Solving Job Shop Scheduling Problems Without Using a Bias for Good Solutions

Thomas Weise

tweise@hfuu.edu.cn Institute of Applied Optimization, School of Artificial Intelligence and Big Data, Hefei University Hefei, Anhui, China

Yan Chen

chenyan@hfuu.edu.cn Institute of Applied Optimization, School of Artificial Intelligence and Big Data, Hefei University Hefei, Anhui, China

ABSTRACT

The most basic concept of (meta-)heuristic optimization is to prefer better solutions over worse ones. Algorithms utilizing Frequency Fitness Assignment (FFA) break with this idea and instead move towards solutions whose objective value has been encountered less often so far. We investigate whether this approach can be applied to solve the classical Job Shop Scheduling Problem (JSSP) by plugging FFA into the (1+1)-EA, i.e., the most basic local search. As representation, we use permutations with repetitions. Within the budget chosen in our experiments, the resulting (1+1)-FEA can obtain better solutions in average on the Fisher-Thompson, Lawrence, Applegate-Cook, Storer-Wu-Vaccari, and Yamada-Nakano benchmark sets, while performing worse on the larger Taillard and Demirkol-Mehta-Uzsoy benchmarks. We find that while the simple local search with FFA does not outperform the pure algorithm, it can deliver surprisingly good results, especially since it is not directly biased towards searching for them.

CCS CONCEPTS

• Theory of computation \rightarrow Random search heuristics; Theory of randomized search heuristics; • Applied computing \rightarrow Operations research; • Mathematics of computing \rightarrow Combinatorial algorithms; Permutations and combinations; Combinatoric problems; • Computing methodologies \rightarrow Planning and scheduling.

ACM Reference Format:

Thomas Weise, Xinlu Li, Yan Chen, and Zhize Wu. 2021. Solving Job Shop Scheduling Problems Without Using a Bias for Good Solutions. In 2021 Genetic and Evolutionary Computation Conference Companion (GECCO '21

GECCO '21 Companion, July 10-14, 2021, Lille, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07...\$15.00

https://doi.org/10.1145/3449726.3463124

Xinlu Li

xinlu.li@vip.163.com Institute of Applied Optimization, School of Artificial Intelligence and Big Data, Hefei University Hefei, Anhui, China

Zhize Wu*

wuzhize@mail.ustc.edu.cn Institute of Applied Optimization, School of Artificial Intelligence and Big Data, Hefei University Hefei, Anhui, China

Companion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3449726.3463124

1 INTRODUCTION

The Job Shop Scheduling Problem (JSSP) [8, 23] is one of the most prominent and well-studied scheduling tasks. In a JSSP instance, there are m machines and n jobs. Each job must be processed once by each machine in a job-specific sequence and has a job-specific processing time on each machine. The goal is to find an assignment of jobs to machines that results in an overall shortest makespan, i.e., the schedule which can complete all the jobs in the shortest time.

The JSSP is \mathcal{NP} -hard [9, 23]. This means that solving JSSP instances to guaranteed optimality may not be feasible in practical applications. Reaching the optimal makespans may often take too long in real-world scenarios. Instead, JSSPs are often approached heuristically, by algorithms that try to find good approximate solutions within an acceptably short time. While heuristics cannot guarantee the optimality of their results, the comprehensive metastudies in [29, 32, 34] show that quite a few of the commonly used JSSP benchmark instances can be solved to optimality by the stateof-the-art heuristics.

The most common method for heuristically solving the JSSP is to adapt local searches or other metaheuristics such as Simulated Annealing (SA) [22], Tabu Search (TS) [17], and Evolutionary Algorithms (EAs) [6]. These algorithms generate a set of initial solutions and then attempt to refine them. Usually, in each iteration, they derive one or multiple new points in the search space from the set of current solutions. They then select the solutions for the next iteration from the joint set of current and new candidates. All of these algorithms have in common that they select solutions with better objective values with higher probability. This is the most basic principle upon which all metaheuristics are built. While many algorithms such as SA, TS, and EAs complement it with diversity preservation or generation measures, the only traditional algorithms completely without this bias are random walks, random sampling, and exhaustive enumeration - and they are not considered as efficient approaches to the JSSP.

In [36], it was shown that several optimization problems can be solved efficiently even *without* the bias towards better solutions. It

^{*}Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

was uncovered that Frequency Fitness Assignment (FFA), proposed in [35], has this property and also renders the optimization process invariant under any bijective transformation of the objective function value. Invariance properties are generally beneficial for optimization [19, 37], as they generalize the results on one problem to a class of problems [27]. While we describe the concept of FFA in more detail in Section 2, in a nutshell, this behavior is achieved by preferring solutions not with better objective values, but with less frequently encountered objective values. In [36], it was further found that FFA makes a simple local search slower on easy problems but can speed it up significantly on the NP-hard [15] Max-Sat problem. There, FFA also improved the performance of a Memetic Algorithm (MA) for the JSSP, into which it was inserted only as diversity preservation mechanism. That MA, however, still used a conventional local search, i.e., was biased towards better solutions and thus not invariant under bijections of the objective function value.

In this paper, we investigate whether an optimization process based only on FFA can yield good results on the JSSP. Similar to what was done in [36] for the problems defined over binary search spaces, we plug FFA into the simplest local search possible, the (1+1)-EA and obtain the (1+1)-FEA. As representation, permutations with repetitions are used, which will later be discussed in detail and illustrated in Figure 2. We find that, while the (1+1)-FEA cannot outperform (1+1)-EA within the computational budget of our experiments, it still delivers surprisingly good results which are less than 1.5% worse in average over 242 common JSSP benchmark instances. Moreover, its average results are even better than those of the (1+1)-EA on six of the eight benchmark sets used and it can also outperform several recently published algorithms.

This finding is significant: On one hand, it shows that, besides the Max-Sat, there exists at least one other \mathcal{NP} -hard problem on which an FFA-based algorithm can outperform its pure variant. On the other hand, it indicates that the JSSP has an underlying structure allowing for a search towards "hard-to-find" objective values to also yield good solutions. This discovery opens up a new pathway to tackle the JSSP: We now know that a search for solutions with unseen characteristics can guide the optimization process towards better results and that this approach is not necessarily worse than directly searching for better solutions. In other words, in this paper we show that a search paradigm different from every non-trivial approach that was ever applied to the JSSP can perform surprisingly well.

The rest of this paper is organized as follows. In Section 2, we discuss FFA and the algorithms used in this study. The experimental setup and results are given in Section 3. Finally, Section 4 concludes the paper with a summary and outlook on future work.

2 ALGORITHMS STUDIED

Assume that we are solving an optimization problem with a given space X of possible candidate solutions and an objective function $f : X \mapsto \mathcal{Y}$. Further assume that f be subject to minimization and can take on *integer* values from the interval from 0 to a given upper bound *UB*, i.e., $\mathcal{Y} \subseteq 0..UB$. This is the case for the JSSP, but also for many other classical problems such as Max-Sat.

The (1+1)-EA is a very simple local search which starts with a randomly generated solution $x_c \in X$. In each step, it applies the (randomized) unary search operator *move* to x_c to derive a new candidate solution $x_n \in X$. If the objective value $y_n = f(x_n)$ of x_n is not worse than the quality y_c of x_c , then x_n is selected, i.e., replaces x_c (otherwise it is discarded). This algorithm is illustrated in Figure 1(a).

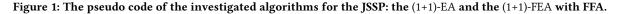
FFA is implemented as a fitness assignment process, i.e., an algorithm phase taking place before the selection step. As such, it can be plugged into almost arbitrary optimization methods. In FFA, the fitness corresponding to an objective value is its absolute encounter frequency so far in fitness assignment steps and it is subject to minimization.

In Figure 1(b), we plug FFA into the (1+1)-EA and obtain the (1+1)-FEA. For this, the map H for counting the encounter frequency of each objective value y during the search is needed as additional data structure. The (1+1)-FEA starts exactly like the (1+1)-EA and also maintains a "current solution" x_c (with objective value y_c) from which a new solution x_n is derived in each step. After computing the objective value y_n of x_n , the encounter frequencies $H[y_c]$ and $H[y_n]$ of both solutions are incremented. They are always positive integer numbers. Instead of selecting x_n if its objective value y_n is not larger than y_c , it is selected if the *encounter* frequency $H[y_n]$ of y_n is not larger than $H[y_c]$. Whether x_n is better or worse than x_c does not matter. By using the objective values as indices into H, they are only compared for equality and their order plays no role. This means that our (1+1)-FEA would follow an identical path in the search space even if we would apply any bijection *g* to *f* and optimize g(f(x)) instead of f(x).

While the objective values of the solutions remain constant during the search (e.g., the makespan of a specific schedule in the JSSP always remains the same), the frequency fitness values change. From the perspective of the algorithm, FFA thus turns a static optimization problem into a dynamic one where schedules with previously unseen makespans appear as temporary optima but successively get worse the more often their objective values are encountered. As a result, a local optimum in the search space can be an optimum under FFA when discovered for the first time, but its basin of attraction will be "filled" over time and the search will eventually depart from it. This also means that worse solutions could be selected into x_c and we need to keep track on the best-sofar solution in a variable x_b . This variable does not have any impact on the direction of the search and is only used as final return value.

We now choose the search space X, objective function f, and search operator *move* for the JSSP. The classical JSSP does not permit preemption, each machine can process either exactly one job or be idle, and the operations of each job must be performed strictly in the right order and cannot be parallelized. The objective function f is the makespan, the time when all jobs are completed. A trivial upper bound *UB* for f is the sum of the processing times of all jobs for all machines.

We use permutations with repetition as search space X, i.e., integer strings where each of the *n* job IDs occurs exactly *m* times [7, 16, 28]. To manifest such a solution *x* as Gantt chart or to compute its makespan f(x), it is processed from front to end. This is illustrated in Figure 2. When encountering job *i*, we know to which machine *j* it needs to go next based on the given job-specific machine sequence


Solving Job Shop Scheduling Problems Without Using a Bias for Good Solutions

1: proc (1+1)-EA($f : \mathcal{X} \mapsto 0..UB$) 2: 3: randomly sample x_c from $\mathcal{X}; y_c \leftarrow f(x_c);$ 4: 5: while \neg terminate do 6: $x_n \leftarrow move(x_c); y_n \leftarrow f(x_n);$ 7: 8: 9: if $y_n \leq y_c$ then $x_c \leftarrow x_n; y_c \leftarrow y_n;$ 10: return $(x_c, y_c);$

(a) (1+1)-EA

1: proc (1+1)-FEA($f : \mathcal{X} \mapsto 0..UB$) $H[0..UB] \leftarrow (0, 0, \cdots, 0);$ 2: 3: randomly sample x_c from \mathcal{X} ; $y_c \leftarrow f(x_c)$; 4: $x_b \leftarrow x_c; y_b \leftarrow y_c;$ 5: while ¬ terminate do 6: $x_n \leftarrow move(x_c); y_n \leftarrow f(y_c);$ if $y_n < y_b$ then $x_b \leftarrow x_n$; $y_b \leftarrow y_n$; 7: $\begin{array}{l} H[y_c] \leftarrow H[y_c] + 1; \, H[y_n] \leftarrow H[y_n] + 1; \\ \text{if } H[y_n] \leq H[y_c] \text{ then } x_c \leftarrow x_n; y_n \leftarrow y_c; \end{array}$ 8: 9: return (x_b, y_b) ; 10:

 textual representation of JSSP instance

 4 5

 0 10 1 20 2 20 3 40 4 10

 1 20 0 10 3 30 2 50 4 30

 30 1 20 4 12 3 40 0 10

 job 2

 4 50 3 30 2 15 0 20 1 15

This demo instance has 4 jobs and 5 machines, as written in the second row. Each of the following 4 rows contains 5 tuples of "(machine, time)" pairs. Each pair holds the index of the machine to which the job need to go and the time that it will spend on the machine. Each job must pass through the machines in that order.

example point in the search space: permutation with repetitions: x=(0, 2, 1, 0, 3, 1, 0, 1, 2, 3, 2, 1, 1, 2, 3, 0, 2, 0, 3, 3)

The point can be transformed to the Gantt chart below by processing it from front to end. First comes job 0 and from the instance data we know that it needs to go to machine 0 for 10 time units. Then comes job 2 and we know from the instance data that it needs to go to machine 2 for 30 time units. Then comes job 1, which needs to go to machine 1 for 20 time units. Then, job 0 appears again, which now needs to go to machine 1. Before it can start there, it needs to wait until job 1 is finished there. And so on.

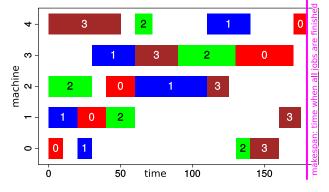


Figure 2: The process of translating a point x from the search space X to a Gantt chart based on a simple demo JSSP instance.

and on how often we already saw i in x before. We can start it on j at a time which is the maximum of 1) when the previous operation assigned to j will finish and 2) when the previous operation of i completes on its corresponding machine.

As search move move(x), we apply a "1-swap" operation randomly picking two indices at which different job IDs are located and exchanging these IDs.

