasks that can be started at
each time step, incrementing the time until all tasks are scheduled.
Like for its serial counterpart, the parallel SGS also inserts tasks
considering the order of the input permutation. Both approaches
are suitable for RCPSP although each exhibits its own strengths
and weaknesses. In this paper, only the serial SGS is used. We refer
the reader to [15] for the detailed description of SGS and a compar-
ison of the different versions of SGS. Note that to be able to run
SGS at execution, SGS can be initialized with a partial schedule set
with tasks already ongoing and resource levels that account for the
resources already in use.

Using SGS, it is possible to define policies for the MDP defined
in the previous section. These policies take a current state s as
input and output a recommended action a. To do so, a schedule is
computed using SGS and a fixed permutation z. If a task can be
started at the current time s.time, the recommended action a will
be to start the first task from all the tasks that can be started at
s.time. If no task can be started, the recommended action will be
to do nothing and progress to the next time step. The algorithm 1
gives the details of the permutation-based policy using SGS.

The problem under study being of stochastic nature, the duration
of a task is not known until the task is started. In order to run SGS
that requires a task duration for each task, estimated durations

1453

GECCO ’21 Companion, July 10-14, 2021, Lille, France

are used. These are taken from the original RCPSP instance, i.e.
the instance that is noised when generating the stochastic domain.
Because of the model used to generate the SRCPSP from it, the
estimates are the mean expected durations.

It is important to note that the permutation 7 has a strong impact
on SGS and therefore on the quality of the actions that can be
returned by the policy. With fixed permutation-based policies, =
remains unchanged at execution. However, 7 can be optimized prior
to the execution. In this paper, we use a Constraint Programming
(CP) solver to optimally solve a deterministic RCPSP instance that
represents an average instance of the SRCPSP. More precisely, the
CP solver is run on the original RCPSP instance.

Algorithm 1: Permutation policy procedure

Input: state s
x =SGS(s,)
Tselected —
{i, Vi € [1,|T|], xi = s.time, s.status; = REMAINING}
// tasks whose start time equals current time
if |T3d“t5d| > 0 then

a.type = START
task = Tselected [0]
a.task = task
else
| a.type = PROGRESS
end

Output: action a

4 GENETIC PROGRAMMING AND DYNAMIC
PERMUTATION-BASED POLICIES

Although the permutation-based policies described in the previous
section enables adaptation of the schedule to stochastic events, the
permutation at the core of the policy remains unchanged during the
execution of the schedule even if the sampled durations have sig-
nificantly derived from the expected durations used for the offline
optimization of the fixed permutation.

In this section we suggest an approach to re-generate the per-
mutations used by SGS within the scheduling policy. To do so, we
define heuristics that perform a series of operations on a selection
of task features to compute a priority level for any given task. A
simple example of such a heuristic is the sum of the number of
successors of a task and its earliest possible start. By computing the
result of this heuristic for all the tasks to schedule, a priority level «;
is generated for each. From all @;, a permutation can be generated
by simply ordering tasks by priority levels, the tasks with lowest
a; being in the last positions of the permutations and inversely the
tasks with the highest priority levels being in the first positions.

To define the heuristics, the following 7 operators are allowed:
addition, subtraction, multiplication, division, maximum, minimum
and negative. Among all operators, only negative takes a single
input argument, the others taking exactly 2. Also note that division
by zero is prevented, the division operator returning 1 in this case.

In terms of task features, 11 were defined to be used by the
heuristics. We give here their description for a task i. Features fall

GECCO ’21 Companion, July 10-14, 2021, Lille, France

Regnier-Coudert and Povéda

a
o
5, a .type=sTart
s, time =t a task=8

a1

a type = smarT
a task=5

2
a, type=proGRESS

— > apply action

_______________ > call to transition function

Figure 1: Example of a sequence of actions applied at the same time step ¢. It shows that only an action of type PROGRESS can
lead to a change in time. The example also shows that actions are related to at most 1 task. Starting from a state s, an action ag
that starts the task 8 is applied and leads to state s; with similar time ¢. Another action a; where another task (task 5) is started
is then applied and leads to state s. The timestamp of s; is still unchanged. The third action applied if of type PROGRESS and

leads to state s3; whose timestamp is later than s;.

