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ABSTRACT

The most basic concept of (meta-)heuristic optimization is to prefer
better solutions over worse ones. Algorithms utilizing Frequency
Fitness Assignment (FFA) break with this idea and instead move
towards solutions whose objective value has been encountered less
often so far. We investigate whether this approach can be applied to
solve the classical Job Shop Scheduling Problem (JSSP) by plugging
FFA into the (1+1)-EA, i.e., the most basic local search. As represen-
tation, we use permutationswith repetitions.Within the budget cho-
sen in our experiments, the resulting (1+1)-FEA can obtain better
solutions in average on the Fisher-Thompson, Lawrence, Applegate-
Cook, Storer-Wu-Vaccari, and Yamada-Nakano benchmark sets,
while performing worse on the larger Taillard and Demirkol-Mehta-
Uzsoy benchmarks. We find that while the simple local search with
FFA does not outperform the pure algorithm, it can deliver surpris-
ingly good results, especially since it is not directly biased towards
searching for them.
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1 INTRODUCTION

The Job Shop Scheduling Problem (JSSP) [8, 23] is one of the most
prominent and well-studied scheduling tasks. In a JSSP instance,
there are𝑚 machines and 𝑛 jobs. Each job must be processed once
by each machine in a job-specific sequence and has a job-specific
processing time on each machine. The goal is to find an assignment
of jobs to machines that results in an overall shortest makespan,
i.e., the schedule which can complete all the jobs in the shortest
time.

The JSSP is NP-hard [9, 23]. This means that solving JSSP in-
stances to guaranteed optimality may not be feasible in practical
applications. Reaching the optimal makespans may often take too
long in real-world scenarios. Instead, JSSPs are often approached
heuristically, by algorithms that try to find good approximate so-
lutions within an acceptably short time. While heuristics cannot
guarantee the optimality of their results, the comprehensive meta-
studies in [29, 32, 34] show that quite a few of the commonly used
JSSP benchmark instances can be solved to optimality by the state-
of-the-art heuristics.

The most common method for heuristically solving the JSSP
is to adapt local searches or other metaheuristics such as Simu-
lated Annealing (SA) [22], Tabu Search (TS) [17], and Evolutionary
Algorithms (EAs) [6]. These algorithms generate a set of initial
solutions and then attempt to refine them. Usually, in each itera-
tion, they derive one or multiple new points in the search space
from the set of current solutions. They then select the solutions
for the next iteration from the joint set of current and new can-
didates. All of these algorithms have in common that they select
solutions with better objective values with higher probability. This
is the most basic principle upon which all metaheuristics are built.
While many algorithms such as SA, TS, and EAs complement it
with diversity preservation or generation measures, the only tradi-
tional algorithms completely without this bias are random walks,
random sampling, and exhaustive enumeration ś and they are not
considered as efficient approaches to the JSSP.

In [36], it was shown that several optimization problems can be
solved efficiently even without the bias towards better solutions. It
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was uncovered that Frequency Fitness Assignment (FFA), proposed
in [35], has this property and also renders the optimization pro-
cess invariant under any bijective transformation of the objective
function value. Invariance properties are generally beneficial for
optimization [19, 37], as they generalize the results on one problem
to a class of problems [27]. While we describe the concept of FFA
in more detail in Section 2, in a nutshell, this behavior is achieved
by preferring solutions not with better objective values, but with
less frequently encountered objective values. In [36], it was further
found that FFA makes a simple local search slower on easy prob-
lems but can speed it up significantly on theNP-hard [15] Max-Sat
problem. There, FFA also improved the performance of a Memetic
Algorithm (MA) for the JSSP, into which it was inserted only as
diversity preservation mechanism. That MA, however, still used a
conventional local search, i.e., was biased towards better solutions
and thus not invariant under bijections of the objective function
value.

In this paper, we investigate whether an optimization process
based only on FFA can yield good results on the JSSP. Similar to
what was done in [36] for the problems defined over binary search
spaces, we plug FFA into the simplest local search possible, the
(1+1)-EA and obtain the (1+1)-FEA. As representation, permuta-
tions with repetitions are used, which will later be discussed in
detail and illustrated in Figure 2. We find that, while the (1+1)-FEA
cannot outperform (1+1)-EA within the computational budget of
our experiments, it still delivers surprisingly good results which are
less than 1.5% worse in average over 242 common JSSP benchmark
instances. Moreover, its average results are even better than those
of the (1+1)-EA on six of the eight benchmark sets used and it can
also outperform several recently published algorithms.

This finding is significant: On one hand, it shows that, besides
the Max-Sat, there exists at least one other NP-hard problem on
which an FFA-based algorithm can outperform its pure variant. On
the other hand, it indicates that the JSSP has an underlying structure
allowing for a search towards “hard-to-findž objective values to
also yield good solutions. This discovery opens up a new pathway
to tackle the JSSP: We now know that a search for solutions with
unseen characteristics can guide the optimization process towards
better results and that this approach is not necessarily worse than
directly searching for better solutions. In other words, in this paper
we show that a search paradigm different from every non-trivial
approach that was ever applied to the JSSP can perform surprisingly
well.

The rest of this paper is organized as follows. In Section 2, we
discuss FFA and the algorithms used in this study. The experimental
setup and results are given in Section 3. Finally, Section 4 concludes
the paper with a summary and outlook on future work.