A similar encoding has also been employed in [36], but there a Memetic Algorithm was used, which only applied FFA in the selection step of the global search and not in the local search. That algorithm therefore still was strongly biased towards better solutions, whereas we here explore the fully bijection-invariant, FFA-based optimization.

Since there are n! possible ways to arrange the n jobs on each of the m machines, there can be at most $(n!)^m$ different feasible job-machine assignments for a JSSP instance. However, the size of our search space X is $\frac{(m*n)!}{(m!)^n}$ [28], which is (exponentially) larger for n > 1, m > 1. This means that many different solutions would map to the same schedules and yield the same Gantt charts. In [36], it was found that a (1+1)-FEA does not provide any advantage over the (1+1)-EA on Plateau functions [3], i.e., discrete optimization problems with a large degree of neutrality in the search space. It will therefore be interesting to see whether the (1+1)-FEA can perform well on the JSSP, given that the encoding chosen exhibits much neutrality.

3 EXPERIMENTAL RESULTS

We now apply both algorithms to 242 common benchmark instances, namely the sets abz^{*} [2], dmu^{*} [11], ft^{*} [12], la^{*} [24], orb^{*} [4], swv^{*} [30], ta^{*} [31], and yn^{*} [38]. We conduct five runs of every algorithm-instance combination with a maximum budget of 2³⁰ objective function evaluations (FEs), i.e., 1'073'741'824 \approx 10⁹ FEs per run. In Tables 1 to 5, we present information both about the instances as well as the results of our study. Column "*inst*" holds the instance ID. "*BKS*" is the best known solution, taken from [34] and marked with + if it is optimal. Finally, in "*m* × *n*," the number of machines and jobs is given.

For each algorithm-instance pair, we provide the *best* makespan reached in any of the five runs, the arithmetic *mean* of the end quality over all runs, and the mean number *conv* of FEs until the runs could no longer improve their solutions (within the budget).

For each instance set, we provide summary statistics. To get an impression about the relative performance, on each instance, we divide the value of each of the three performance indicators for the (1+1)-FEA by the corresponding value for the (1+1)-EA. In [13], it is recommended to use geometric means to summarize such normalized statistics. Therefore, the geometric mean of these values minus 1 is presented in row "vs. (1+1)-EA". If this value is negative, it means that the (1+1)-FEA yields a smaller indicator value in average, if it is positive, the (1+1)-EA has the smaller value. Since the differences between the result qualities are small, we present them in percent (%) units for "*best*" and "*mean*," while leaving them unscaled for "*conv*." We also count how often each algorithm has reached the smallest indicator values (marked in **bold** in each row) in row "*#best*."

The end result quality delivered by (1+1)-FEA is better in average on the abz*, ft*, la*, orb*, and yn4* instance sets, both in terms of *best* and *mean*. On swv*, the average for *mean* is better for (1+1)-FEA, while (1+1)-EA has a slight lead in *best*. The (1+1)-EA performs better on the dmu* and ta* instances. Since these two sets are larger (holding 160 out of the 242 instances), the (1+1)-EA comes out ahead in the overall averages, but with no more than a 1.5% advantage.

From the tables, we can also immediately see that the (1+1)-FEA usually has improvements later in the runs than the (1+1)-EA. From the overall summary at the bottom of Table 5, we find that it makes its last improvement after approximately 12 + 1 = 13 times as many FEs as the (1+1)-EA in average.

In Figure 3, we plot the best-so-far solution quality over time in each of the five runs of the (1+1)-FEA and (1+1)-EA for six JSSP instances. These have been selected based on the maximum and minimum ratio (minus 1) of the three performance metrics that were also used in the result tables: the *best* solution quality reached by any run of the setup, the *mean* solution quality over all runs, and the mean FE index *conv* of the last improvement. This selection criterion is fair and provides a good impression of the different possible algorithm behaviors.

The highest advantage in terms of the best schedule discovered in any run on an instance for the (1+1)-EA over the (1+1)-FEA was observed on dmu80, illustrated in the top-left corner of Figure 3. Here, the (1+1)-FEA has a 15% higher (worse) makespan than the best schedule of the (1+1)-EA. The largest (1+1)-FEA-lead in terms of this statistic happened on swv09, where it delivered a best makespan that was 4.7% shorter (bottom-left chart). From the right-most column, we see that the (1+1)-EA may at most converge about 3400 times faster than the (1+1)-FEA, which never stops improving more than 50% earlier than the (1+1)-EA. The latter was observed due to a run of (1+1)-EA making one very late improvement on orb02.

Whether smaller or larger times to convergence are bad is not that clear: The (1+1)-FEA is certainly reaching its best solution later in the runs. However, it also seems possible that it may reach even better makespans if a larger budget was available, which is unlikely the case for the (1+1)-EA. Since the *BKS* is reached on 36% and 26% of the instances by the (1+1)-EA and (1+1)-FEA, respectively, there is such room for improvement. This potential is clearly visible in the charts where the (1+1)-FEA performed the worst in comparison, namely dmu80 and dmu79. There, the (1+1)-EA clearly can no longer improve tangibly near the end of the runs, whereas the (1+1)-FEA is still in a phase of steady progress.

Thomas Weise, Xinlu Li, Yan Chen, and Zhize Wu

Table 1: Results on the JSSP, part 1.