in 3 categories. First, there are 3 features related to the precedence
graph of the problem: number of predecessors, number of successors
and number of descendants. The difference between number of suc-
cessors and number of descendants is that the former counts the
number of tasks that are directly paired with i in P, while the latter
counts all the tasks that depend directly or indirectly on the com-
pletion of i to be started. The second category of features is related
to resource needs and concerns the following 4 features: average
resource, maximum resource, minimum resource and distinct resource
types, respectively described in (5), (6), (7) and (8). Finally, there
are 4 additional features that describe information about expected
scheduling time bounds. These are earliest start time, latest start
time, earliest end time and latest end time. They are calculated from
the critical path schedule [14] obtained using known durations for
tasks that are started and durations from the original problem for
pending tasks. To be generic across problems with different task
durations, these features are normalized through division with the
earliest start time of the latest completed task in the critical path
schedule.

Tik
ZkeRe Ry
avgr = T (5)
r
maxr = max bk 6)
keRk Rk
Vik -
== ifr;p >0
s _ IR Uik
minr = min y, y = . 7
keRky Y { 1 otherwise @)
ZkERky 1,ifr,-k>0
SUME= "Rl Y 7 0 otherwise ®)

Although it is possible to generate heuristics by hand, it is diffi-
cult to do so and despite offering perspective for interpretability, it
does not offer any guarantee in terms of quality. Thus, we turned
towards GP to generate and optimize those heuristics.

We provide the pseudo-code of GPHH in Algorithm 2. The main
steps of GPHH are those of a generic GP, where a population of
heuristics pop is evolved for max_gen generations through selec-
tion, crossover and mutation of candidate heuristics c. Of particular
importance is the evaluation of the fitness f; that is the average

1454

makespan obtained by running SGS on each training instance L,
from the initial state sp and using the permutation 7 computed
from the priority levels a obtained when applying ¢ on each task.
The instances used for training are deterministic and generated by
sampling the SRCPSP.

5 EXPERIMENTS

5.1 Baseline approaches

To assess and compare the different permutation-based scheduling
policies presented in this paper, we also include results from base-
line methods. We briefly describe the two baselines considered: a
simple but efficient priority rule and a method to compute a lower
bound on SRCPSP.

5.1.1 Max Descendant Priority rule (MDPR). Priority rules for
RCPSP have been widely studied by Kolisch [16] and are simple
and explainable ways of solving RCPSP. They can also be used as
online policies in order to deal with uncertainty. The MDPR priority
rule policy is derived from the most total successors priority rule
also described in [16]. We define for all i € T, Q; as the number of
activity nodes in the RCPSP (directed) precedence graph that are
reachable from i, which corresponds in graph theory terminology
to descendants nodes of i. The MDPR policy is described in Algo-
rithm 3. In the first 3 steps, unscheduled tasks whose predecessors
are complete and whose resource needs can be handled are selected
as TSelected f there is at least one task in this selection, the policy
will start the task with the highest number of descendants. Note
that MDPR does not rely on SGS.

5.1.2 Lower bound. We use a CP approach to solve RCPSP and
get a lower bound on the makespan for each of the test instances
used for the execution of the policies. Thus, to compute the lower
bound, the test durations were provided to the CP solver. Our model
is similar to the minizinc-benchmark codebase! developed by Uni-
versity of Melbourne and NICTA. Using the lazy clause generation
CP solver Chuffed 2 [9], with a 60 second timeout, final results on

Uhttps://github.com/MiniZinc/minizinc-benchmarks/blob/master/rcpsp/rcpsp.mzn
Zhttps://github.com/chuffed/chuffed

An empirical evaluation of permutation-based policies for stochastic RCPSP

GECCO ’21 Companion, July 10-14, 2021, Lille, France

Algorithm 2: GPHH

Algorithm 3: MDPR

Generate initial population of heuristics pop
gen=1
for ¢ € pop do
‘ fe = evaluate(c)
end
while gen < max_gen do
pop° = {}
while [pop®| < |pop| do
cl,c2 = select(pop)
c1, c2 = crossover(cl, c2), with probability c¢_rate
c1 = mutate(c1), with probability m_rate
c2 = mutate(c2), with probability m_rate
for c € {c1,c2} do
fe = evaluate(c)
Add ¢ to pop.
end

end

pop = pope

gen+ =1

end

function evaluate(c):

f=0

for m € [1,|L]|] do

Get tasks T and task durations D from training
domain L,

forieT do
| ai=c(i,Lm)

end

7w = perm(a)

x = SGS(sp, r)

f+=max;epy 1)) (x: +di)

end

f=f/IL]

return

the instances are obtained from 0.5 seconds (j30) to an order of 1
minute for j120. Note that 3 out of 1500 noised instances have not
been solved optimally but are kept as lower bounds nevertheless.