2 ALGORITHMS STUDIED

Assume that we are solving an optimization problem with a given
spaceX of possible candidate solutions and an objective function 𝑓 :

X ↦→ Y. Further assume that 𝑓 be subject to minimization and can
take on integer values from the interval from 0 to a given upper
bound𝑈𝐵, i.e., Y ⊆ 0..𝑈𝐵. This is the case for the JSSP, but also for
many other classical problems such as Max-Sat.

The (1+1)-EA is a very simple local search which starts with
a randomly generated solution 𝑥𝑐 ∈ X. In each step, it applies
the (randomized) unary search operator 𝑚𝑜𝑣𝑒 to 𝑥𝑐 to derive a
new candidate solution 𝑥𝑛 ∈ X. If the objective value 𝑦𝑛 = 𝑓 (𝑥𝑛)

of 𝑥𝑛 is not worse than the quality 𝑦𝑐 of 𝑥𝑐 , then 𝑥𝑛 is selected, i.e.,
replaces 𝑥𝑐 (otherwise it is discarded). This algorithm is illustrated
in Figure 1(a).

FFA is implemented as a fitness assignment process, i.e., an algo-
rithm phase taking place before the selection step. As such, it can
be plugged into almost arbitrary optimization methods. In FFA, the
fitness corresponding to an objective value is its absolute encounter
frequency so far in fitness assignment steps and it is subject to
minimization.

In Figure 1(b), we plug FFA into the (1+1)-EA and obtain
the (1+1)-FEA. For this, the map 𝐻 for counting the encounter
frequency of each objective value 𝑦 during the search is needed
as additional data structure. The (1+1)-FEA starts exactly like the
(1+1)-EA and also maintains a “current solutionž 𝑥𝑐 (with objective
value 𝑦𝑐 ) from which a new solution 𝑥𝑛 is derived in each step.
After computing the objective value 𝑦𝑛 of 𝑥𝑛 , the encounter fre-
quencies 𝐻 [𝑦𝑐 ] and 𝐻 [𝑦𝑛] of both solutions are incremented. They
are always positive integer numbers. Instead of selecting 𝑥𝑛 if its
objective value𝑦𝑛 is not larger than𝑦𝑐 , it is selected if the encounter
frequency 𝐻 [𝑦𝑛] of 𝑦𝑛 is not larger than 𝐻 [𝑦𝑐 ]. Whether 𝑥𝑛 is bet-
ter or worse than 𝑥𝑐 does not matter. By using the objective values
as indices into 𝐻 , they are only compared for equality and their
order plays no role. This means that our (1+1)-FEA would follow
an identical path in the search space even if we would apply any

bijection 𝑔 to 𝑓 and optimize 𝑔(𝑓 (𝑥)) instead of 𝑓 (𝑥).
While the objective values of the solutions remain constant dur-

ing the search (e.g., the makespan of a specific schedule in the JSSP
always remains the same), the frequency fitness values change.
From the perspective of the algorithm, FFA thus turns a static
optimization problem into a dynamic one where schedules with
previously unseen makespans appear as temporary optima but
successively get worse the more often their objective values are
encountered. As a result, a local optimum in the search space can
be an optimum under FFA when discovered for the first time, but
its basin of attraction will be “filledž over time and the search will
eventually depart from it. This also means that worse solutions
could be selected into 𝑥𝑐 and we need to keep track on the best-so-
far solution in a variable 𝑥𝑏 . This variable does not have any impact
on the direction of the search and is only used as final return value.

We now choose the search space X, objective function 𝑓 , and
search operator 𝑚𝑜𝑣𝑒 for the JSSP. The classical JSSP does not
permit preemption, each machine can process either exactly one
job or be idle, and the operations of each job must be performed
strictly in the right order and cannot be parallelized. The objective
function 𝑓 is the makespan, the time when all jobs are completed.
A trivial upper bound𝑈𝐵 for 𝑓 is the sum of the processing times
of all jobs for all machines.

We use permutations with repetition as search space X, i.e.,
integer strings where each of the𝑛 job IDs occurs exactly𝑚 times [7,
16, 28]. Tomanifest such a solution𝑥 as Gantt chart or to compute its
makespan 𝑓 (𝑥), it is processed from front to end. This is illustrated
in Figure 2. When encountering job 𝑖 , we know to which machine 𝑗
it needs to go next based on the given job-specificmachine sequence
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Figure 1: The pseudo code of the investigated algorithms for the JSSP: the (1+1)-EA and the (1+1)-FEA with FFA.

Figure 2: The process of translating a point 𝑥 from the search

space X to a Gantt chart based on a simple demo JSSP in-

stance.

and on how often we already saw 𝑖 in 𝑥 before. We can start it on 𝑗

at a time which is the maximum of 1) when the previous operation
assigned to 𝑗 will finish and 2) when the previous operation of 𝑖
completes on its corresponding machine.

As search move 𝑚𝑜𝑣𝑒 (𝑥), we apply a “1-swapž operation ran-
domly picking two indices at which different job IDs are located
and exchanging these IDs.

A similar encoding has also been employed in [36], but there a
Memetic Algorithm was used, which only applied FFA in the selec-
tion step of the global search and not in the local search. That algo-
rithm therefore still was strongly biased towards better solutions,
whereas we here explore the fully bijection-invariant, FFA-based
optimization.