abz5 1234+ 10×10 1239 1245 1.4E6 1234 1.3E4 abz6 943+ 10×10 943 954 8.6E4 943 943 4.7E7 abz7 656+ 15×20 669 674 1.5E8 665 672 6.5E1 abz8 665 15×20 678 673 1.3E8 689 692 6.9E3 abz9 678+ 15×20 2641 2684 1.4E8 2592 2615 6.1E3 dmu01 2563 15×20 2762 2799 1.8E8 2683 2716 5.9E3 dmu04 2669 15×20 2816 2837 2.9E8 2814 2.7E3 dmu05 2749+ 15×20 2853 2.9E8 2814 2.7E3 3101 3124 7.2E4 dmu06 3244 20×20 3162 3127 7.1E8 3275 3613 7.9E4 dmu10 2984 20×20 306	insta	nce info	rmation	(1+1)-EA			(1+1)-FEA		
abz6 943+ 10×10 943 954 8.6E4 943 943 4.7E3 abz7 656+ 15×20 669 674 1.5E8 665 672 6.6E3 abz8 665 15×20 660 703 1.3E8 689 602 6.6E3 mu01 2563 15×20 2641 2641 1.4E8 2592 2615 6.1E4 dmu02 2760 15×20 2762 2799 1.8E8 2683 2716 5.5E3 dmu03 2731+ 15×20 2812 2823 2814 2827 5.5E3 dmu04 2669 15×20 2873 2.4E8 3124 7.2E3 dmu05 2749+ 15×20 2812 3287 3124 7.2E4 dmu06 3184 20×20 3112 3175 3163 3173 3174 3174 3174 3174 3174 3174 3174 3174 3174 3174 3174 </th <th>inst</th> <th>BKS</th> <th>$m \times n$</th> <th>best</th> <th>mean</th> <th>conv</th> <th>best</th> <th>mean</th> <th>conv</th>	inst	BKS	$m \times n$	best	mean	conv	best	mean	conv
abz? 656+ 15×20 669 674 1.5E8 6665 674 6.5E2 abz8 665 15×20 679 672 1.2E8 669 674 6.72 6.6E3 abz9 678+ 15×20 672 1.2E8 678 672 6.72 6.72 abu00 2563 15×20 2762 2799 1.4E8 2592 2615 6.1E3 dmu01 2563 15×20 2710 2783 2814 2783 5.2E3 dmu05 2714+ 15×20 2812 2.2E8 2813 2716 5.2E3 dmu06 2749+ 15×20 2816 2.352 2.4E8 3257 3.263 5.1E3 dmu06 3244 20×20 3176 3258 1.0E8 3257 3.263 5.1E3 dmu10 3942 20×20 3178 3718 3718 3718 3718 3718 3718 3728 363 377 7.	abz5	1234+	10×10	1239	1245	1.4E6	1234	1234	1.3E8
ab28 665 15×20 678 1.0E8 674 674 6.6E3 ab29 678+ 15×20 670 1.3E8 689 692 6.0E3 ab20 278 1.1E 1.2 1.2 2.2 dm001 2563 15×20 2614 2684 1.4E8 2762 2763 6.1E3 dm003 2731+ 15×20 2816 2853 2.9E8 2814 2823 3010 1.5 dm004 2669 15×20 2373 2.4E8 2803 310 9.1E dm005 2749+ 15×20 2373 2.4E8 2803 310 9.1E dm007 3046 20×20 3171 8.4E7 3103 312 7.2E dm010 3092 20×20 3176 324 3258 3163 313 316 316 317 326 dm113 3681+ 15×30 3718 3750 4.6E8 3013	abz6	943+	10×10	943	954	8.6E4	943	943	4.7E7
ab29 678 15×20 690 7.03 1.3E8 689 6.92 6.0E3 i i 0 5 5 5 6 imu01 2563 15×20 2641 2684 1.4E8 2822 5.9E3 imu03 27041 15×20 2810 2833 2.9E8 2814 2827 5.9E4 imu04 2669 15×20 2873 2.4E8 2803 2147 5.5E3 imu05 2749 15×20 2813 2.4E8 3203 3110 9.1E3 imu06 3244 20×20 3117 34E7 3103 3124 7.2E4 imu09 3092 20×20 3176 3242 7.2E6 3179 3133 3135 3164 3137 7.3E3 imu10 3494 15×30 3371 350 2.6E8 3791 3134 3134 3134 3244 5245 imu13 3641 15×40 <	abz7	656+	15×20	669	674	1.5E8	665	672	6.5E8
#best10550us. (1+1)-EA on abc-0.3%-1.2%2.2%dmu01256315×20276227991.8E827636.9E1dmu02270615×20281628532.9E8281428275.9E3dmu04266915×20230027491.8E826832812276321655.1E3dmu052749+15×2028532.8754.4E7280328147.7E3dmu06324420×203126312871.5E8325732635.1E3dmu07304620×20317632477.2E7316431787.3E4dmu09309220×20317632427.2E7316431787.3E4dmu10298420×20300630862.2E8301930567.5E3dmu11343015×30354235581.9E8364236738.6E3dmu13361+15×3033433502.6E8348338588.1E3dmu143394+15×30382338764.6E3343334847.6E4dmu153343+15×30382338763.7E8406740857.8E3dmu16371120×30387639163.6E8390439448.4E4dmu17381415×4046846711.7E7473846788.4E3dmu18380+15×40 <td< td=""><td>abz8</td><td>665</td><td>15×20</td><td>678</td><td>692</td><td>1.0E8</td><td>674</td><td>677</td><td>6.6E8</td></td<>	abz8	665	15×20	678	692	1.0E8	674	677	6.6E8
vs. (1+1)-EA on abz* -0.3% -1.2% 22 dmu01 2563 15×20 2641 2684 1.4E8 2592 2615 6.1E3 dmu02 2706 15×20 2262 2799 1.8E8 2746 2763 6.9E3 dmu04 2669 15×20 2816 2853 2.9E8 2814 7.2E7 dmu05 2749+ 15×20 2853 2.875 4.4E7 2803 2814 7.7E4 dmu06 3244 20×20 3261 3287 1.5E8 3257 3263 5.1E4 dmu07 3046 20×20 3176 3242 7.2E7 3164 3178 7.3E4 dmu10 2984 20×20 3066 32287 3613 3457 3613 7.9E3 dmu11 3430 15×30 3542 3558 1.5E8 3443 3487 7.6E4 dmu13 361+ 15×30 3343 350 2.6E8 3846	abz9	678+	15×20	690	703	1.3E8	689	692	6.0E8
dmu01 2563 15×20 264 2684 1.4E8 2592 2615 6.1E4 dmu02 2706 15×20 2762 2799 1.8E8 2746 2763 6.9E3 dmu03 2731+ 15×20 2730 2749 1.8E8 2683 2716 5.5E3 dmu06 2644 20×20 3276 3332 2.4E8 3283 3310 9.1E4 dmu07 3046 20×20 3112 3171 8.4E7 3103 3124 7.2E3 dmu08 3188 20×20 3061 3086 2.2E8 3019 3056 7.5E3 dmu11 3430 15×30 3542 3558 19E8 3642 3673 8.6E3 dmu13 3681+ 15×30 3343 350 2.6E8 3843 3858 8.1E4 dmu13 3641+ 15×30 3343 350 2.6E8 3843 348 9.4E3 dmu13 3641+			#best	1	0	5	5	5	0
dmu02270615×20276227991.8E8274627636.9E4dmu04266915×20273027491.8E8268327165.5E4dmu052749+15×20285328754.4E7280328147.2E4dmu06324420×20327633322.4E8328933109.1E4dmu07304620×2031718.4E7310331247.2E4dmu08318820×20300630862.2E8301930567.5E4dmu10298420×20300630862.2E8301930567.5E4dmu133681+15×30350235581.5E8364236738.62dmu133681+15×30339734082.7E8344334847.6E3dmu14394+15×30382338503.5E8406740857.8E4dmu153343+15×30386739163.6E8391839148.9E4dmu16375120×30386739163.6E8391640057.8E4dmu17381420×30386739163.6E8390640037.8E4dmu214380+15×40438043801.5E7444244519.5E4dmu234668+15×404686711.7E7470047248.4E3dmu244648+15×4046846183.0E74669									22
dmu032731+15×20281628532.9E8281428275.9E4dmu04266915×20273027491.8E8268327165.5E4dmu06324420×20327633322.4E8328933109.1E4dmu07304620×20311231718.4E7310331247.2E4dmu09309220×20317632427.2E7316431787.3E4dmu10298420×20300630862.2E8301930567.5E4dmu11343015×30354235581.9E8364236738.6E4dmu133681+15×30354235581.9E8364338558.1E4dmu143394+15×30337334082.7E8343338558.1E4dmu153343+15×30334333502.6E8338633977.9E3dmu16375120×30386739163.6E8406740857.8E3dmu17381420×30386739163.6E8390039043.9E3dmu20371020×30379238106.0E839043.9458.4E3dmu214380+15×40468846711.7E747384.6E3dmu224725+15×40472547275.3E849715.1E4dmu234668+15×40466846711.7E744698.1E	dmu01	2563	15×20	2641	2684	1.4E8	2592	2615	6.1E8
dmu04266915×20273027491.8E8268327165.5E4dmu052749+15×20285328754.4E7280328147.7E3dmu06324420×2031231322.4E8328933109.1E3dmu07304620×20311231718.4E7310331247.2E3dmu08318820×20316132877.2E7316431787.3E4dmu10298420×20306630862.2E8301930567.5E3dmu11343015×30354235581.9E8364236738.6E3dmu133681+15×30371837504.6E8384338558.1E3dmu14394+15×30334333502.7E8344334847.6E3dmu15343415×30382338364.6E8391839418.9E4dmu16371420×30387639163.7E840674.8E3dmu17381420×30387639163.5E8405540678.5E3dmu183844+20×30387639163.5E8405540678.5E3dmu19376520×30387639363.5E8405540678.5E3dmu244380+15×40448643801.5E7442445199.5E3dmu24468+15×40466846711.7E74708	dmu02	2706	15×20	2762	2799	1.8E8	2746	2763	6.9E8
dmu052749+15×20285328754.4E7280328147.7E4dmu06324420×20327633322.4E832893109.1E4dmu07304620×20311231718.4E7310331247.2E4dmu09309220×20320132427.2E7316431787.3E4dmu10298420×20300630862.2E8301930567.5Edmu11343015×30352235445.0E8387936137.9E4dmu12349215×30371837504.6E8384338558.1E4dmu133681+15×30334335504.6E8338438577.9E4dmu143934+15×30334335504.6E8338633977.9E4dmu153343+15×30386739163.6E8338639177.9E4dmu17381420×30386739163.6E8391839148.4E4dmu183844+20×30386739163.6E839163.6E839163.6E4dmu19376520×30387639163.6E839163.6E839163.6E4dmu12371020×30387237163.6E839044.9248.4E4dmu234668+15×40472547257.1E7473847408.4E4dmu24468+15×404668 </td <td>dmu03</td> <td>2731+</td> <td>15×20</td> <td>2816</td> <td>2853</td> <td>2.9E8</td> <td>2814</td> <td>2827</td> <td>5.9E8</td>	dmu03	2731+	15×20	2816	2853	2.9E8	2814	2827	5.9E8
dmu06 3244 20×20 3276 3332 2.4E8 3289 3310 9.1E4 dmu07 3046 20×20 3112 3171 8.4E7 3103 3124 7.2E3 dmu08 3188 20×20 3176 3227 7.5E8 3257 3263 5.1E4 dmu09 3092 20×20 3176 3227 7.5E8 3257 3263 5.1E4 dmu10 2984 20×20 3006 3086 2.2E8 3019 3613 7.5E4 dmu11 3430 15×30 3718 3708 4.6E8 3843 3856 8.6E3 dmu14 3944 15×30 3343 3500 2.6E8 3386 3397 7.9E4 dmu15 33434 15×30 3827 3936 3.5E8 4067 4085 7.6E3 dmu13 3644 20×30 3867 3916 3.6E8 3907 3926 dmu13 3644 15×40	dmu04	2669	15×20	2730	2749	1.8E8	2683	2716	5.5E8
dmu06 3244 20×20 3276 3332 2.4E8 3289 3310 9.1E4 dmu07 3046 20×20 3112 3171 8.4E7 3103 3124 7.2E3 dmu08 3188 20×20 3161 3287 1.5E8 3257 3263 5.1E4 dmu10 2984 20×20 3166 3287 1.5E8 3612 3564 3579 3613 7.9E4 dmu11 3430 15×30 3502 3544 5.0E8 3843 3858 8.6E3 dmu13 3681+ 15×30 3718 3708 2.7E8 3443 3484 7.6E3 dmu14 3394+ 15×30 3823 3856 4.6E8 3918 3914 8.9E3 dmu13 3844+ 20×30 3867 3936 3.5E8 4067 4085 7.6E3 dmu13 3844+ 20×30 3876 3116 3.6E8 3904 3945 8.4E3 <tr< td=""><td>dmu05</td><td>2749+</td><td>15×20</td><td>2853</td><td>2875</td><td>4.4E7</td><td>2803</td><td>2814</td><td>7.7E8</td></tr<>	dmu05	2749+	15×20	2853	2875	4.4E7	2803	2814	7.7E8
dmu07304620×20311231718.4E7310331247.2E4dmu08318820×20316632871.5E8325732635.1E4dmu09309220×20317632427.2E7316431787.3E4dmu10298420×20305630862.2E8301930567.5E4dmu11343015×30357235445.0E8357936137.9E4dmu12349215×30371837504.6E8344338558.1E4dmu143394+15×30339734082.7E8344334447.6E4dmu153343+15×30339734052.6E8338633977.9E4dmu16375120×30382338364.6E8391839418.4E4dmu183844+20×30387739163.6E8300439458.4E4dmu19376520×30387639163.6E8309039458.4E4dmu20371020×3037237161.7E7473844049.5E3dmu214380+15×40468846711.7E7473844649.5E3dmu234668+15×40468846711.7E7473844649.5E3dmu244648+15×40468846711.7E747304.7E4dmu244648+15×40468846911.5E74164 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.4E8</td> <td></td> <td>3310</td> <td>9.1E8</td>						2.4E8		3310	9.1E8
dmu08318820×20326132871.5E8325732635.1E4dmu09309220×20317632427.2E7316431787.3E4dmu10298420×20306630862.2E8301930567.5E4dmu11343015×30352235445.0E8357936137.9E4dmu12349215×30334731504.6E8384338558.1E4dmu133681+15×30334333502.6E8384333577.9E4dmu14394415×30334333502.6E8386639177.9E4dmu153343+15×30334333502.6E8396439418.4E4dmu16375120×30386739163.6E8390439458.4E4dmu133844+20×30387639163.6E8390439458.4E4dmu143394+15×40438043801.5E71.1E747384.4E4dmu234765+15×40472547257.1E747384.4E44.4E4dmu244648+15×40466846711.7E747384.4E4dmu234668+15×40466846711.7E747384.4E4dmu244648+15×4046684.6E83.0E746694.6E8dmu244648+15×4046684.6E83.0E746694.6E9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.2E8</td>									7.2E8