5.2 Experimental setup

Following preliminary experiments, GPHH was configured as fol-
lows: population size of 40, 100 generations, tournament selection
with tournament size of 10% of the population size, crossover rate
of 0.7, mutation rate of 0.3 and initial tree depth between 1 and 4. In
Figure 2, the evolution of the population fitness in GPHH is shown
for 5 runs, each using a different number of training instances. It
shows that the above settings allow enough evaluations for GPHH
to converge, regardless of the number of training samples. For the
main set of experiments, we use a total of 10 deterministic training
instances sampled from the SRCPSP instance.

To evaluate our approaches, we build SRCPSP instances start-
ing from well studied PSPLIB instances [17] and using the process

1455

Input: state s

Tselected — (i e [1,|T|], if s.status; = REMAINING}
Tselected _

{ivi e oelected ifvj € T,Py; =1 — s.status; = ENDED)
Tselected _

{i Vi e Tselected jfyk e R, Tik +s.res
if |Tselected| 5 o then

used avail
© < s.resy }

a.type = START
task = arg max; cpsetectea Qi
a.task = task
else
| a.type = PROGRESS
end

Output: action a

120 1

1151

110 4

105 4

average makespan

95 1

90

T
60 100

generation

80

Figure 2: Average population fitness during 5 runs of GPHH,
using different numbers of training instances.

described in Section 2. We consider the 3 classes of problems: j30,
j60, and j120 each having respectively 30, 60 and 120 tasks. We
build a SRCPSP for each of the 10 instances of RCPSP of each class
(30 SRCPSP in total). To evaluate the different policies, we execute
them 50 times per SRCPSP, each execution sampling different task
durations. Therefore, in total, each method is evaluated on 1500 dis-
tinct executions. We emphasise the fact that none of the execution
instances were seen by any of the approaches during training to
the exception of the CP solver used to compute the lower bound
baseline. The comparison is based on the makespan achieved af-
ter execution of the policies on each test run. We also compute
after each run the relative deviation (RD) to the lower bound LB as
RD(algo) = (makespan(algo) — makespan(LB)) /makespan(LB).
Statistical significance is tested using unpaired student t-tests using
the relative deviation to the lower bound. We also consider the
ranks of the algorithms and perform a Wilcoxon rank-sum test. We
consider statistical significance if the p-value is lower than 0.01.

GECCO ’21 Companion, July 10-14, 2021, Lille, France

All experiments described in this paper were conducted using
the SRCPSP MDP implementation of the scikit-decide 3 library. The
scheduling algorithms GPHH, CP-SGS and MDPR are also available
in the same library.

6 RESULTS AND DISCUSSION

Tables 1, 2 and 3 present the results obtained on the 30 instances
of SRCPSP. The makespan and RD are averaged over the 50 execu-
tions performed. The rank shown in the tables is the rank of each
algorithm calculated based on the mean makespan. Focusing on
the rank, GPHH ranks first in 63% of the test runs and so clearly
outperforms MDPR (23%) and CP-SGS (17%) as best approach. In
particular, the difference in ranks is high on the j30 and j60 in-
stances. However, it seems harder to distinguish a best method on
j120 (40% for MDPR, 50% for GPHH). The average ranking obtained
over all the test problems confirms this trend with GPHH exhibiting
a rank of 1.56, MDPR a rank of 2.03 and CP-SGS a rank of 2.37. Of
particular interest is the difference in performance between the
two SGS-based approaches CP-SGS and GPHH, demonstrating the
benefit of using dynamic permutations rather than fixed ones. It
also highlights the fact that the heuristics built from the selected fea-
tures and operators can discriminate between tasks and have a real
influence on SGS and on the quality of the resulting schedules. The
observations done by studying the ranks are also confirmed when
comparing makespans and RDs. In Figure 3, the distribution of the
distance to the lower bound obtained over the 1500 test executions
is shown for both CP-SGS and GPHH. The distribution associated
with both methods is different. GPHH produces many more sched-
ules with makespan close to the lower bound than CP-SGS does and
more generally speaking, the distribution of the results of GPHH
is more skewed towards low values than the one of CP-SGS. We
provide in Table 5 the p-values from student t-tests run to compare
each pair of algorithms in terms of their relative deviation from the
lower bound. The student t-tests show that the difference between
GPHH and CP-SGS is statistically significant (p-values < 0.01) re-
gardless of the problem dimension. When comparing GPHH with
MDPR, we can consider GPHH as statistically better than MDPR but
we observe that this difference is highly linked with the problem
family as significance is not reached on the instances j60 and j120.
The final message from this table is that we cannot significantly
differentiate CP-SGS and MDPR based on the results presented in
this paper. Note that performing Wilcoxon rank-sum test did not
yield statistical differences.