Since there are 𝑛! possible ways to arrange the 𝑛 jobs on each
of the 𝑚 machines, there can be at most (𝑛!)𝑚 different feasible
job-machine assignments for a JSSP instance. However, the size of

our search space X is (𝑚∗𝑛)!
(𝑚!)𝑛

[28], which is (exponentially) larger

for 𝑛 > 1,𝑚 > 1. This means that many different solutions would
map to the same schedules and yield the same Gantt charts. In [36],
it was found that a (1+1)-FEA does not provide any advantage over
the (1+1)-EA on Plateau functions [3], i.e., discrete optimization
problems with a large degree of neutrality in the search space. It will
therefore be interesting to see whether the (1+1)-FEA can perform
well on the JSSP, given that the encoding chosen exhibits much
neutrality.

3 EXPERIMENTAL RESULTS

We now apply both algorithms to 242 common benchmark in-
stances, namely the sets abz* [2], dmu* [11], ft* [12], la* [24],
orb* [4], swv* [30], ta* [31], and yn* [38]. We conduct five runs
of every algorithm-instance combination with a maximum budget
of 230 objective function evaluations (FEs), i.e., 1′073′741′824 ≈

10
9 FEs per run. In Tables 1 to 5, we present information both about

the instances as well as the results of our study. Column “instž holds
the instance ID. “BKSž is the best known solution, taken from [34]
and marked with + if it is optimal. Finally, in “𝑚 × 𝑛,ž the number
of machines and jobs is given.

For each algorithm-instance pair, we provide the best makespan
reached in any of the five runs, the arithmetic mean of the end
quality over all runs, and the mean number conv of FEs until the
runs could no longer improve their solutions (within the budget).

For each instance set, we provide summary statistics. To get
an impression about the relative performance, on each instance,
we divide the value of each of the three performance indicators
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for the (1+1)-FEA by the corresponding value for the (1+1)-EA.
In [13], it is recommended to use geometric means to summarize
such normalized statistics. Therefore, the geometric mean of these
values minus 1 is presented in row “vs. (1+1)-EAž. If this value is
negative, it means that the (1+1)-FEA yields a smaller indicator
value in average, if it is positive, the (1+1)-EA has the smaller value.
Since the differences between the result qualities are small, we
present them in percent (%) units for “bestž and “mean,ž while
leaving them unscaled for “conv.ž We also count how often each
algorithm has reached the smallest indicator values (marked in
bold in each row) in row “#best.ž

The end result quality delivered by (1+1)-FEA is better in average
on the abz*, ft*, la*, orb*, and yn4* instance sets, both in terms of best
and mean. On swv*, the average for mean is better for (1+1)-FEA,
while (1+1)-EA has a slight lead in best. The (1+1)-EA performs
better on the dmu* and ta* instances. Since these two sets are larger
(holding 160 out of the 242 instances), the (1+1)-EA comes out ahead
in the overall averages, but with no more than a 1.5% advantage.

From the tables, we can also immediately see that the (1+1)-FEA
usually has improvements later in the runs than the (1+1)-EA. From
the overall summary at the bottom of Table 5, we find that it makes
its last improvement after approximately 12 + 1 = 13 times as many
FEs as the (1+1)-EA in average.

In Figure 3, we plot the best-so-far solution quality over time
in each of the five runs of the (1+1)-FEA and (1+1)-EA for six JSSP
instances. These have been selected based on the maximum and
minimum ratio (minus 1) of the three performance metrics that
were also used in the result tables: the best solution quality reached
by any run of the setup, the mean solution quality over all runs,
and the mean FE index conv of the last improvement. This selection
criterion is fair and provides a good impression of the different
possible algorithm behaviors.

The highest advantage in terms of the best schedule discovered
in any run on an instance for the (1+1)-EA over the (1+1)-FEA
was observed on dmu80, illustrated in the top-left corner of Fig-
ure 3. Here, the (1+1)-FEA has a 15% higher (worse) makespan than
the best schedule of the (1+1)-EA. The largest (1+1)-FEA-lead in
terms of this statistic happened on swv09, where it delivered a
best makespan that was 4.7% shorter (bottom-left chart). From the
right-most column, we see that the (1+1)-EA may at most converge
about 3400 times faster than the (1+1)-FEA, which never stops im-
proving more than 50% earlier than the (1+1)-EA. The latter was
observed due to a run of (1+1)-EA making one very late improve-
ment on orb02.

Whether smaller or larger times to convergence are bad is not
that clear: The (1+1)-FEA is certainly reaching its best solution later
in the runs. However, it also seems possible that it may reach even
better makespans if a larger budget was available, which is unlikely
the case for the (1+1)-EA. Since the BKS is reached on 36% and 26%
of the instances by the (1+1)-EA and (1+1)-FEA, respectively, there
is such room for improvement. This potential is clearly visible in the
charts where the (1+1)-FEA performed the worst in comparison,
namely dmu80 and dmu79. There, the (1+1)-EA clearly can no
longer improve tangibly near the end of the runs, whereas the
(1+1)-FEA is still in a phase of steady progress.