dmu09 3092 20×20 3176 3242 7.2F7 3164 3178 7.3F4 dmu10 2984 20×20 3006 3086 2.2E8 3019 3056 7.5F4 dmu11 3430 15×30 3522 3544 5.0E8 3579 3613 7.9E4 dmu12 3492 15×30 3718 3700 4.6E8 3843 3855 8.1E4 dmu13 3681+ 15×30 3343 3350 2.6E8 3843 3397 7.9E4 dmu14 3343+ 15×30 3823 3856 4.6E8 3918 3941 8.9E3 dmu17 3814 20×30 3867 3916 3.6E8 3960 4003 7.6E4 dmu13 384+ 20×30 3876 3916 3.6E8 3904 3945 8.2E4 dmu12 3710 20×30 3762 4725 7.1E7 4442 4451 9.5E4 dmu24 4668+ 15×40 4688 4689 3.0E7 4.6E4 4.6E4 dmu23 4668+ 15×40 4648 4.6E8 3.0E7 4.4E4 4.1E4 6.4E4 dmu24 4648+ 15×40									
dmu10 2984 20×20 3006 3086 2.2E8 3019 3056 7.5E4 dmu11 3430 15×30 3522 3544 5.0E8 3579 3613 7.9E3 dmu12 3492 15×30 3718 3750 4.6E8 3843 3855 8.1E4 dmu13 3681+ 15×30 3397 3408 2.7E8 3443 3484 7.6E3 dmu16 3751 20×30 3823 3856 4.6E8 3918 3941 8.9E3 dmu17 3814 20×30 3807 3926 3.7E8 4067 4085 7.8E3 dmu18 3844+ 20×30 3867 3916 3.6E8 3904 3941 8.9E3 dmu19 3765 20×30 3876 3916 3.6E8 3904 3945 8.4E3 dmu20 3710 20×30 3876 3916 3.6E8 3904 3408 8.4E3 dmu21 468+ 15×40 468 4671 1.7E7 4700 4724 8.4E3 dmu22 4725+ 15×40 4625 4767 5.2E3 4164 4164 3.0E7 dmu23 4668+ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
dmu11 3430 15×30 3502 3544 5.0E8 3579 3613 7.9E4 dmu12 3492 15×30 3542 3558 1.9E8 3642 3673 8.6E4 dmu13 3681+ 15×30 3377 3408 2.7E8 3443 3484 7.6E3 dmu16 3751 20×30 3823 3836 4.6E8 3918 3941 8.9E3 dmu16 3751 20×30 3823 3836 4.6E8 3918 3941 8.9E3 dmu17 3814 20×30 3867 3961 3.6E8 3060 4003 7.6E3 dmu13 3844+ 20×30 3876 3916 3.6E8 3060 4003 7.6E3 dmu12 3710 20×30 3792 3810 6.6E8 3094 3458 8.4E3 dmu24 468+ 15×40 4688 4671 1.7E7 4708 4708 8.4E3 dmu24 468+ 15×40 4668 4671 1.7E7 4708 469 8.1E3									
dmu12 3492 15×30 3542 3558 1.9E8 3642 3673 8.6E8 dmu13 3681+ 15×30 3718 3700 4.6E8 3843 3855 8.1E4 dmu14 3394+ 15×30 3343 3350 2.6E8 3386 3397 7.9E3 dmu16 3751 20×30 3823 3836 4.6E8 3918 3941 8.9E3 dmu17 3814 20×30 3807 3936 3.5E8 4055 4067 8.5E3 dmu18 3844+ 20×30 3876 3916 3.6E8 3904 3945 8.5E3 dmu19 3765 20×30 3876 3916 3.6E8 3904 3945 8.4E3 dmu21 4380+ 15×40 4780 4725 7.1E7 4700 4708 8.4E3 dmu22 4668+ 15×40 4668 4671 1.7E7 4700 4748 4.6E3 dmu24 4648+ 15×40 4684 4684 1.9E8 5201 5210 8.1E4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
dmu13 3681+ 15×30 3718 3750 4.6E8 3843 3855 8.1E4 dmu14 3394+ 15×30 3397 3408 2.7E8 3443 3484 7.6E3 dmu15 3343+ 15×30 3323 3350 2.6E8 3386 3997 79E4 dmu16 3751 20×30 3867 3936 4.5E8 3918 3941 8.9E3 dmu17 3814 20×30 3867 3916 3.5E8 4067 4085 7.8E3 dmu19 3765 20×30 3876 3916 3.6E8 3904 3943 8.4E3 dmu20 3710 20×30 3792 3810 6.0E8 3904 3945 8.4E3 dmu21 4380+ 15×40 4668 4671 1.7E7 4708 4740 8.4E3 dmu22 4725+ 15×40 4668 4671 1.7E7 4706 4.628 dmu24 4668+ 15×40 4648 4648 1.9E8 4911 4.649 8.2E3 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-								
dmu14 3394+ 15×30 3397 3408 2.7E8 3443 3484 7.6E8 dmu15 3343+ 15×30 3343 3350 2.6E8 3386 3397 7.9E8 dmu16 3751 20×30 3823 3836 4.6E8 3918 3941 8.9E8 dmu17 3814 20×30 3907 3954 3.7E8 4067 4085 7.8E8 dmu19 3765 20×30 3876 3916 3.6E8 3904 3945 8.4E8 dmu20 3710 20×30 3792 3810 6.0E8 3904 3945 8.4E8 dmu21 4380+ 15×40 4380 4380 1.5E7 4442 4451 9.5E8 dmu22 4725+ 15×40 4668 4671 1.7E7 4700 4724 8.4E8 dmu24 4668+ 15×40 4668 4671 1.7E7 4700 4724 8.4E8 dmu24 4647+ 20×40 4765 4.5E8 4971 5014 9.3E8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
dmu15 3343+ 15×30 3343 3350 2.6E8 3386 3397 7.9E4 dmu16 3751 20×30 3823 3836 4.6E8 3918 3941 8.9E4 dmu17 3814 20×30 3907 3954 3.7E8 4067 4085 7.8E4 dmu18 3844+ 20×30 3867 3936 3.5E8 4055 4067 8.5E3 dmu19 3765 20×30 3876 3916 3.6E8 3904 3945 8.4E3 dmu20 3710 20×30 3792 3810 6.0E8 3904 3945 8.4E3 dmu21 4380+ 15×40 4725 4725 7.1E7 4738 4740 8.4E3 dmu22 4725+ 15×40 4668 4671 1.7E7 4700 4724 8.4E3 dmu24 4648+ 15×40 4648 4648 3.0E7 4669 469 8.1E3 dmu25 4164+ 15×40 4648 4848 1.9E8 4971 5014 9.3E3									
dmu16375120×30382338364.6E8391839418.9E4dmu17381420×30390739543.7E8406740857.8E4dmu183844+20×30386739363.5E8405540678.5E4dmu19376520×30387639163.6E8390439458.4E3dmu20371020×30379238106.0E8390439458.4E3dmu214380+15×40438043801.5E7444244519.5E3dmu224725+15×40466846711.7E7470047248.4E3dmu234668+15×40466846671.7E7470047248.4E3dmu244648+15×40416441645.2E5416441646.4E3dmu254164+15×40468247081.2E8497150149.3E3dmu264647+20×40469247081.2E8494649728.7E3dmu284692+20×40469147194.4E8491549739.6E3dmu304732+20×40469147194.4E8491549739.6E3dmu305640+15×50564056401.1E6573457558.6E3dmu30572+15×50564556455645564556406.7E3dmu30573+15×50564556455645									
dmu17 3814 20×30 3907 3954 3.7E8 4067 4085 7.8E4 dmu18 3844+ 20×30 3867 3936 3.5E8 4055 4067 8.5E4 dmu19 3765 20×30 3876 3916 3.6E8 3904 3945 8.4E3 dmu20 3710 20×30 3792 3810 6.0E8 3904 3945 8.4E3 dmu21 4380+ 15×40 4380 4380 1.5E7 4442 4451 9.5E3 dmu22 4725+ 15×40 4668 4671 1.7E7 4700 4724 8.4E3 dmu24 4668+ 15×40 4688 4688 3.0E7 4669 4669 8.1E3 dmu25 4164+ 15×40 4164 4164 5.2E5 4164 4164 6.4E3 dmu26 4647+ 20×40 4888 19E8 4971 5014 9.3E3 dmu30 4732+ 20×40 4691 4719 4.4E8 4915 <									
dmu18 384+ 20×30 3867 3936 3.5E8 4055 4067 8.5E4 dmu19 3765 20×30 3876 3916 3.6E8 3904 3945 8.5E4 dmu20 3710 20×30 3792 3810 6.0E8 3904 3945 8.4E4 dmu21 4380+ 15×40 4380 4380 1.5E7 4442 4451 9.5E4 dmu22 4725+ 15×40 4668 4671 1.7E7 4700 4724 8.4E3 dmu24 4668+ 15×40 4668 4661 3.0E7 4669 4669 8.1E3 dmu25 4164+ 15×40 4648 468 3.0E7 4669 4692 8.2E3 dmu26 4647+ 20×40 4725 4767 5.3E8 4971 5014 9.3E3 dmu28 4692+ 20×40 4692 4708 1.2E8 4946 4972 8.7E3 dmu30 4732+ 20×40 4797 5.2E3 4976 5030 9.1E3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
dmu19 3765 20×30 3876 3916 3.6E8 3960 4003 7.0E4 dmu20 3710 20×30 3792 3810 6.0E8 3904 3945 8.4E4 dmu21 4380+ 15×40 4380 4380 1.5E7 4442 4451 9.5E4 dmu22 4725+ 15×40 4668 4671 1.7E7 4700 4724 8.4E3 dmu24 4668+ 15×40 4668 4671 1.7E7 4700 4724 8.4E3 dmu24 4648+ 15×40 4648 4648 3.0E7 4669 4669 8.1E3 dmu26 4647+ 20×40 4725 4767 5.3E8 4971 5014 9.3E3 dmu29 4691+ 20×40 4692 4778 1.2E8 4946 4972 8.7E3 dmu30 4732+ 20×40 4797 7.2E3 4976 5030 9.1E3 dmu31 5640+ 15×50 5640 5640 1.E65 5728 <									
dmu20 3710 20×30 3792 3810 6.0E8 3904 3945 8.4E4 dmu21 4380+ 15×40 4380 4380 1.5E7 4442 4451 9.5E4 dmu22 4725+ 15×40 4668 4671 1.7E7 4700 4724 8.4E4 dmu23 4668+ 15×40 4668 4671 1.7E7 4700 4724 8.4E4 dmu24 4648+ 15×40 4668 4671 1.7E7 4700 4724 8.4E4 dmu24 4648+ 15×40 4648 4648 3.0E7 4669 46.2 dmu26 4647+ 20×40 4725 4767 5.3E8 4971 5014 9.3E3 dmu29 4691+ 20×40 4691 4719 4.4E8 4915 4973 9.6E3 dmu30 4732+ 20×40 4794 4775 2.3E8 4976 5030 9.1E3 dmu31 5640+ 15×50 5640 5640 1.E65 5728 5227 3.0E7 <									
dmu21 4380+ 15×40 4380 4380 1.5E7 4442 4451 9.5E4 dmu22 4725+ 15×40 4725 4725 7.1E7 4738 4740 8.4E4 dmu23 4668+ 15×40 4668 4671 1.7E7 4700 4724 8.4E4 dmu24 4648+ 15×40 4668 4668 3.0E7 4669 4669 8.1E4 dmu25 4164+ 15×40 4164 4164 5.2E5 4164 4164 6.4E3 dmu26 4647+ 20×40 4725 4767 5.3E8 4971 5014 9.3E3 dmu27 4848+ 20×40 4692 4708 1.2E8 4946 4972 8.7E3 dmu30 4732+ 20×40 4691 4719 4.4E8 4915 4973 9.6E3 dmu31 5640+ 15×50 5640 5640 1.1E6 5734 5755 8.6E3 dmu33 5728+ 15×50 5635 5635 2.0E5 5635 5640 6.2E3									
dmu224725+15×40472547257.1E7473847408.4E4dmu234668+15×40466846711.7E7470047248.4E4dmu244648+15×40464846483.0E7466946698.1E4dmu254164+15×40416441645.2E5416441646.4E3dmu264647+20×40472547675.3E8497150149.3E3dmu274848+20×40484848481.9E8520152108.5E3dmu284692+20×40469247081.2E8494649728.7E3dmu294691+20×40469147194.4E8491549739.6E3dmu304732+20×40479247752.3E8497650309.1E3dmu315640+15×50564056401.1E6573457558.6E3dmu325927+15×50592759273.7E4592759273.0E3dmu335728+15×50563556352.0E5563556406.7E3dmu345351+15×50563556352.0E5563556406.7E3dmu355635+15×50563556352.0E5563556406.7E3dmu365611+20×50577357777.2E7599660468.2E3dmu36571+20×5057755777 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
dmu23 4668+ 15×40 4668 4671 1.7E7 4700 4724 8.4E4 dmu24 4648+ 15×40 4648 4648 3.0E7 4669 4669 8.1E4 dmu25 4164+ 15×40 4164 4164 5.2E5 4164 4164 6.4E3 dmu26 4647+ 20×40 4725 4767 5.3E8 4971 5014 9.3E3 dmu27 4848+ 20×40 4848 4848 1.9E8 5201 5210 8.5E3 dmu29 4691+ 20×40 4692 4708 1.2E8 4946 4972 8.7E3 dmu30 4732+ 20×40 4691 4719 4.4E8 4915 4973 9.6E3 dmu31 5640+ 15×50 5640 5640 1.1E6 5734 5755 8.6E3 dmu32 5927+ 15×50 5728 5728 5728 5385 5385 5385 5385 5385 5385 5385 540 6.7E3 dmu33 5724+ 15×50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
dmu24 4648 15×40 4648 3.0E7 4669 4669 8.1E4 dmu25 4164 15×40 4164 4164 5.2E5 4164 4164 6.4E3 dmu26 4647+ 20×40 4725 4767 5.3E8 4971 5014 9.3E3 dmu27 4848+ 20×40 4848 4848 1.9E8 5201 5210 8.5E3 dmu28 4692+ 20×40 4692 4708 1.2E8 4946 4972 8.7E3 dmu29 4691+ 20×40 4691 4719 4.4E8 4915 4973 9.6E3 dmu30 4732+ 20×40 479 4775 2.3E8 4976 5030 9.1E3 dmu31 5640+ 15×50 5640 5640 1.1E6 5734 5755 8.6E3 dmu33 5728+ 15×50 5728 5728 5728 5927 3927 394 8.9E3 dmu35 5635+ 15×50 5635 5635 2.0E5 5635 5640 6.7E3									
dmu25 4164 15×40 4164 4164 5.2E5 4164 4164 6.4E4 dmu26 4647+ 20×40 4725 4767 5.3E8 4971 5014 9.3E4 dmu27 4848+ 20×40 4848 4848 1.9E8 5201 5210 8.5E3 dmu28 4692+ 20×40 4692 4708 1.2E8 4946 4972 8.7E3 dmu29 4691+ 20×40 4691 4719 4.4E8 4915 4973 9.6E3 dmu30 4732+ 20×40 4799 4775 2.3E8 4976 5030 9.1E3 dmu31 5640+ 15×50 5640 5640 1.1E6 5734 5755 8.6E3 dmu32 5927+ 15×50 5927 5927 3.7E4 5927 5927 3.0E3 dmu33 5728+ 15×50 5355 5355 4.8E5 5385 5394 8.9E3 dmu34 5351+ 15×50 5635 5635 2.0E5 5635 5640 6.7E3 <									8.4E8
dmu264647+20×40472547675.3E8497150149.3E4dmu274848+20×40484848481.9E8520152108.5E4dmu284692+20×40469247081.2E8494649728.7E4dmu294691+20×40469147194.4E8491549739.6E4dmu304732+20×40479947752.3E8497650309.1E4dmu315640+15×50564056401.1E6573457558.6E4dmu325927+15×50592759273.7E4592759273.0E3dmu335728+15×50572857281.6E5572857282.9E4dmu345385+15×50563556352.0E5563556406.7E4dmu355635+15×50563556352.0E5563556406.7E4dmu365621+20×50561156217.2E7599660468.8E4dmu375851+20×50577357771.8E7611561629.3E4dmu385713+20×50577757771.2E7593959858.5E4dmu405577+20×50557757771.2E7593959858.5E4dmu41324815×20365237106.9E7338334056.8E4dmu42339015×2036523710 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.1E8</td></td<>									8.1E8