Another performance indicator we use to compare the approaches
is the number of test instances on which the lower bound was
reached. These numbers are given in Table 4 and shows that GPHH
reaches the optimum makespan at execution on 13% of the runs,
against 11% and 10% for CP-SGS and MDPR.

When focusing on the RD presented in Tables 1, 2 and 3, some
large differences are obtained between GPHH and the other algo-
rithms. On some runs, GPHH outperforms CP-SGS by more than
30%. It is however interesting to note that the same findings occur
the other way round with CP-SGS being much closer to the lower

3scikit-decide is an open source python and C++ library for reinforcement
learning, planning and scheduling. It is developed by Airbus and available at
https://github.com/airbus/scikit-decide

1456

Regnier-Coudert and Povéda

bound than GPHH. Thus and despite very good average results,
GPHH suffers on some occasions of a lack of consistency. Because
the evolution of the heuristics rely on stochastic processes, the qual-
ity of the learnt heuristic can vary a lot between successive runs
of GPHH and we suggest that the poor performance seen on some
instances is linked to this and should be targeted in the future. In
order to confirm this intuition, we selected the execution instance
where the RD of GPHH was the worst in comparison to the other
approaches. We re-run 50 times the GPHH evolution, resulting in
50 different heuristics and executed these heuristics on the selected
execution instance of j301-7 (random seeds were set to ensure the
sampled durations were similar across the 50 executions). This side
experiment showed that out of 50 heuristics, 48 produced a similar
makespan at execution (69), while 2 of them produced considerably
worst schedules of makespan 87 and 98 respectively. This strength-
ens the idea that the poor performance on some instances may
be linked to occasional poor evolved heuristics. Although this is a
reliability issue that will be the focus of future work, we note that
all algorithms suffer from similar issue.

Despite being effective at producing quality schedules, the heuris-
tics produced by GPHH are highly complex with typically 80+ op-
erations required to compute the priority level for a task. Such
observation is not surprising as rule complexity is not modelled nor
optimized by GPHH. However, making the heuristics more efficient
as done in [6] would improve their explanability.

7 CONCLUSION

In this paper, we have conducted an empirical analysis of three
priority-based policies for stochastic RCPSP. The experiments have
revealed that there is value in updating the permutation used by SGS
policies at execution, leading to improved makespans. Moreover,
where CP-SGS performed at a similar level than the baseline MDPR,
GPHH outperforms this latter, suggesting that the use of dynamic
permutations is needed to unlock the full benefits of SGS policies.

Despite encouraging results, the comparison carried out suggests
several areas for future research on GPHH. First, issues of perfor-
mance and reliability should be investigated. Anticipated solutions
to this problem include the inclusion of more task features (e.g.
slack time in the critical path schedule), the move from determinis-
tic to stochastic training data and the use of ensembles of heuristics
to generate priority levels rather than relying on a single evolved
heuristic. The high complexity of the evolved rules suggests that
multi-objective optimization could be used with the consideration
of complexity-related objectives. In order to better understand the
suitability of GPHH on stochastic scheduling problems, future work
should consider comparison with MDP-oriented methods such as
Monte-Carlo Tree Search and evaluation on a wider range of RCPSP
problems (e.g. multi-skill RCPSP, uncertain resource availability...).
Finally, a key advantage of GPHH over alternative algorithms lies
in the fact that evolved heuristics are generic and therefore, we
believe that an evaluation of their ability to generalize to completely
unseen problems of possibly higher dimensions than the training
instances should be carried out.