Table 1: Results on the JSSP, part 1.

instance information (1+1)-EA (1+1)-FEA
inst BKS 𝑚×𝑛 best mean conv best mean conv

abz5 1234+ 10×10 1239 1245 1.4E6 1234 1234 1.3E8
abz6 943+ 10×10 943 954 8.6E4 943 943 4.7E7
abz7 656+ 15×20 669 674 1.5E8 665 672 6.5E8
abz8 665 15×20 678 692 1.0E8 674 677 6.6E8
abz9 678+ 15×20 690 703 1.3E8 689 692 6.0E8

#best 1 0 5 5 5 0
vs. (1+1)-EA on abz* -0.3% -1.2% 22

dmu01 2563 15×20 2641 2684 1.4E8 2592 2615 6.1E8
dmu02 2706 15×20 2762 2799 1.8E8 2746 2763 6.9E8
dmu03 2731+ 15×20 2816 2853 2.9E8 2814 2827 5.9E8
dmu04 2669 15×20 2730 2749 1.8E8 2683 2716 5.5E8
dmu05 2749+ 15×20 2853 2875 4.4E7 2803 2814 7.7E8
dmu06 3244 20×20 3276 3332 2.4E8 3289 3310 9.1E8
dmu07 3046 20×20 3112 3171 8.4E7 3103 3124 7.2E8
dmu08 3188 20×20 3261 3287 1.5E8 3257 3263 5.1E8
dmu09 3092 20×20 3176 3242 7.2E7 3164 3178 7.3E8
dmu10 2984 20×20 3006 3086 2.2E8 3019 3056 7.5E8
dmu11 3430 15×30 3502 3544 5.0E8 3579 3613 7.9E8
dmu12 3492 15×30 3542 3558 1.9E8 3642 3673 8.6E8
dmu13 3681+ 15×30 3718 3750 4.6E8 3843 3855 8.1E8
dmu14 3394+ 15×30 3397 3408 2.7E8 3443 3484 7.6E8
dmu15 3343+ 15×30 3343 3350 2.6E8 3386 3397 7.9E8
dmu16 3751 20×30 3823 3836 4.6E8 3918 3941 8.9E8
dmu17 3814 20×30 3907 3954 3.7E8 4067 4085 7.8E8
dmu18 3844+ 20×30 3867 3936 3.5E8 4055 4067 8.5E8
dmu19 3765 20×30 3876 3916 3.6E8 3960 4003 7.0E8
dmu20 3710 20×30 3792 3810 6.0E8 3904 3945 8.4E8
dmu21 4380+ 15×40 4380 4380 1.5E7 4442 4451 9.5E8
dmu22 4725+ 15×40 4725 4725 7.1E7 4738 4740 8.4E8
dmu23 4668+ 15×40 4668 4671 1.7E7 4700 4724 8.4E8
dmu24 4648+ 15×40 4648 4648 3.0E7 4669 4669 8.1E8
dmu25 4164+ 15×40 4164 4164 5.2E5 4164 4164 6.4E8
dmu26 4647+ 20×40 4725 4767 5.3E8 4971 5014 9.3E8
dmu27 4848+ 20×40 4848 4848 1.9E8 5201 5210 8.5E8
dmu28 4692+ 20×40 4692 4708 1.2E8 4946 4972 8.7E8
dmu29 4691+ 20×40 4691 4719 4.4E8 4915 4973 9.6E8
dmu30 4732+ 20×40 4749 4775 2.3E8 4976 5030 9.1E8
dmu31 5640+ 15×50 5640 5640 1.1E6 5734 5755 8.6E8
dmu32 5927+ 15×50 5927 5927 3.7E4 5927 5927 3.0E7
dmu33 5728+ 15×50 5728 5728 1.6E5 5728 5728 2.9E8
dmu34 5385+ 15×50 5385 5385 4.8E5 5385 5394 8.9E8
dmu35 5635+ 15×50 5635 5635 2.0E5 5635 5640 6.7E8
dmu36 5621+ 20×50 5621 5621 7.2E7 5996 6046 8.8E8
dmu37 5851+ 20×50 5851 5851 6.7E7 6191 6236 9.0E8
dmu38 5713+ 20×50 5713 5713 9.0E7 6115 6162 9.3E8
dmu39 5747+ 20×50 5747 5747 1.8E7 6025 6043 9.8E8
dmu40 5577+ 20×50 5577 5577 1.2E7 5939 5985 8.5E8
dmu41 3248 15×20 3373 3428 2.1E8 3383 3405 6.8E8
dmu42 3390 15×20 3525 3586 7.0E7 3455 3507 4.5E8
dmu43 3441 15×20 3662 3704 8.1E7 3559 3585 8.1E8
dmu44 3475 15×20 3652 3710 6.9E7 3589 3618 7.9E8
dmu45 3272 15×20 3368 3454 3.1E8 3387 3396 6.4E8
dmu46 4035 20×20 4194 4274 4.0E8 4196 4212 6.7E8
dmu47 3939 20×20 4131 4200 9.4E7 4084 4122 7.8E8
dmu48 3763 20×20 3957 4028 3.1E8 3941 3955 6.4E8
dmu49 3710 20×20 3924 3953 5.1E8 3839 3876 7.7E8
dmu50 3729 20×20 3958 4032 5.3E8 3851 3901 7.7E8
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Figure 3: Progress of the best-so-far result quality on instances with the extremes of the observed performance indicator ratios

(1+1)-FEA to (1+1)-EA over log-scaled FE axes: ratios minus 1 of best (left) and mean (middle) end quality as well as the FEs to

convergence (right).