dmu274848+ 20×40 484848481.9E8520152108.5E4dmu284692+ 20×40 469247081.2E8494649728.7E4dmu294691+ 20×40 469147194.4E8491549739.6E4dmu304732+ 20×40 479947752.3E8497650309.1E4dmu315640+15 $\times 50$ 564056401.1E6573457558.6E4dmu325927+15 $\times 50$ 592759273.7E4592759273.0E3dmu335728+15 $\times 50$ 572857281.6E5572857282.9E4dmu345385+15 $\times 50$ 563556352.0E5563556406.7E4dmu355635+15 $\times 50$ 563556352.0E5563556406.7E4dmu365621+20 $\times 50$ 561156217.2E7599660468.8E4dmu375851+20 $\times 50$ 577357771.2E7599660438.8E4dmu385713+20 $\times 50$ 577757771.2E7593959858.5E4dmu405577+20 $\times 50$ 577757771.2E7593959858.5E4dmu41324815 $\times 20$ 365237048.1E7333334056.8E4dmu42339015 $\times 20$ 365237106.9E7358936187.9E4dmu43344		4164+	15×40		4164		4164		6.4E8
dmu284692+20×40469247081.2E8494649728.7E4dmu294691+20×40469147194.4E8491549739.6E3dmu304732+20×40474947752.3E8497650309.1E3dmu315640+15×50564056401.1E6573457558.6E3dmu325927+15×50592759273.7E4592759273.0E3dmu335728+15×50572857281.6E5572857282.9E3dmu345385+15×50563556352.0E5563556406.7E3dmu355635+15×50563556352.0E5563556406.7E3dmu365621+20×50561156217.2E7599660468.8E3dmu375851+20×50571357139.0E7611561629.3E3dmu385713+20×50577757771.2E7593959858.5E3dmu405577+20×50557757771.2E7593959858.5E3dmu41324815×20365237048.1E7333334056.8E3dmu42339015×20365237048.1E7355935858.1E3dmu43344115×20365237048.1E7337533683.4E3dmu43344115×2036523714	dmu26	4647+	20×40	4725	4767		4971	5014	9.3E8
dmu29 4691+ 20×40 4691 4719 4.4E8 4915 4973 9.6E3 dmu30 4732+ 20×40 4749 4775 2.3E8 4976 5030 9.1E3 dmu31 5640+ 15×50 5640 5640 1.1E6 5734 5755 8.6E3 dmu32 5927+ 15×50 5927 5927 3.7E4 5927 5927 3.0E3 dmu33 5728+ 15×50 5728 5728 1.6E5 5728 5394 8.9E3 dmu34 5385+ 15×50 5385 5385 4.8E5 5385 5394 8.9E3 dmu35 5635+ 15×50 5635 5635 2.0E5 5635 5640 6.7E3 dmu36 5621+ 20×50 5621 5621 7.2E7 5996 6046 8.8E3 dmu37 5851+ 20×50 5713 5713 9.0E7 6115 6162 9.3E3 dmu30 5747+ 20×50 5777 577 1.2E7 5939 5985 8.5E3 <	dmu27	4848+	20×40	4848	4848	1.9E8	5201	5210	8.5E8
dmu30 4732+ 20×40 4749 4775 2.3E8 4976 5030 9.1E4 dmu31 5640+ 15×50 5640 5640 1.1E6 5734 5755 8.6E4 dmu32 5927+ 15×50 5927 5927 3.7E4 5927 5927 3.0E7 dmu33 5728+ 15×50 5728 5728 1.6E5 5728 5328 2.9E3 dmu34 5385+ 15×50 5385 5385 4.8E5 5385 5394 8.9E3 dmu35 5635+ 15×50 5635 5635 2.0E5 5635 5640 6.7E3 dmu36 5621+ 20×50 5621 5621 7.2E7 5996 6046 8.8E3 dmu37 5851+ 20×50 5713 5713 9.0E7 6115 6162 9.3E3 dmu30 5747+ 20×50 5777 5777 1.2E7 5939 5985 8.5E3 dmu40 5577+ 20×50 5777 5777 1.2E7 5939 5985 8.5E3	dmu28	4692+	20×40	4692	4708	1.2E8	4946	4972	8.7E8
dmu31 5640+ 15×50 5640 5640 1.1E6 5734 5755 8.624 dmu32 5927+ 15×50 5927 5927 3.7E4 5927 5927 3.0E7 dmu33 5728+ 15×50 5728 5728 1.6E5 5728 5728 5385 5635 5635 5635 5635 5635 5635 5640 6.7E3 dmu35 5631+ 15×50 5635 5635 5635 5635 5640 6.7E3 dmu36 5621+ 20×50 5621 5621 7.2E7 5996 6046 8.8E3 dmu37 5851+ 20×50 5713 5713 9.0E7 6115 6162 9.3E3 dmu30 5747+ 20×50 5777 577 1.2E7 5939 5985 8.5E3 dmu40 <td>dmu29</td> <td>4691+</td> <td>20×40</td> <td>4691</td> <td>4719</td> <td>4.4E8</td> <td>4915</td> <td>4973</td> <td>9.6E8</td>	dmu29	4691+	20×40	4691	4719	4.4E8	4915	4973	9.6E8
dmu32 5927+ 15×50 5927 5927 3.7E4 5927 5927 3.0E7 dmu33 5728+ 15×50 5728 5728 1.6E5 5728 5728 5385 5394 8.9E3 dmu34 5385+ 15×50 5385 5385 4.8E5 5385 5394 8.9E3 dmu35 5635+ 15×50 5635 5635 2.0E5 5635 5640 6.7E3 dmu36 5621+ 20×50 5621 5621 7.2E7 5996 6046 8.8E3 dmu37 5851+ 20×50 5713 5713 9.0E7 6115 6162 9.3E3 dmu38 5713+ 20×50 5773 5777 1.8E7 6025 6043 9.8E3 dmu40 5577+ 20×50 5777 5777 1.2E7 5939 5985 8.5E3 dmu41 3248 15×20 3525 3586 7.0E7 3455 3507 4.5E3 dmu42 3390 15×20 3652 3710 6.9E7 3585 <	dmu30	4732+	20×40	4749	4775	2.3E8	4976	5030	9.1E8
dmu33 5728+ 15×50 5728 5728 1.6E5 5728 5728 2.9E4 dmu34 5385+ 15×50 5385 5385 4.8E5 5385 5394 8.9E4 dmu35 5635+ 15×50 5635 5635 2.0E5 5635 5640 6.7E4 dmu36 5621+ 20×50 5621 5621 7.2E7 5996 6046 8.8E4 dmu37 5851+ 20×50 5851 5851 6.7E7 6191 6236 9.0E3 dmu38 5713+ 20×50 5713 5713 9.0E7 6115 6162 9.3E4 dmu39 5747+ 20×50 5777 5777 1.2E7 5939 5985 8.5E3 dmu40 5577+ 20×50 5577 5577 1.2E7 5939 5985 8.5E3 dmu41 3248 15×20 3525 3586 7.0E7 3455 3507 4.5E3 dmu42 3390 15×20 3652 3710 6.9E7 3559 3585 8.1E3 </td <td>dmu31</td> <td>5640+</td> <td>15×50</td> <td>5640</td> <td>5640</td> <td>1.1E6</td> <td>5734</td> <td>5755</td> <td>8.6E8</td>	dmu31	5640+	15×50	5640	5640	1.1E6	5734	5755	8.6E8
dmu34 5385+ 15×50 5385 5385 4.8E5 5385 5394 8.9E4 dmu35 5635+ 15×50 5635 5635 2.0E5 5635 5640 6.7E4 dmu36 5621+ 20×50 5621 5621 7.2E7 5996 6046 8.8E4 dmu37 5851+ 20×50 5851 5851 6.7E7 6191 6236 9.0E3 dmu38 5713+ 20×50 5713 5713 9.0E7 6115 6162 9.3E4 dmu39 5747+ 20×50 5777 5777 1.8E7 6025 6043 9.8E4 dmu40 5577+ 20×50 5777 5777 1.2E7 5939 5985 8.5E4 dmu41 3248 15×20 3525 3586 7.0E7 3455 3507 4.5E4 dmu42 3390 15×20 3622 3714 8.1E7 3559 3585 8.1E4 dmu43 3441 15×20 3652 3710 6.9E7 3589 3618 7.9E4 <td>dmu32</td> <td>5927+</td> <td>15×50</td> <td>5927</td> <td>5927</td> <td>3.7E4</td> <td>5927</td> <td>5927</td> <td>3.0E7</td>	dmu32	5927+	15×50	5927	5927	3.7E4	5927	5927	3.0E7
dmu35 5635 15×50 5635 5635 2.0E5 5635 5640 6.7E4 dmu36 5621+ 20×50 5621 5621 7.2E7 5996 6046 8.8E4 dmu37 5851+ 20×50 5851 5851 6.7E7 6191 6236 9.0E3 dmu38 5713+ 20×50 5713 5713 9.0E7 6115 6162 9.3E4 dmu39 5747+ 20×50 5777 5777 1.8E7 6025 6043 9.8E4 dmu40 5577+ 20×50 5777 5777 1.2E7 5939 5985 8.5E4 dmu40 5577+ 20×50 3733 3428 2.1E8 3383 3405 6.8E4 dmu41 3248 15×20 3552 3586 7.0E7 3455 3507 4.5E4 dmu42 3390 15×20 3622 3704 8.1E7 3559 3585 8.1E4 dmu43 3441 15×20 3652 3710 6.9E7 3589 3618 7.9E8 <td>dmu33</td> <td>5728+</td> <td>15×50</td> <td>5728</td> <td>5728</td> <td>1.6E5</td> <td>5728</td> <td>5728</td> <td>2.9E8</td>	dmu33	5728+	15×50	5728	5728	1.6E5	5728	5728	2.9E8
dmu36 5621+ 20×50 5621 5621 7.2E7 5996 6046 8.8E4 dmu37 5851+ 20×50 5851 5851 6.7E7 6191 6236 9.0E3 dmu38 5713+ 20×50 5713 5713 9.0E7 6115 6162 9.3E4 dmu39 5747+ 20×50 5747 5747 1.8E7 6025 6043 9.8E4 dmu40 5577+ 20×50 5777 5777 1.2E7 5939 5985 8.5E4 dmu41 3248 15×20 3373 3428 2.1E8 3383 3405 6.8E4 dmu42 3390 15×20 3557 3567 7.0E7 3455 3507 4.5E4 dmu42 3390 15×20 3662 3704 8.1E7 3559 3585 8.1E4 dmu44 3475 15×20 3652 3710 6.9E7 3589 3618 7.9E4 dmu45 3272 15×20 3658 3454 3.1E8 3387 3396 6.4E4	dmu34	5385+	15×50	5385	5385	4.8E5	5385	5394	8.9E8
dmu375851+20×50585158516.7E7619162369.0E3dmu385713+20×50571357139.0E7611561629.3E3dmu395747+20×50574757471.8E7602560439.8E3dmu405577+20×50557755771.2E7593959858.5E3dmu41324815×20337334282.1E8338334056.8E3dmu42339015×20352535867.0E7355935578.5E3dmu43344115×20366237048.1E7355935858.1E3dmu44347515×20365237106.9E7358936187.9E3dmu45327215×20336834543.1E8338733966.4E3dmu46403520×20413442099.4E7408441227.8E3	dmu35	5635+	15×50	5635	5635	2.0E5	5635	5640	6.7E8
dmu38 5713+ 20×50 5713 5713 9.0E7 6115 6162 9.3E4 dmu39 5747+ 20×50 5747 5747 1.8E7 6025 6043 9.8E4 dmu40 5577+ 20×50 5577 5577 1.2E7 5939 5985 8.5E4 dmu41 3248 15×20 3373 3428 2.1E8 3383 3405 6.8E4 dmu42 3390 15×20 3557 3586 7.0E7 3455 3507 4.5E4 dmu43 3441 15×20 3662 3704 8.1E7 3559 3585 8.1E4 dmu44 3475 15×20 3652 3710 6.9E7 3589 3618 7.9E4 dmu45 3272 15×20 3652 3710 6.9E7 3589 3618 7.9E4 dmu45 3272 15×20 3688 3454 3.1E8 3387 3396 6.4E4 dmu46 4035 20×20 4194 4274 4.0E8 4196 4212 6.7E4	dmu36	5621+	20×50	5621	5621	7.2E7	5996	6046	8.8E8
dmu395747+20×50574757471.8E7602560439.8E4dmu405577+20×50557755771.2E7593959858.5E4dmu41324815×20337334282.1E8338334056.8E4dmu42339015×20352535867.0E7345535074.5E4dmu43344115×20366237048.1E7355935858.1E4dmu44347515×20365237106.9E7358936187.9E4dmu45327215×20336834543.1E8338733966.4E4dmu46403520×20419442744.0E8419642126.7E4dmu47393920×20413142009.4E7408441227.8E4	dmu37	5851+	20×50	5851	5851	6.7E7	6191	6236	9.0E8
dmu405577+20×50557755771.2E7593959858.5E4dmu41324815×20337334282.1E8338334056.8E4dmu42339015×20352535867.0E7345535074.5E4dmu43344115×20366237048.1E7355935858.1E4dmu44347515×20365237106.9E7358936187.9E4dmu45327215×20336834543.1E8338733966.4E4dmu46403520×20419442744.0E8419642126.7E4dmu47393920×20413142009.4E7408441227.8E4	dmu38	5713+	20×50	5713	5713	9.0E7	6115	6162	9.3E8
dmu41 3248 15×20 3373 3428 2.1E8 3383 3405 6.8E4 dmu42 3390 15×20 3525 3586 7.0E7 3455 3507 4.5E4 dmu43 3441 15×20 3662 3704 8.1E7 3559 3585 8.1E4 dmu44 3475 15×20 3652 3710 6.9E7 3589 3618 7.9E8 dmu45 3272 15×20 3368 3454 3.1E8 3387 3396 6.4E8 dmu46 4035 20×20 4194 4274 4.0E8 4196 4212 6.7E8 dmu47 3939 20×20 4131 4200 9.4E7 4084 4122 7.8E8	dmu39	5747+	20×50	5747	5747	1.8E7	6025	6043	9.8E8
dmu41 3248 15×20 3373 3428 2.1E8 3383 3405 6.8E4 dmu42 3390 15×20 3525 3586 7.0E7 3455 3507 4.5E4 dmu43 3441 15×20 3662 3704 8.1E7 3559 3585 8.1E4 dmu44 3475 15×20 3652 3710 6.9E7 3589 3618 7.9E3 dmu45 3272 15×20 3368 3454 3.1E8 3387 3396 6.4E3 dmu46 4035 20×20 4194 4274 4.0E8 4196 4212 6.7E3 dmu47 3939 20×20 4131 4200 9.4E7 4084 4122 7.8E3	dmu40			5577	5577		5939		8.5E8
dmu42 3390 15×20 3525 3586 7.0E7 3455 3507 4.5E8 dmu43 3441 15×20 3662 3704 8.1E7 3559 3585 8.1E8 dmu44 3475 15×20 3652 3710 6.9E7 3589 3618 7.9E8 dmu45 3272 15×20 3368 3454 3.1E8 3387 3396 6.4E8 dmu46 4035 20×20 4194 4274 4.0E8 4196 4212 6.7E8 dmu47 3939 20×20 4131 4200 9.4E7 4084 4122 7.8E8							3383	3405	6.8E8
dmu43 3441 15×20 3662 3704 8.1E7 3559 3585 8.1E4 dmu44 3475 15×20 3652 3710 6.9E7 3589 3618 7.9E3 dmu45 3272 15×20 3368 3454 3.1E8 3387 3396 6.4E3 dmu46 4035 20×20 4194 4274 4.0E8 4196 4212 6.7E3 dmu47 3939 20×20 4131 4200 9.4E7 4084 4122 7.8E3									
dmu44 3475 15×20 3652 3710 6.9E7 3589 3618 7.9E8 dmu45 3272 15×20 3368 3454 3.1E8 3387 3396 6.4E8 dmu46 4035 20×20 4194 4274 4.0E8 4196 4212 6.7E8 dmu47 3939 20×20 4131 4200 9.4E7 4084 4122 7.8E8									8.1E8
dmu45 3272 15×20 3368 3454 3.1E8 3387 3396 6.4E3 dmu46 4035 20×20 4194 4274 4.0E8 4196 4212 6.7E3 dmu47 3939 20×20 4131 4200 9.4E7 4084 4122 7.8E3									
dmu46 4035 20×20 4194 4274 4.0E8 4196 4212 6.7E8 dmu47 3939 20×20 4131 4200 9.4E7 4084 4122 7.8E8									
dmu47 3939 20×20 4131 4200 9.4E7 4084 4122 7.8E8									
unaio 5/05 20/20 5/5/ 1020 5.120 5/41 3933 0.420									
dmu49 3710 20×20 3924 3953 5.1E8 3839 3876 7.7E8									0.4E0 7.7E8
									7.7E8
dmu50 3729 20×20 3958 4032 5.3E8 3851 3901 7.7E8	unuou	5149	20820	5730	4032	J.JE0	5051	5901	1.150