REFERENCES

[1] Uwe Aickelin. 2002. An indirect genetic algorithm for set covering problems.
Journal of the Operational Research Society 53, 10 (2002), 1118-1126.

An empirical evaluation of permutation-based policies for stochastic RCPSP GECCO ’21 Companion, July 10-14, 2021, Lille, France

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
deviation from lower bound deviation from lower bound

(a) CP-SGS (b) GPHH

Figure 3: Distribution of the deviation from lower bound for CP-SGS and GPHH over the 1500 test instances

Table 1: Results obtained by GPHH, MDPR and CP-SGS on Table 2: Results obtained by GPHH, MDPR and CP-SGS on

j30 instances j60 instances
Instance Algorithm Avg.RD Avg. makespan Rank Instance Algorithm Avg. RD Avg. makespan Rank
CP-SGS 0.06 68.94 (10.75) 2 CP-SGS 0.08 103.51(12.41) 2
j301-1 MDPR 0.07 69.31(10.74) 3 j601-1 MDPR 0.09 103.98 (12.51) 3
GPHH 0.06 68.76 (10.97) 1 GPHH 0.07 102.22(13.15) 1
CP-SGS 0.06 68.76 (8.94) 1 CP-SGS 0.08 103.86 (11.39) 2
j301-2 MDPR 0.08 70.61 (11.16) 3 j601-2 MDPR 0.10 105.1(12.87) 3
GPHH 0.07 69.63 (9.79) 2 GPHH 0.06 102.02(10.67) 1
CP-SGS 0.09 71.45 (11.37) 3 CP-SGS 0.11 98.63 (11.41) 3
j301-3 MDPR 0.08 70.57 (10.01) 2 j601-3 MDPR 0.08 96.41(13.27) 1
GPHH 0.04 68.37 (11.87) 1 GPHH 0.09 96.8 (12.95) 2
CP-SGS 0.09 80.57 (12.48) 3 CP-SGS 0.09 118.08 (15.48) 2
j301-4 MDPR 0.07 79.35(11.88) 2 j601-4 MDPR 0.10 119.31 (14.78) 3
GPHH 0.06 78.47(12.08) 1 GPHH 0.09 117.84(15.97) 1
CP-SGS 0.08 68.02 (11.06) 1 CP-SGS 0.10 107.96 (13.88) 3
j301-5 MDPR 0.08 68.12(10.14) 2 j601-5 MDPR 0.10 107.88 (14.13) 2
GPHH 0.10 69.69 (12.21) 3 GPHH 0.09 106.73 (13.13) 1
CP-SGS 0.12 76.49 (11.37) 3 CP-SGS 0.08 94.92 (12.16) 3
j301-6 MDPR 0.07 73.45(12.91) 2 j601-6 MDPR 0.06 93.43 (12.78) 2
GPHH 006 72.22(11.87) 1 GPHH 0.06 93.08(13.31) 1
CP-SGS 0.11 80.88 (13.92) 3 CP-SGS 0.16 109.37(10.49) 3
j301-7 MDPR 0.09 79.65 (14.4) 2 j601-7 MDPR 0.13 107.45 (14.07) 2
GPHH 0.07 78.59 (15.61) 1 GPHH 0.12 105.86 (11.65) 1
CP-SGS 0.07 76.43 (11.75) 2 CP-SGS 0.11 112.0 (11.77) 3
j301-8 MDPR 0.09 78.04 (12.35) 3 j601-8 MDPR 0.09 108.92(10.67) 1
GPHH 0.05 74.98 (12.07) 1 GPHH 011 111.14(10.23) 2
CP-SGS 0.06 73.51(8.77) 1 CP-SGS 0.11 116.57 (12.29) 2
j301-9 MDPR 0.07 74.41(9.85) 2 j601-9 MDPR 0.10 115.49(12.93) 1
GPHH 0.08 74.92 (8.39) 3 GPHH 0.13 119.02 (14.59) 3
CP-SGS 0.04 68.8(11.91) 2 CP-SGS 0.09 108.8 (14.13) 3
j301-10 MDPR 0.07 70.67 (12.64) 3 j601-10 MDPR 0.06 106.53 (14.36) 2
GPHH 0.04 68.76 (11.31) 1 GPHH 0.04 104.82(14.54) 1