Let us now compare the result qualities reached by the (1+1)-FEA
with the related work. Most of the literature use vastly different ter-
mination criteria, sometimes based on iterations, sometimes based
on runtime. Since we use rather large budgets, we can expect that
they may conduct less FEs. However, an algorithm using only FFA
does not perform any optimization targeted towards better results.
As shown in [36], such an algorithm may spend a good share of the
runtime to follow trails over iteratively worsening solutions before
“turning aroundž and then progressing towards better results. The
search direction may change several times. Together with the fact
that we have plugged FFA into the most primitive local search we
can imagine and use a trivial search operator spanning a relatively
restricted neighborhood, one may ask whether the (1+1)-FEA can
yield any result quality even remotely comparable to what algo-
rithms published in the last decade can achieve. We find that the
mean and best results of the (1+1)-FEA, on every single instance,
are at least as good and sometimes better than all corresponding
mean and best results of all algorithms contributed in [1] (2010),
of the aLSGA in [5] (2015), the EAS in [14] (2013), of all four GAs
in [21] (2014), of the GWO method proposed in [20] (2018), of the
SAFA in [25] (2018), of the HBFO in [26] (2012), and of all three
algorithms in [33] (2018). These works report results only for fewer
instances than used in our experiment, so we can only compare
with the results actually reported (which can be found in the cor-
responding publications and in the online repository [34]). While,
again, the termination criteria used in these works are different,
the fact that an algorithm both as trivial and unbiased like the
(1+1)-FEA can achieve results in this range is astonishing.

4 CONCLUSIONS

Frequency Fitness Assignment (FFA) translates objective values to
their encounter frequency so far in the optimization process. These

frequencies replace the objective values in the decision which solu-
tion to accept. FFA can therefore be plugged into almost arbitrary
optimization processes. Since it does not make any order-based com-
parison of objective values, the path that an FFA-based algorithm
takes through the search space is invariant under all bijections
of the objective function value ś a feature only known of trivial
algorithms like random sampling, random walks, and exhaustive
enumeration.

In this work, we plugged FFA into the (1+1)-EA, a simple local
search, and obtained the (1+1)-FEA. In the algorithms, we use per-
mutations with repetitions as representation. We applied them to
the JSSP and found that the (1+1)-FEA can outperform the (1+1)-EA
on several benchmark instance sets in terms of end result quality,
while losing on others (under our budget constraints). This finding
is very interesting, as FFA is free of any direct bias towards better
solutions. It is biased only towards rarely-seen objective values. Yet,
the (1+1)-FEA performs surprisingly well.

Our results also complement those from [36] and mark the JSSP
as the second NP-hard problem where driving the optimization
process towards rarely-seen objective values alone can yield good
results. In many discrete domains, good solutions are indeed rare
and the better the solutions get, the rarer they are. FFA seems to be
one of the few approaches to optimization which can exploit this
as underlying concept driving the search.1

One important limitation of FFA that should be mentioned again
is that it can only work if there are not too many different possible
objective values. In its form defined here, it would therefore not
be suitable to continuous optimization and probably also not for
domains such as the Traveling Salesman Problems where the num-
ber of different solution qualities for an instance is very high. In

1Overviews on related works can be found in [10, 18, 36].
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Table 2: Results on the JSSP, part 2.

instance information (1+1)-EA (1+1)-FEA
inst BKS 𝑚×𝑛 best mean conv best mean conv

dmu51 4156 15×30 4406 4468 4.5E8 4513 4550 7.9E8
dmu52 4311 15×30 4550 4642 2.9E8 4652 4687 9.0E8
dmu53 4390 15×30 4614 4665 5.4E8 4720 4744 8.4E8
dmu54 4362 15×30 4580 4649 4.1E8 4709 4747 8.6E8
dmu55 4270 15×30 4436 4490 7.6E8 4588 4629 8.8E8
dmu56 4941 20×30 5227 5289 6.3E8 5415 5484 8.2E8
dmu57 4663 20×30 5044 5090 6.2E8 5152 5181 8.7E8
dmu58 4708 20×30 5002 5054 5.1E8 5208 5223 7.9E8
dmu59 4619 20×30 4911 4956 5.1E8 5015 5102 9.3E8
dmu60 4739 20×30 5065 5124 5.4E8 5247 5293 8.3E8
dmu61 5172 15×40 5522 5566 4.2E8 5787 5851 9.7E8
dmu62 5251 15×40 5412 5517 3.0E8 5844 5864 8.6E8
dmu63 5323 15×40 5503 5620 5.1E8 5948 6025 7.6E8
dmu64 5240 15×40 5501 5647 6.6E8 5893 5947 9.2E8
dmu65 5190 15×40 5403 5470 2.2E8 5752 5788 8.1E8
dmu66 5717 20×40 5951 6051 7.9E8 6543 6592 9.0E8
dmu67 5779 20×40 6102 6135 6.3E8 6727 6788 8.7E8
dmu68 5765 20×40 6095 6162 5.6E8 6634 6727 9.5E8
dmu69 5709 20×40 6016 6115 5.1E8 6638 6673 8.7E8
dmu70 5889 20×40 6237 6319 4.5E8 6880 6921 8.7E8
dmu71 6223 15×50 6517 6563 6.5E8 7204 7264 9.3E8
dmu72 6463 15×50 6703 6792 7.0E8 7481 7511 9.2E8
dmu73 6153 15×50 6453 6533 7.0E8 7164 7221 8.6E8
dmu74 6196 15×50 6443 6511 8.5E8 7185 7231 8.7E8
dmu75 6189 15×50 6547 6644 5.5E8 7154 7224 9.7E8
dmu76 6807 20×50 7135 7214 6.9E8 8075 8156 9.3E8
dmu77 6792 20×50 7217 7284 1.0E9 8217 8288 8.9E8

dmu78 6770 20×50 7119 7218 8.0E8 8099 8210 8.4E8
dmu79 6952 20×50 7294 7360 7.7E8 8316 8409 9.0E8
dmu80 6673 20×50 6967 7098 7.3E8 8044 8085 8.6E8