Solving Job Shop Scheduling Problems Without Using a Bias for Good Solutions

GECCO '21 Companion, July 10-14, 2021, Lille, France

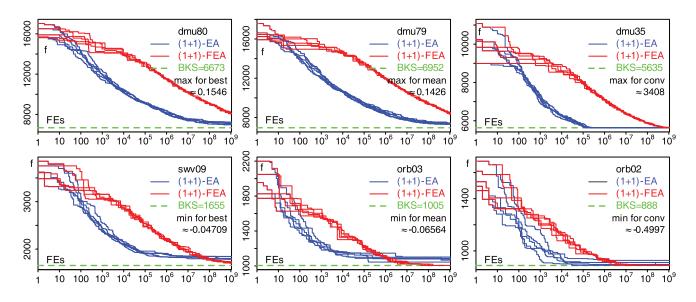


Figure 3: Progress of the best-so-far result quality on instances with the extremes of the observed performance indicator ratios (1+1)-FEA to (1+1)-EA over log-scaled FE axes: ratios minus 1 of best (left) and mean (middle) end quality as well as the FEs to convergence (right).

Let us now compare the result qualities reached by the (1+1)-FEA with the related work. Most of the literature use vastly different termination criteria, sometimes based on iterations, sometimes based on runtime. Since we use rather large budgets, we can expect that they may conduct less FEs. However, an algorithm using only FFA does not perform any optimization targeted towards better results. As shown in [36], such an algorithm may spend a good share of the runtime to follow trails over iteratively worsening solutions before "turning around" and then progressing towards better results. The search direction may change several times. Together with the fact that we have plugged FFA into the most primitive local search we can imagine and use a trivial search operator spanning a relatively restricted neighborhood, one may ask whether the (1+1)-FEA can yield any result quality even remotely comparable to what algorithms published in the last decade can achieve. We find that the mean and best results of the (1+1)-FEA, on every single instance, are at least as good and sometimes better than all corresponding mean and best results of all algorithms contributed in [1] (2010), of the aLSGA in [5] (2015), the EAS in [14] (2013), of all four GAs in [21] (2014), of the GWO method proposed in [20] (2018), of the SAFA in [25] (2018), of the HBFO in [26] (2012), and of all three algorithms in [33] (2018). These works report results only for fewer instances than used in our experiment, so we can only compare with the results actually reported (which can be found in the corresponding publications and in the online repository [34]). While, again, the termination criteria used in these works are different, the fact that an algorithm both as trivial and unbiased like the (1+1)-FEA can achieve results in this range is astonishing.

4 CONCLUSIONS

Frequency Fitness Assignment (FFA) translates objective values to their encounter frequency so far in the optimization process. These frequencies replace the objective values in the decision which solution to accept. FFA can therefore be plugged into almost arbitrary optimization processes. Since it does not make any order-based comparison of objective values, the path that an FFA-based algorithm takes through the search space is invariant under all bijections of the objective function value – a feature only known of trivial algorithms like random sampling, random walks, and exhaustive enumeration.

In this work, we plugged FFA into the (1+1)-EA, a simple local search, and obtained the (1+1)-FEA. In the algorithms, we use permutations with repetitions as representation. We applied them to the JSSP and found that the (1+1)-FEA can outperform the (1+1)-EA on several benchmark instance sets in terms of end result quality, while losing on others (under our budget constraints). This finding is very interesting, as FFA is free of any direct bias towards better solutions. It is biased only towards rarely-seen objective values. Yet, the (1+1)-FEA performs surprisingly well.

Our results also complement those from [36] and mark the JSSP as the second NP-hard problem where driving the optimization process towards rarely-seen objective values alone can yield good results. In many discrete domains, good solutions are indeed rare and the better the solutions get, the rarer they are. FFA seems to be one of the few approaches to optimization which can exploit this as underlying concept driving the search.¹

One important limitation of FFA that should be mentioned again is that it can only work if there are not too many different possible objective values. In its form defined here, it would therefore not be suitable to continuous optimization and probably also not for domains such as the Traveling Salesman Problems where the number of different solution qualities for an instance is very high. In

¹Overviews on related works can be found in [10, 18, 36].

GECCO '21 Companion, July 10-14, 2021, Lille, France

Table 2: Results on the JSSP, part 2.

instance information			(1+1)-EA			(1+1)-FEA		
inst	BKS	$m \times n$	best	mean	conv	best	mean	conv
dmu51	4156	15×30	4406	4468	4.5E8	4513	4550	7.9E8
dmu52	4311	15×30	4550	4642	2.9E8	4652	4687	9.0E8
dmu53	4390	15×30	4614	4665	5.4E8	4720	4744	8.4E8
dmu54	4362	15×30	4580	4649	4.1E8	4709	4747	8.6E8
dmu55	4270	15×30	4436	4490	7.6E8	4588	4629	8.8E8
dmu56	4941	20×30	5227	5289	6.3E8	5415	5484	8.2E8
dmu57	4663	20×30	5044	5090	6.2E8	5152	5181	8.7E8
dmu58	4708	20×30	5002	5054	5.1E8	5208	5223	7.9E8
dmu59	4619	20×30	4911	4956	5.1E8	5015	5102	9.3E8
dmu60	4739	20×30	5065	5124	5.4E8	5247	5293	8.3E8
dmu61	5172	15×40	5522	5566	4.2E8	5787	5851	9.7E8
dmu62	5251	15×40	5412	5517	3.0E8	5844	5864	8.6E8
dmu63	5323	15×40	5503	5620	5.1E8	5948	6025	7.6E8
dmu64	5240	15×40	5501	5647	6.6E8	5893	5947	9.2E8
dmu65	5190	15×40	5403	5470	2.2E8	5752	5788	8.1E8
dmu66	5717	20×40	5951	6051	7.9E8	6543	6592	9.0E8
dmu67	5779	20×40	6102	6135	6.3E8	6727	6788	8.7E8
dmu68	5765	20×40	6095	6162	5.6E8	6634	6727	9.5E8
dmu69	5709	20×40	6016	6115	5.1E8	6638	6673	8.7E8
dmu70	5889	20×40	6237	6319	4.5E8	6880	6921	8.7E8
dmu71	6223	15×50	6517	6563		7204	7264	9.3E8
dmu72	6463	15×50	6703	6792	7.0E8	7481	7511	9.2E8
dmu73	6153	15×50	6453	6533	7.0E8	7164	7221	8.6E8
dmu74	6196	15×50	6443	6511		7185	7231	8.7E8
dmu75	6189	15×50	6547	6644	5.5E8	7154	7224	9.7E8
dmu76	6807	20×50	7135		6.9E8	8075	8156	9.3E8
dmu77	6792	20×50	7217	7284	1.0E9	8217	8288	
dmu78	6770	20×50	7119	7218	8.0E8	8099	8210	8.4E8
dmu79	6952	20×50	7294	7360	7.7E8	8316	8409	9.0E8
dmu80	6673	20×50	6967	7098	7.3E8	8044	8085	8.6E8
unuoo	0075	#best	65	60	7.510	20	23	1
			vs. (1+1)			3.8%	3.4%	4.0
ft06	55+	6×6	55	55	1.5E3	55	55	3.0E4
ft10	930+	10×10	937	964	2.9E6	930	930	4.5E7
ft20	1165+	5×20	1165	1169	2.8E8	1165	1165	2.0E8
		#best	2	1 +1)-EA	2	-0.2%	3	1 5.0
la01	666+	#best	2 vs. (1	1 +1)-EA	2 . on ft*	3 -0.2%	3 -1.3%	1 5.0
la01 la02	666+	#best 5×10	2 vs. (1 666	1 +1)-EA 666	2 on ft* 2.0E4	3 -0.2% 666	3 -1.3% 666	1 5.0 7.9E4
la02	655+	#best 5×10 5×10	2 vs. (1 666 655	1 +1)-EA 666 657	2 on ft* 2.0E4 9.3E5	3 -0.2% 666 655	3 -1.3% 666 655	1 5.0 7.9E4 1.5E6
la02 la03	655+ 597+	#best 5×10 5×10 5×10	2 vs. (1 666 655 597	1 +1)-EA 666 657 602	2 on ft* 2.0E4 9.3E5 1.1E6	3 -0.2% 666 655 597	3 -1.3% 666 655 597	1 5.0 7.9E4 1.5E6 5.5E6
la02 la03 la04	655+ 597+ 590+	#best 5×10 5×10 5×10 5×10	2 vs. (1 666 655 597 590	1 +1)-EA 666 657 602 591	2 2.0E4 9.3E5 1.1E6 9.4E4	3 -0.2% 666 655 597 590	3 -1.3% 666 655 597 590	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6
la02 la03 la04 la05	655+ 597+	#best 5×10 5×10 5×10 5×10 5×10 5×10	2 vs. (1 666 655 597	1 +1)-EA 666 657 602 591 593	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2	3 -0.2% 666 655 597	3 -1.3% 666 655 597	1 5.0 7.9E4 1.5E6 5.5E6
la02 la03 la04 la05 la06	655+ 597+ 590+ 593+ 926+	#best 5×10 5×10 5×10 5×10 5×10 5×10 5×15	2 vs. (1 666 655 597 590 593 926	1 +1)-EA 666 657 602 591 593 926	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2	3 -0.2% 666 655 597 590 593	3 -1.3% 666 655 597 590 593	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4
la02 la03 la04 la05 la06 la07	655+ 597+ 590+ 593+ 926+ 890+	#best 5×10 5×10 5×10 5×10 5×10 5×15 5×15	2 vs. (1 666 655 597 590 593 926 890	1 +1)-EA 666 657 602 591 593 926 890	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3	3 -0.2% 666 655 597 590 593 926 890	3 -1.3% 6666 655 597 590 593 926 890	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5
la02 la03 la04 la05 la06 la07 la08	655+ 597+ 590+ 593+ 926+ 890+ 863+	#best 5×10 5×10 5×10 5×10 5×10 5×15 5×15 5×15	2 vs. (1 666 655 597 590 593 926 890 863	1 +1)-EA 666 657 602 591 593 926 890 863	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2	3 -0.2% 6666 655 597 590 593 926 890 863	3 -1.3% 666 655 597 590 593 926 890 863	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5
la02 la03 la04 la05 la06 la07 la08 la09	655+ 597+ 590+ 593+ 926+ 890+ 863+ 951+	#best 5×10 5×10 5×10 5×10 5×10 5×15 5×15 5×15	2 vs. (1 666 655 597 590 593 926 890 863 951	1 +1)-EA 666 657 602 591 593 926 890 863 951	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2	3 -0.2% 6666 6555 597 590 593 926 890 863 951	3 -1.3% 666 655 597 590 593 926 890 863 951	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4
la02 la03 la04 la05 la06 la07 la08 la09 la10	655+ 597+ 593+ 926+ 890+ 863+ 951+ 958+	#best 5×10 5×10 5×10 5×10 5×15 5×15 5×15 5×15	2 vs. (1 666 655 597 590 593 926 890 863 951 958	1 +1)-EA 666 657 602 591 593 926 890 863 951 958	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2	3 -0.2% 666 655 597 590 593 926 890 863 951 958	3 -1.3% 666 655 597 590 593 926 890 863 951 958	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4 1.4E4
la02 la03 la04 la05 la06 la07 la08 la09 la10 la11	655+ 597+ 593+ 926+ 890+ 863+ 951+ 958+ 1222+	#best 5×10 5×10 5×10 5×10 5×15 5×15 5×15 5×15 5×15 5×15 5×20	2 vs. (1 666 655 597 590 593 926 890 863 951 958 1222	1 +1)-EA 666 657 602 591 593 926 890 863 951 958 1222	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2 7.8E2	3 -0.2% 666 655 597 590 593 926 890 863 951 958 1222	3 -1.3% 666 655 597 590 593 926 890 863 951 958 1222	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4 1.4E4 8.4E4
la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12	655+ 597+ 590+ 593+ 926+ 890+ 863+ 951+ 958+ 1222+ 1039+	#best 5×10 5×10 5×10 5×10 5×15 5×15 5×15 5×15 5×15 5×15 5×20 5×20	2 vs. (1 666 655 597 590 593 926 890 863 951 958 1222 1039	1 +1)-EA 666 657 602 591 593 926 890 863 951 958 1222 1039	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2 7.8E2 4.3E2	3 -0.2% 666 655 597 590 593 926 890 863 951 958 1222 1039	3 -1.3% 666 655 597 590 593 926 890 863 951 958 1222 1039	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4 1.4E4 8.4E4 4.1E4
la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13	655+ 597+ 590+ 593+ 926+ 890+ 863+ 951+ 958+ 1222+ 1039+ 1150+	#best 5×10 5×10 5×10 5×10 5×15 5×15 5×15 5×15 5×15 5×20 5×20 5×20	2 vs. (1 666 655 597 590 593 926 890 863 951 958 1222 1039 1150	1 +1)-EA 666 657 602 591 593 926 890 863 951 958 1222 1039 1150	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2 7.8E2 4.3E2 6.6E2	3 -0.2% 666 655 597 590 593 926 890 863 951 958 1222 1039 1150	3 -1.3% 666 655 597 590 593 926 890 863 951 958 1222 1039 1150	$\begin{array}{c} 1 \\ \hline 5.0 \\ \hline 7.9E4 \\ 1.5E6 \\ 5.5E6 \\ 2.7E6 \\ 2.5E3 \\ 3.4E4 \\ 4.8E5 \\ 1.2E5 \\ 4.2E4 \\ 1.4E4 \\ 8.4E4 \\ 4.1E4 \\ 6.5E4 \end{array}$
la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13 la14	655+ 597+ 590+ 593+ 926+ 863+ 951+ 958+ 1222+ 1039+ 1150+ 1292+	#best 5×10 5×10 5×10 5×10 5×15 5×15 5×15 5×15 5×15 5×20 5×20 5×20	2 vs. (1 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292	1 +1)-EA 666 657 602 591 593 926 890 863 951 958 1222 1039 1150 1292	2 2.00 ft* 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2 7.8E2 4.3E2 6.6E2 1.1E2	3 -0.2% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292	3 -1.3% 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4 1.4E4 8.4E4 4.1E4 6.5E4 8.9E3
la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13 la14 la15	655+ 597+ 590+ 593+ 926+ 863+ 951+ 958+ 1222+ 1039+ 1150+ 1292+ 1207+	#best 5×10 5×10 5×10 5×10 5×15 5×15 5×15 5×15 5×15 5×20 5×20 5×20 5×20	2 vs. (1 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207	1 +1)-EA 666 657 602 591 593 926 890 863 951 958 1222 1039 1150 1292 1207	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2 7.8E2 4.3E2 6.6E2 1.1E2 5.1E3	3 -0.2% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207	3 -1.3% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4 1.4E4 8.4E4 4.1E4 6.5E4 8.9E3 1.7E6
la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13 la14 la15 la16	655+ 597+ 593+ 926+ 890+ 863+ 951+ 958+ 1222+ 1039+ 1150+ 1292+ 1207+ 945+	#best 5×10 5×10 5×10 5×15 5×15 5×15 5×15 5×15 5×20 5×20 5×20 5×20 5×20 5×20 5×20	2 vs. (1 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 946	1 +1)-EA 666 657 602 591 593 926 890 863 951 958 1222 1039 1150 1292 1207 963	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2 7.8E2 4.3E2 6.6E2 1.1E2 5.1E3 2.7E7	3 -0.2% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945	3 -1.3% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4 1.4E4 8.4E4 4.1E4 6.5E4 8.9E3 1.7E6 2.9E8
la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13 la14 la15 la16 la17	655+ 597+ 593+ 926+ 890+ 863+ 951+ 958+ 1222+ 1039+ 1150+ 1292+ 1207+ 945+ 784+	#best 5×10 5×10 5×10 5×15 5×15 5×15 5×15 5×15 5×20 5×20 5×20 5×20 5×20 5×20 10×10 10×10	2 vs. (1 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 946 784	1 +1)-EA 666 657 602 591 593 926 890 863 951 958 1222 1039 1150 1292 1207 963 785	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2 7.8E2 4.3E2 6.6E2 1.1E2 5.1E3 2.7E7 3.2E5	3 -0.2% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784	3 -1.3% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4 1.4E4 8.4E4 4.1E4 6.5E4 8.9E3 1.7E6 2.9E8 3.7E7
la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13 la14 la15 la16 la17 la18	655+ 597+ 593+ 926+ 890+ 863+ 951+ 958+ 1222+ 1039+ 1150+ 1292+ 1207+ 945+ 784+ 848+	#best 5×10 5×10 5×10 5×15 5×15 5×15 5×15 5×15 5×20 5×20 5×20 5×20 5×20 5×20 10×10 10×10 10×10	2 vs. (1 665 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 946 784 848	1 +1)-EA 666 657 602 591 593 926 890 863 951 958 1222 1039 1150 1292 1207 963 785 856	2 2.00 ft* 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2 7.8E2 4.3E2 6.6E2 1.1E2 5.1E3 2.7E7 3.2E5 1.4E6	3 -0.2% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784 848	3 -1.3% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784 848	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4 1.4E4 8.4E4 4.1E4 6.5E4 8.9E3 1.7E6 2.9E8 3.7E7 1.1E7
la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13 la14 la15 la16 la17	655+ 597+ 593+ 926+ 890+ 863+ 951+ 958+ 1222+ 1039+ 1150+ 1292+ 1207+ 945+ 784+	#best 5×10 5×10 5×10 5×15 5×15 5×15 5×15 5×15 5×20 5×20 5×20 5×20 5×20 5×20 10×10 10×10	2 vs. (1 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 946 784	1 +1)-EA 666 657 602 591 593 926 890 863 951 958 1222 1039 1150 1292 1207 963 785	2 2.0E4 9.3E5 1.1E6 9.4E4 2.5E2 3.9E2 4.3E3 9.1E2 5.2E2 2.4E2 7.8E2 4.3E2 6.6E2 1.1E2 5.1E3 2.7E7 3.2E5	3 -0.2% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784	3 -1.3% 6666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784	1 5.0 7.9E4 1.5E6 5.5E6 2.7E6 2.5E3 3.4E4 4.8E5 1.2E5 4.2E4 1.4E4 8.4E4 4.1E4 6.5E4 8.9E3 1.7E6 2.9E8 3.7E7