1457

GECCO ’21 Companion, July 10-14, 2021, Lille, France

Table 3: Results obtained by GPHH, MDPR and CP-SGS on

j120 instances

Instance Algorithm Avg.RD Avg. makespan Rank
CP-SGS 0.14 158.86 (13.35) 3
j1201-1 MDPR 0.14 158.57 (16.28) 2
GPHH 0.12 156.47 (15.38) 1
CP-SGS 0.16 167.39 (18.73) 2
j1201-2 MDPR 0.16 166.88(17.32) 1
GPHH 0.17 168.18 (16.56) 3
CP-SGS 0.14 181.53 (20.54) 3
j1201-3 MDPR 0.13 180.12(22.8) 1
GPHH 0.13 180.69 (22.46) 2
CP-SGS 0.16 150.16 (12.38) 1
j1201-4 MDPR 0.15 150.16 (15.69) 1
GPHH 0.16 150.33 (13.92) 3
CP-SGS 0.15 165.35 (15.4) 3
j1201-5 MDPR 0.14 163.1(15.88) 1
GPHH 0.14 163.53 (14.2) 2
CP-SGS 0.21 138.0 (11.88) 3
j1201-6 ~ MDPR 0.18 134.51 (10.65) 2
GPHH 0.18 134.43(10.61) 1
CP-SGS 0.19 171.63 (14.84) 3
j1201-7 MDPR 0.17 169.37 (16.82) 2
GPHH 0.13 163.37(13.14) 1
CP-SGS 0.17 164.55 (14.91) 3
j1201-8 MDPR 0.14 159.63 (16.77) 2
GPHH 0.13 159.27 (15.91) 1
CP-SGS 0.15 166.29 (13.04) 1
j1201-9 MDPR 018 171.12(18.99) 2
GPHH 0.19 171.18 (14.28) 3
CP-SGS 0.14 164.84 (13.91) 2
j1201-10 MDPR 0.19 172.02 (15.68) 3
GPHH 0.13 163.67 (14.89) 1

Table 4: Number of test instances where CP-SGS, MDPR and

GPHH have reached the lower bound makespan

Table 5: p-values from student t-tests performed between al-
gorithms on the different problem classes and based on the

CP-SGS MDPR GPHH

167

151

196

relative deviation from the lower bound

GPHH / CP-SGS GPHH/MDPR CP-SGS / MDPR

All 1.39.1076
j30 0.0038
j60 0.0008
j120 0.0021

0.0011 0.1068
0.0029 0.9745
0.2845 0.0166
0.0321 0.3994

1458

[2]

3

[11

[12

[13

[14

=
&

[16

[17

(18

[19

™
=

[21

[22]

(23]

[24

[25

[26

Regnier-Coudert and Povéda

Christian Artigues, Jean-Charles Billaut, Azzedine Cheref, Nasser Mebarki, and
Zakaria Yahouni. 2016. Robust machine scheduling based on group of permutable
jobs. In Robustness Analysis in Decision Aiding, Optimization, and Analytics.
Springer, 191-220.

Christian Artigues, Sophie Demassey, and Emmanuel Neron. 2008. Resource-
constrained project scheduling. Wiley Online Library.

Mayowa Ayodele, John McCall, and Olivier Regnier-Coudert. 2017. Estima-
tion of distribution algorithms for the multi-mode resource constrained project
scheduling problem.. In Proceedings of the 2017 IEEE Congress on Evolutionary
Computation (CEC). IEEE.

Richard Bellman. 1957. Dynamic Programming (1 ed.). Princeton University
Press, Princeton, NJ, USA.

Shelvin Chand, Hemant Singh, and Tapabrata Ray. 2019. Evolving heuristics
for the resource constrained project scheduling problem with dynamic resource
disruptions. Swarm and evolutionary computation 44 (2019), 897-912.

Jaein Choi, Matthew Realff, and Jay Lee. 2007. A Q-Learning-based method
applied to stochastic resource constrained project scheduling with new project
arrivals. International Journal of Robust and Nonlinear Control 17 (09 2007), 1214
- 1231. https://doi.org/10.1002/rnc.1164

Jaein Choi, Matthew J. Realff, and Jay H. Lee. 2004. Dynamic programming in
a heuristically confined state space: a stochastic resource-constrained project
scheduling application. Computers Chemical Engineering 28, 6 (2004), 1039 —
1058. FOCAPO 2003 Special issue.