#best 65 60 79 20 23 1
vs. (1+1)-EA on dmu* 3.8% 3.4% 4.0

ft06 55+ 6×6 55 55 1.5E3 55 55 3.0E4
ft10 930+ 10×10 937 964 2.9E6 930 930 4.5E7
ft20 1165+ 5×20 1165 1169 2.8E8 1165 1165 2.0E8

#best 2 1 2 3 3 1
vs. (1+1)-EA on ft* -0.2% -1.3% 5.0

la01 666+ 5×10 666 666 2.0E4 666 666 7.9E4
la02 655+ 5×10 655 657 9.3E5 655 655 1.5E6
la03 597+ 5×10 597 602 1.1E6 597 597 5.5E6
la04 590+ 5×10 590 591 9.4E4 590 590 2.7E6
la05 593+ 5×10 593 593 2.5E2 593 593 2.5E3
la06 926+ 5×15 926 926 3.9E2 926 926 3.4E4
la07 890+ 5×15 890 890 4.3E3 890 890 4.8E5
la08 863+ 5×15 863 863 9.1E2 863 863 1.2E5
la09 951+ 5×15 951 951 5.2E2 951 951 4.2E4
la10 958+ 5×15 958 958 2.4E2 958 958 1.4E4
la11 1222+ 5×20 1222 1222 7.8E2 1222 1222 8.4E4
la12 1039+ 5×20 1039 1039 4.3E2 1039 1039 4.1E4
la13 1150+ 5×20 1150 1150 6.6E2 1150 1150 6.5E4
la14 1292+ 5×20 1292 1292 1.1E2 1292 1292 8.9E3
la15 1207+ 5×20 1207 1207 5.1E3 1207 1207 1.7E6
la16 945+ 10×10 946 963 2.7E7 945 945 2.9E8
la17 784+ 10×10 784 785 3.2E5 784 784 3.7E7
la18 848+ 10×10 848 856 1.4E6 848 848 1.1E7
la19 842+ 10×10 842 860 8.5E7 842 842 5.6E7

la20 902+ 10×10 907 925 8.1E6 902 904 3.2E8

Table 3: Results on the JSSP, part 3.

instance information (1+1)-EA (1+1)-FEA
inst BKS 𝑚×𝑛 best mean conv best mean conv

la21 1046+ 10×15 1055 1067 2.1E8 1047 1047 3.0E8
la22 927+ 10×15 927 930 1.8E8 932 933 4.3E8
la23 1032+ 10×15 1032 1032 1.0E5 1032 1032 8.0E6
la24 935+ 10×15 946 956 2.3E6 938 939 6.2E8
la25 977+ 10×15 991 1005 2.0E7 977 980 5.6E8
la26 1218+ 10×20 1218 1218 5.4E5 1218 1218 4.1E7
la27 1235+ 10×20 1236 1244 3.1E8 1235 1245 7.4E8
la28 1216+ 10×20 1216 1217 2.9E7 1216 1218 5.5E8
la29 1152+ 10×20 1163 1177 5.3E7 1164 1171 6.0E8
la30 1355+ 10×20 1355 1355 1.6E5 1355 1355 2.0E7
la31 1784+ 10×30 1784 1784 9.7E3 1784 1784 4.5E6
la32 1850+ 10×30 1850 1850 1.2E4 1850 1850 8.4E6
la33 1719+ 10×30 1719 1719 1.2E4 1719 1719 5.7E6
la34 1721+ 10×30 1721 1721 3.6E4 1721 1721 3.1E7
la35 1888+ 10×30 1888 1888 1.6E4 1888 1888 9.8E6
la36 1268+ 15×15 1268 1287 2.5E8 1278 1283 2.5E8

la37 1397+ 15×15 1418 1421 3.4E7 1410 1412 5.3E8
la38 1196+ 15×15 1196 1224 2.3E8 1202 1206 5.1E8
la39 1233+ 15×15 1238 1248 4.2E7 1240 1245 4.8E8
la40 1222+ 15×15 1229 1245 1.4E7 1228 1228 4.2E8

#best 32 23 38 35 37 2
vs. (1+1)-EA on la* -0.1% -0.5% 32

orb01 1059+ 10×10 1094 1110 9.7E7 1059 1059 1.4E8
orb02 888+ 10×10 889 902 4.9E7 889 889 2.4E7

orb03 1005+ 10×10 1044 1076 7.9E7 1005 1005 9.8E7
orb04 1005+ 10×10 1020 1037 6.4E5 1005 1006 3.8E8
orb05 887+ 10×10 890 917 5.8E6 889 889 7.6E7
orb06 1010+ 10×10 1033 1047 1.1E6 1010 1010 6.6E8
orb07 397+ 10×10 401 405 7.6E4 397 397 3.4E7
orb08 899+ 10×10 916 935 3.4E7 899 899 3.5E7
orb09 934+ 10×10 950 970 5.9E5 934 934 1.2E8
orb10 944+ 10×10 944 985 4.6E7 944 944 3.7E7