Table 3: Results on the JSSP, part 3.

instance information		(1+1)-EA			(1+1)-FEA			
inst	BKS	$m \times n$	best	mean	conv	best	mean	conv
la21	1046+	10×15	1055	1067	2.1E8	1047	1047	3.0E8
la22	927+	10×15	927	930	1.8E8	932	933	4.3E8
la23	1032+	10×15	1032	1032	1.0E5	1032	1032	8.0E6
la24	935+	10×15	946	956	2.3E6	938	939	6.2E8
la25	977+	10×15	991	1005	2.0E7	977	980	5.6E8
la26	1218+	10×20	1218	1218	5.4E5	1218	1218	4.1E7
la27	1235+	10×20	1236	1244	3.1E8	1235	1245	7.4E8
la28	1216+	10×20	1216	1217	2.9E7	1216	1218	5.5E8
la29	1152+	10×20	1163	1177	5.3E7	1164	1171	6.0E8
la30	1355+	10×20	1355	1355	1.6E5	1355	1355	2.0E7
la31	1784+	10×30	1784	1784	9.7E3	1784	1784	4.5E6
la32	1850+	10×30	1850	1850	1.2E4	1850	1850	8.4E6
la33	1719+	10×30	1719	1719	1.2E4	1719	1719	5.7E6
la34	1721+	10×30	1721	1721	3.6E4	1721	1721	3.1E7
la35	1888+	10×30	1888	1888	1.6E4	1888	1888	9.8E6
la36 la37	1268+ 1307+	15×15	1268	1287	2.5E8	1278	1283 1412	2.5E8
la37	1397+	15×15	1418	1421	3.4E7	1410	1412	5.3E8
la38	1196+	15×15	1196	1224	2.3E8	1202	1206	5.1E8
la39	1233+	15×15	1238	1248	4.2E7	1240	1245	4.8E8
la40	1222+	15×15	1229	1245	1.4E7	1228	1228	4.2E8
		#best	32	23	38	35	37	2
			vs. (1	+1)-EA	on la*	-0.1%	-0.5%	32
orb01	1059+	10×10	1094	1110	9.7E7	1059	1059	1.4E8
orb02	888+	10×10	889	902	4.9E7	889	889	2.4E7
orb03	1005 +	10×10	1044	1076	7.9E7	1005	1005	9.8E7
orb04	1005+	10×10	1020	1037	6.4E5	1005	1006	3.8E8
orb05	887+	10×10	890	917	5.8E6	889	889	7.6E7
orb06	1010+	10×10	1033	1047	1.1E6	1010	1010	6.6E8
orb07	397+	10×10	401	405	7.6E4	397	397	3.4E7
orb08	899+	10×10	916	935	3.4E7	899	899	3.5E7
orb09	934+	10×10	950	970	5.9E5	934	934	1.2E8
orb10	944+	10×10	944	985	4.6E7	944	944	3.7E7
		#best	2	0	8	10	10	2
			vs. (1+			-1.5%	-3.6%	13
01	1407+	10×20	1418	1459	3.0E8	1435	1450	5.9E8
swv01								
swv02	1475+	10×20	1485	1509	1.7E8	1495	1498	6.1E8
swv03	1398+	10×20	1450	1484	4.3E8	1433	1443	4.0E8
swv04	1464+	10×20	1523	1543	4.0E8	1509	1514	5.7E8
swv05	1424+	10×20	1494	1533	1.4E8	1466	1470	5.5E8
swv06	1671	15×20	1766	1785	1.9E8	1720	1729	5.8E8
swv07	1594	15×20	1711	1725	1.3E8	1665	1673	7.1E8
swv08	1752	15×20	1879	1902	2.4E8	1809	1819	7.6E8
swv09	1655	15×20	1784	1813	1.8E8	1700	1716	6.8E8
swv10	1743	15×20	1833	1871		1798	1810	5.0E8
swv11	2983+	10×50	2997	3021		3143	3155	7.7E8
swv12	2977	10×50	3047	3100	3.8E8	3178	3211	7.5E8
swv13	3104+	10×50	3124		4.1E8	3252	3264	8.4E8
swv14	2968+	10×50	2979	3003	4.0E8	3048	3074	7.8E8
swv15	2885+	10×50	2917	2958	4.2E8	3081	3094	9.0E8
swv16	2924+	10×50	2924	2924	4.1E3	2924	2924	1.8E6
swv17	2794+	10×50	2794	2794	8.6E3	2794	2794	4.6E6
swv18	2852+	10×50	2852	2852	5.8E3	2852	2852	2.4E6
swv19	2843+	10×50	2843	2843	1.4E4	2843	2843	1.2E7
swv20	2823+	10×50	2823	2823	8.9E3	2823	2823	4.3E6
		#best	12	10	19	13	15	1
			vs. (1+1)-EA o	n swv*	0.1%	-0.6%	8.6

Solving Job Shop Scheduling Problems Without Using a Bias for Good Solutions

Table 4: Results on the JSSP, part 4.