Geoffrey Chu. 2011. Improving combinatorial optimization. Ph.D. Dissertation.
University of Melbourne, Australia.

Kaizhou Gao, Zhiguang Cao, Le Zhang, Zhenghua Chen, Yuyan Han, and Quanke
Pan. 2019. A review on swarm intelligence and evolutionary algorithms for
solving flexible job shop scheduling problems. IEEE/CAA Journal of Automatica
Sinica 6, 4 (2019), 904-916.

Mitsuo Gen, Wenqiang Zhang, Lin Lin, and YoungSu Yun. 2017. Recent advances
in hybrid evolutionary algorithms for multiobjective manufacturing scheduling.
Computers & Industrial Engineering 112 (2017), 616-633.

Farhad Habibi, Farnaz Barzinpour, and Seyed Sadjadi. 2018. Resource-constrained
project scheduling problem: review of past and recent developments. Journal of
project management 3, 2 (2018), 55-88.

Xingxing Hao and Jing Liu. 2017. A multiagent evolutionary algorithm with
direct and indirect combined representation for constraint satisfaction problems.
Soft Computing 21, 3 (2017), 781-793.

James E Kelley. 1963. The critical-path method: resource planning and scheduling.
Industrial scheduling (1963).

Jin-Lee Kim and Ralph D Ellis Jr. 2010. Comparing schedule generation schemes in
resource-constrained project scheduling using elitist genetic algorithm. journal
of construction engineering and management 136, 2 (2010), 160-169.

Rainer Kolisch. 1996. Efficient priority rules for the resource-constrained project
scheduling problem. Journal of Operations Management 14, 3 (1996), 179 - 192.
Rainer Kolisch and Arno Sprecher. 1997. PSPLIB - A project scheduling problem
library: OR Software - ORSEP Operations Research Software Exchange Program.
European Journal of Operational Research 96, 1 (1997), 205 - 216.

Jifi Kubalik and Michal Snizek. 2014. A novel evolutionary algorithm with indirect
representation and extended nearest neighbor constructive procedure for solving
routing problems. In Intelligent Systems Design and Applications (ISDA), 2014 14th
International Conference on. IEEE, 156-161.

Lin Lin and Mitsuo Gen. 2018. Hybrid evolutionary optimisation with learning
for production scheduling: state-of-the-art survey on algorithms and applications.
International Journal of Production Research 56, 1-2 (2018), 193-223.

Charles Neau, Olivier Regnier-Coudert, and John McCall. 2018. An Analysis
of Indirect Optimisation Strategies for Scheduling. In 2018 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 1-8.

Mireille Palpant, Christian Artigues, and Philippe Michelon. 2004. LSSPER:
Solving the resource-constrained project scheduling problem with large neigh-
bourhood search. Annals of Operations Research 131, 1 (2004), 237-257.
Guillaume Povéda, Olivier Regnier-Coudert, Florent Teichteil-Konigsbuch,
Gérard Dupont, Alexandre Arnold, Jonathan Guerra, and Mathieu Picard. 2019.
Evolutionary approaches to dynamic earth observation satellites mission plan-
ning under uncertainty. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference. 1302-1310.

Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley Sons, Inc.

Mabhshid Salemi Parizi, Yasin Gocgun, and Archis Ghate. 2017. Approximate
policy iteration for dynamic resource-constrained project scheduling. Operations
Research Letters 45, 5 (2017), 442 — 447.

Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge.

Vincent Van Peteghem and Mario Vanhoucke. 2014. An experimental investiga-
tion of metaheuristics for the multi-mode resource-constrained project schedul-
ing problem on new dataset instances. European Journal of Operational Research
235, 1 (2014), 62-72.

https://doi.org/10.1002/rnc.1164

	Abstract
	1 Introduction
	2 Stochastic Resource Constrained Project Scheduling
	2.1 RCPSP
	2.2 SRCPSP and MDP formulation

	3 Schedule Generation Scheme and fixed permutation-based policies
	4 Genetic Programming and dynamic permutation-based policies
	5 Experiments
	5.1 Baseline approaches
	5.2 Experimental setup

	6 Results and discussion
	7 Conclusion
	References