#best 2 0 8 10 10 2
vs. (1+1)-EA on orb* -1.5% -3.6% 13

swv01 1407+ 10×20 1418 1459 3.0E8 1435 1450 5.9E8
swv02 1475+ 10×20 1485 1509 1.7E8 1495 1498 6.1E8
swv03 1398+ 10×20 1450 1484 4.3E8 1433 1443 4.0E8

swv04 1464+ 10×20 1523 1543 4.0E8 1509 1514 5.7E8
swv05 1424+ 10×20 1494 1533 1.4E8 1466 1470 5.5E8
swv06 1671 15×20 1766 1785 1.9E8 1720 1729 5.8E8
swv07 1594 15×20 1711 1725 1.3E8 1665 1673 7.1E8
swv08 1752 15×20 1879 1902 2.4E8 1809 1819 7.6E8
swv09 1655 15×20 1784 1813 1.8E8 1700 1716 6.8E8
swv10 1743 15×20 1833 1871 9.2E7 1798 1810 5.0E8
swv11 2983+ 10×50 2997 3021 6.1E8 3143 3155 7.7E8
swv12 2977 10×50 3047 3100 3.8E8 3178 3211 7.5E8
swv13 3104+ 10×50 3124 3152 4.1E8 3252 3264 8.4E8
swv14 2968+ 10×50 2979 3003 4.0E8 3048 3074 7.8E8
swv15 2885+ 10×50 2917 2958 4.2E8 3081 3094 9.0E8
swv16 2924+ 10×50 2924 2924 4.1E3 2924 2924 1.8E6
swv17 2794+ 10×50 2794 2794 8.6E3 2794 2794 4.6E6
swv18 2852+ 10×50 2852 2852 5.8E3 2852 2852 2.4E6
swv19 2843+ 10×50 2843 2843 1.4E4 2843 2843 1.2E7
swv20 2823+ 10×50 2823 2823 8.9E3 2823 2823 4.3E6

#best 12 10 19 13 15 1
vs. (1+1)-EA on swv* 0.1% -0.6% 8.6
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Table 4: Results on the JSSP, part 4.

instance information (1+1)-EA (1+1)-FEA
inst BKS 𝑚×𝑛 best mean conv best mean conv

ta01 1231+ 15×15 1254 1264 1.9E7 1248 1248 3.7E8
ta02 1244+ 15×15 1258 1269 9.1E7 1244 1249 3.0E8
ta03 1218+ 15×15 1261 1276 1.5E8 1218 1221 5.1E8
ta04 1175+ 15×15 1185 1213 2.5E8 1181 1186 4.7E8
ta05 1224+ 15×15 1243 1258 3.5E6 1233 1239 4.7E8
ta06 1238+ 15×15 1259 1277 6.2E6 1246 1250 4.4E8
ta07 1227+ 15×15 1250 1255 3.5E7 1228 1236 5.0E8
ta08 1217+ 15×15 1241 1255 2.7E7 1219 1230 5.4E8
ta09 1274+ 15×15 1296 1322 2.1E8 1281 1291 4.9E8
ta10 1241+ 15×15 1277 1291 1.3E8 1244 1262 6.5E8
ta11 1357+ 15×20 1389 1408 3.9E8 1389 1401 7.0E8
ta12 1367+ 15×20 1379 1400 3.2E7 1388 1397 5.2E8
ta13 1342+ 15×20 1381 1400 5.2E7 1361 1376 8.5E8
ta14 1345+ 15×20 1355 1365 1.8E8 1363 1365 5.8E8
ta15 1339+ 15×20 1364 1390 1.8E8 1362 1375 5.9E8
ta16 1360+ 15×20 1375 1399 5.4E7 1375 1381 5.0E8
ta17 1462+ 15×20 1489 1503 3.3E8 1494 1500 5.6E8
ta18 1396 15×20 1424 1438 3.1E8 1429 1437 5.7E8
ta19 1332+ 15×20 1380 1400 9.3E7 1343 1372 6.8E8
ta20 1348+ 15×20 1374 1395 1.2E8 1373 1381 5.0E8
ta21 1642+ 20×20 1671 1710 2.1E8 1678 1686 5.2E8
ta22 1600 20×20 1634 1649 1.8E8 1632 1640 7.2E8
ta23 1557 20×20 1602 1617 2.2E8 1589 1595 7.2E8
ta24 1644+ 20×20 1675 1696 2.0E8 1676 1688 4.8E8
ta25 1595 20×20 1634 1651 4.6E7 1625 1642 5.5E8
ta26 1643 20×20 1698 1709 3.4E8 1664 1684 6.4E8
ta27 1680 20×20 1747 1785 1.0E8 1704 1721 4.8E8
ta28 1603+ 20×20 1647 1668 1.4E8 1627 1645 7.6E8
ta29 1625 20×20 1652 1693 2.7E7 1644 1649 7.9E8
ta30 1584 20×20 1624 1640 1.9E8 1637 1640 7.0E8
ta31 1764+ 15×30 1766 1766 1.6E8 1793 1805 8.6E8
ta32 1784 15×30 1835 1845 4.4E8 1868 1878 6.6E8
ta33 1791 15×30 1804 1826 4.9E8 1867 1871 9.1E8
ta34 1829 15×30 1844 1873 3.0E8 1888 1919 7.9E8
ta35 2007+ 15×30 2007 2012 1.0E8 2015 2018 6.5E8
ta36 1819+ 15×30 1820 1834 3.1E8 1846 1861 7.5E8
ta37 1771+ 15×30 1795 1801 7.1E8 1841 1852 7.2E8
ta38 1673+ 15×30 1696 1708 3.4E8 1737 1744 7.9E8
ta39 1795+ 15×30 1807 1815 2.8E8 1841 1848 5.9E8
ta40 1669 15×30 1703 1718 5.5E8 1737 1750 7.3E8
ta41 2005 20×30 2057 2088 4.8E8 2115 2131 8.3E8
ta42 1937 20×30 2006 2027 3.8E8 2023 2051 8.0E8
ta43 1846 20×30 1915 1930 7.2E8 1959 1978 8.2E8
ta44 1979 20×30 2030 2051 5.1E8 2065 2091 7.7E8
ta45 2000 20×30 2016 2033 3.9E8 2073 2086 8.7E8
ta46 2004 20×30 2064 2100 5.7E8 2109 2135 7.5E8
ta47 1889 20×30 1970 1980 2.1E8 2004 2022 8.3E8
ta48 1937 20×30 1998 2008 4.9E8 2066 2076 7.1E8
ta49 1961 20×30 2010 2026 5.0E8 2060 2081 7.9E8
ta50 1923 20×30 1974 1995 2.8E8 2041 2057 7.3E8
ta51 2760+ 15×50 2760 2760 1.0E6 2760 2769 8.1E8
ta52 2756+ 15×50 2756 2756 1.0E6 2756 2772 8.9E8
ta53 2717+ 15×50 2717 2717 5.5E5 2717 2717 8.6E8
ta54 2839+ 15×50 2839 2839 2.7E5 2839 2839 3.5E8
ta55 2679+ 15×50 2679 2679 2.7E6 2719 2730 8.7E8
ta56 2781+ 15×50 2781 2781 1.1E6 2795 2803 9.0E8

Table 5: Results on the JSSP, part 5.

instance information (1+1)-EA (1+1)-FEA
inst BKS 𝑚×𝑛 best mean conv best mean conv

ta57 2943+ 15×50 2943 2943 4.7E5 2943 2945 8.3E8
ta58 2885+ 15×50 2885 2885 3.9E5 2885 2885 9.4E8
ta59 2655+ 15×50 2655 2655 2.0E6 2703 2712 8.8E8
ta60 2723+ 15×50 2723 2723 1.1E6 2746 2752 9.3E8
ta61 2868+ 20×50 2868 2868 7.4E6 2984 3000 9.2E8
ta62 2869+ 20×50 2872 2883 8.2E8 3060 3088 8.3E8
ta63 2755+ 20×50 2755 2755 8.4E6 2865 2884 8.4E8
ta64 2702+ 20×50 2702 2702 6.2E6 2813 2836 7.6E8
ta65 2725+ 20×50 2725 2725 2.8E7 2854 2867 8.8E8
ta66 2845+ 20×50 2845 2845 3.0E7 2968 2983 8.2E8
ta67 2825+ 20×50 2826 2826 2.4E7 2949 2968 7.8E8
ta68 2784+ 20×50 2784 2784 6.3E6 2865 2884 9.1E8
ta69 3071+ 20×50 3071 3071 2.3E6 3140 3160 8.2E8
ta70 2995+ 20×50 2995 2995 1.3E7 3144 3169 8.2E8
ta71 5464+ 20×100 5464 5464 1.1E6 5561 5644 8.5E8
ta72 5181+ 20×100 5181 5181 8.7E5 5285 5319 8.1E8
ta73 5568+ 20×100 5568 5568 1.3E6 5728 5741 7.8E8
ta74 5339+ 20×100 5339 5339 7.5E5 5441 5457 8.8E8
ta75 5392+ 20×100 5392 5392 1.3E6 5596 5630 8.6E8
ta76 5342+ 20×100 5342 5342 1.1E6 5489 5503 9.1E8
ta77 5436+ 20×100 5436 5436 6.1E5 5509 5538 9.3E8
ta78 5394+ 20×100 5394 5394 8.2E5 5494 5517 8.0E8
ta79 5358+ 20×100 5358 5358 7.5E5 5432 5459 9.2E8
ta80 5183+ 20×100 5183 5183 1.1E6 5318 5377 9.5E8

#best 59 52 80 29 33 0
vs. (1+1)-EA on ta* 1.1% 1.0% 20

yn1 884+ 20×20 907 913 5.6E7 901 904 5.3E8
yn2 904 20×20 929 934 2.4E8 922 927 6.8E8
yn3 892 20×20 905 912 1.3E8 899 910 7.5E8
yn4 968 20×20 977 991 1.7E8 978 987 7.0E8

#best 1 0 4 3 4 0
vs. (1+1)-EA on yn* -0.5% -0.6% 4.0

overall
#best 174 146 235 118 130 7

vs. (1+1)-EA on all 1.5% 1.2% 12

such scenarios, an FFA-based search would degenerate to perform
similar to a Random Walk.

In a next step, we will plug FFA into some of the sate-of-the-art
algorithms on the JSSP domain. The present paper shows that a
simple local search can benefit (or at least not suffer) from using FFA.
Whether it can help or will be detrimental for highly-optimized
algorithms must be investigated next.
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