instance information			(1+1)-H	EA	(1+1)-FEA			
inst	BKS	$m \times n$	best	mean	conv	best	mean	conv
ta01	1231+	15×15	1254	1264	1.9E7	1248	1248	3.7E8
ta02	1244+	15×15	1258	1269	9.1E7	1244	1249	3.0E8
ta03	1218+	15×15	1261	1276	1.5E8	1218	1221	5.1E8
ta04	1175+	15×15	1185	1213	2.5E8	1181	1186	4.7E8
ta05	1224+	15×15	1243	1258	3.5E6	1233	1239	4.7E8
ta06	1238+	15×15	1259	1277	6.2E6	1246	1250	4.4E8
ta07	1227+	15×15	1250	1255	3.5E7	1228	1236	5.0E8
ta08	1217+	15×15	1241	1255	2.7E7	1219	1230	5.4E8
ta09	1274 +	15×15	1296	1322	2.1E8	1281	1291	4.9E8
ta10	1241+	15×15	1277	1291	1.3E8	1244	1262	6.5E8
ta11	1357+	15×20	1389	1408	3.9E8	1389	1401	7.0E8
ta12	1367+	15×20	1379	1400	3.2E7	1388	1397	5.2E8
ta13	1342+	15×20	1381	1400	5.2E7	1361	1376	8.5E8
ta14	1345+	15×20	1355	1365	1.8E8	1363	1365	5.8E8
ta15	1339+	15×20	1364	1390	1.8E8	1362	1375	5.9E8
ta16	1360 +	15×20	1375	1399	5.4E7	1375	1381	5.0E8
ta17	1462 +	15×20	1489	1503	3.3E8	1494	1500	5.6E8
ta18	1396	15×20	1424	1438	3.1E8	1429	1437	5.7E8
ta19	1332+	15×20	1380	1400	9.3E7	1343	1372	6.8E8
ta20	1348+	15×20	1374	1395	1.2E8	1373	1381	5.0E8
ta21	1642 +	20×20	1671	1710	2.1E8	1678	1686	5.2E8
ta22	1600	20×20	1634	1649	1.8E8	1632	1640	7.2E8
ta23	1557	20×20	1602	1617	2.2E8	1589	1595	7.2E8
ta24	1644 +	20×20	1675	1696	2.0E8	1676	1688	4.8E8
ta25	1595	20×20	1634	1651	4.6E7	1625	1642	5.5E8
ta26	1643	20×20	1698	1709	3.4E8	1664	1684	6.4E8
ta27	1680	20×20	1747	1785	1.0E8	1704	1721	4.8E8
ta28	1603+	20×20	1647	1668	1.4E8	1627	1645	7.6E8
ta29	1625	20×20	1652	1693	2.7E7	1644	1649	7.9E8
ta30	1584	20×20	1624	1640	1.9E8	1637	1640	7.0E8
ta31	1764+	15×30	1766	1766	1.6E8	1793	1805	8.6E8
ta32	1784	15×30	1835	1845	4.4E8	1868	1878	6.6E8
ta33	1791	15×30	1804	1826	4.9E8	1867	1871	9.1E8
ta34	1829	15×30	1844	1873	3.0E8	1888	1919	7.9E8
ta35	2007+	15×30	2007	2012	1.0E8	2015	2018	6.5E8
ta36	1819+	15×30	1820	1834	3.1E8	1846	1861	7.5E8
ta37	1771+	15×30	1795	1801	7.1E8	1841	1852	7.2E8
ta38	1673+	15×30	1696	1708	3.4E8	1737	1744	7.9E8
ta39	1795+	15×30	1807	1815	2.8E8	1841	1848	5.9E8
ta40	1669	15×30	1703	1718	5.5E8	1737	1750	7.3E8
ta41	2005	20×30	2057	2088	4.8E8	2115	2131	8.3E8
ta42	1937	20×30	2006	2027	3.8E8	2023	2051	8.0E8
ta43	1846	20×30	1915		7.2E8	1959	1978	
ta44	1979	20×30	2030	2051		2065	2091	7.7E8
ta45	2000	20×30	2016	2033	3.9E8	2073	2086	8.7E8
ta46	2004	20×30	2064	2100		2109	2135	7.5E8
ta47	1889	20×30	1970	1980		2004	2022	
ta48	1937	20×30	1998	2008		2066	2076	7.1E8
ta49	1961	20×30	2010	2026	5.0E8	2060	2081	7.9E8
ta50	1923	20×30	1974	1995	2.8E8	2041	2057	7.3E8
ta51	2760+	15×50	2760	2760	1.0E6	2760	2769	
ta52	2756+	15×50	2756	2756	1.0E6	2756	2772	
ta53	2717+	15×50	2717	2717	5.5E5	2717	2717	
ta54	2839+	15×50	2839	2839		2839	2839	
ta55	2679+	15×50	2679	2679		2719	2730	8.7E8
ta56	2781+	15×50	2781	2781	1.1E6	2795	2803	9.0E8

GECCO '21 Companion, July 10-14, 2021, Lille, France

Table 5: Results on the JSSP, part 5.

ins	instance information			(1+1)-H	EA	(1+1)-FEA		
inst	BKS	$m \times n$	best	mean	conv	best	mean	conv
ta57	2943+	15×50	2943	2943	4.7E5	2943	2945	8.3E8
ta58	2885+	15×50	2885	2885	3.9E5	2885	2885	9.4E8
ta59	2655+	15×50	2655	2655	2.0E6	2703	2712	8.8E8
ta60	2723+	15×50	2723	2723	1.1E6	2746	2752	9.3E8
ta61	2868+	20×50	2868	2868	7.4E6	2984	3000	9.2E8
ta62	2869+	20×50	2872	2883	8.2E8	3060	3088	8.3E8
ta63	2755+	20×50	2755	2755	8.4E6	2865	2884	8.4E8
ta64	2702+	20×50	2702	2702	6.2E6	2813	2836	7.6E8
ta65	2725+	20×50	2725	2725	2.8E7	2854	2867	8.8E8
ta66	2845 +	20×50	2845	2845	3.0E7	2968	2983	8.2E8
ta67	2825+	20×50	2826	2826	2.4E7	2949	2968	7.8E8
ta68	2784 +	20×50	2784	2784	6.3E6	2865	2884	9.1E8
ta69	3071+	20×50	3071	3071	2.3E6	3140	3160	8.2E8
ta70	2995+	20×50	2995	2995	1.3E7	3144	3169	8.2E8
ta71	5464+	20×100	5464	5464	1.1E6	5561	5644	8.5E8
ta72	5181+	20×100	5181	5181	8.7E5	5285	5319	8.1E8
ta73	5568+	20×100	5568	5568	1.3E6	5728	5741	7.8E8
ta74	5339+	20×100	5339	5339	7.5E5	5441	5457	8.8E8
ta75	5392+	20×100	5392	5392	1.3E6	5596	5630	8.6E8
ta76	5342+	20×100	5342	5342	1.1E6	5489	5503	9.1E8
ta77	5436+	20×100	5436	5436	6.1E5	5509	5538	9.3E8
ta78	5394+	20×100	5394	5394	8.2E5	5494	5517	8.0E8
ta79	5358+	20×100	5358	5358	7.5E5	5432	5459	9.2E8
ta80	5183+	20×100	5183	5183	1.1E6	5318	5377	9.5E8
		#best	59	52	80	29	33	0
			vs. (1	+1)-EA	on ta*	1.1%	1.0%	20
yn1	884+	20×20	907	913	5.6E7	901	904	5.3E8
yn2	904	20×20	929	934	2.4E8	922	927	6.8E8
yn3	892	20×20	905	912	1.3E8	899	910	7.5E8
yn4	968	20×20	977	991	1.7E8	978	987	7.0E8
		#best	1	0	4	3	4	0
			vs. (1+	1)-EA	on yn*	-0.5%	-0.6%	4.0
			01	verall				
		#best	174	146	235	118	130	7
			vs. (1	+1)-EA	on all	1.5%	1.2%	12

such scenarios, an FFA-based search would degenerate to perform similar to a Random Walk.

In a next step, we will plug FFA into some of the sate-of-the-art algorithms on the JSSP domain. The present paper shows that a simple local search can benefit (or at least not suffer) from using FFA. Whether it can help or will be detrimental for highly-optimized algorithms must be investigated next.

ACKNOWLEDGMENTS

We acknowledge support from the National Natural Science Foundation of China under grant 61673359, the Youth Project of the Provincial Natural Science Foundation of Anhui 1908085QF285, the Talent Fund of Hefei University 18-19RC26, the University Natural Sciences Research Project of Anhui Province KJ2020A0661, as well as the Hefei Specially Recruited Foreign Expert program.

REFERENCES

 Tamer F. Abdelmaguid. 2010. Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study. *Journal of Software* Engineering and Applications 3, 12 (2010), 1155–1162. https://doi.org/10.4236/ jsea.2010.312135

- [2] Joseph Adams, Egon Balas, and Daniel Zawack. 1988. The Shifting Bottleneck Procedure for Job Shop Scheduling. *Management Science* 34, 3 (1988), 391–401. https://doi.org/10.1287/mnsc.34.3.391
- [3] Denis Antipov and Benjamin Doerr. 2018. Precise Runtime Analysis for Plateaus. In 15th Intl. Conf. on Parallel Problem Solving from Nature (PPSN XV), Part II, Sept. 8–12, 2018, Coimbra, Portugal. Springer, Cham, Switzerland, 117–128. https: //doi.org/10.1007/978-3-319-99259-4_10
- [4] David Lee Applegate and William John Cook. 1991. A Computational Study of the Job-Shop Scheduling Problem. ORSA Journal on Computing 3, 2 (1991), 149–156. https://doi.org/10.1287/ijoc.3.2.149
- [5] Leila Asadzadeh. 2015. A Local Search Genetic Algorithm for the Job Shop Scheduling Problem with Intelligent Agents. *Computers & Industrial Engineering* 85 (2015), 376–383. https://doi.org/10.1016/j.cie.2015.04.006
- [6] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz (Eds.). 1997. Handbook of Evolutionary Computation. Bristol, UK: Institute of Physics Publishing and New York, NY, USA: Oxford University Press.
- [7] Christian Bierwirth. 1995. A Generalized Permutation Approach to Job Shop Scheduling with Genetic Algorithms. *The Journal of the Operational Research Society* 17, 2–3 (1995), 87–92. https://doi.org/10.1007/BF01719250
- [8] Jacek Błażewicz, Wolfgang Domschke, and Erwin Pesch. 1996. The Job Shop Scheduling Problem: Conventional and New Solution Techniques. European Journal of Operational Research 93, 1 (1996), 1–33. https://doi.org/10.1016/0377-2217(95)00362-2
- [9] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. 1998. A Review of Machine Scheduling: Complexity, Algorithms and Approximability. In *Handbook of Combinatorial Optimization*, Ding-Zhu Du and Panos M. Pardalos (Eds.). Springer, Boston, MA, USA, 1493–1641. https://doi.org/10.1007/978-1-4613-0303-9_25
- [10] Antoine Cully and Yiannis Demiris. 2018. Quality and Diversity Optimization: A Unifying Modular Framework. *IEEE Transactions on Evolutionary Computation* 22, 2 (2018), 245–259. https://doi.org/10.1109/TEVC.2017.2704781
- [11] Ebru Demirkol, Sanjay V. Mehta, and Reha Uzsoy. 1998. Benchmarks for Shop Scheduling Problems. *European Journal of Operational Research* 109, 1 (1998), 137–141. https://doi.org/10.1016/S0377-2217(97)00019-2
- [12] Henry Fisher and Gerald L. Thompson. 1963. Probabilistic Learning Combinations of Local Job-Shop Scheduling Rules. In *Industrial Scheduling*, John F. Muth and Gerald L. Thompson (Eds.). Prentice-Hall, Englewood Cliffs, NJ, USA, 225–251.
- [13] Philip J. Fleming and John J. Wallace. 1986. How Not to Lie with Statistics: The Correct Way to Summarize Benchmark Results. *Commun. ACM* 29, 3 (1986), 218–221. https://doi.org/10.1145/5666.5673
- [14] Edson Flórez, Wilfredo Gómez, and Lola Bautista. 2013. An Ant Colony Optimization Algorithm for Job Shop Scheduling Problem. Computing Research Repository (CoRR) abs/1309.5110. arxiv. https://arxiv.org/pdf/1309.5110.pdf
- [15] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York, NY, USA.
- [16] Mitsuo Gen, Yasuhiro Tsujimura, and Erika Kubota. 1994. Solving Job-Shop Scheduling Problems by Genetic Algorithm. In Humans, Information and Technology: IEEE Intl. Conf. on Systems, Man and Cybernetics, Oct. 2–5, 1994, San Antonio, TX, USA, Vol. 2. IEEE. https://doi.org/10.1109/ICSMC.1994.400072
- [17] Fred W. Glover, Éric D. Taillard, and Dominique de Werra. 1993. A User's Guide to Tabu Search. Annals of Operations Research 41, 1 (1993), 3–28. https://doi.org/ 10.1007/BF02078647
- [18] Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis. 2019. Quality Diversity Through Surprise. *IEEE Transactions on Evolutionary Computation* 23, 4 (2019), 603–616. https://doi.org/10.1109/TEVC.2018.2877215
- [19] Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne Auger. 2011. Impacts of Invariance in Search: When CMA-ES and PSO Face Ill-Conditioned and Non-Separable Problems. *Applied Soft Computing* 11, 8 (2011), 5755–5769. https://doi.org/10.1016/j.asoc.2011.03.001
- [20] Tianhua Jiang and Chao Zhang. 2018. Application of Grey Wolf Optimization for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases. *IEEE Access* 6 (2018), 26231–26240. https://doi.org/10.1109/ACCESS.2018. 2833552
- [21] Vedavyasrao Jorapur, V. S. Puranik, A. S. Deshpande, and M. R. Sharma. 2014. Comparative Study of Different Representations in Genetic Algorithms for Job Shop Scheduling Problem. *Journal of Software Engineering and Applications* 7, 7 (2014), 571–580. https://doi.org/10.4236/jsea.2014.77053
- [22] Scott Kirkpatrick, C. Daniel Gelatt, Jr., and Mario P. Vecchi. 1983. Optimization by Simulated Annealing. *Science Magazine* 220, 4598 (1983), 671–680. https: //doi.org/10.1126/science.220.4598.671
- [23] Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. 1993. Sequencing and Scheduling: Algorithms and Complexity. In *Handbook of Operations Research and Management Science*, Stephen C. Graves, Alexander Hendrik George Rinnooy Kan, and Paul H. Zipkin (Eds.). Vol. IV. North-Holland Scientific Publishers Ltd., Amsterdam, The

Netherlands, 445-522. https://doi.org/10.1016/S0927-0507(05)80189-6

- [24] Stephen R. Lawrence. 1984. Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques (Supplement). Ph.D. Dissertation. Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, USA.
- [25] Joss Miller-Todd, Kathleen Steinhöfel, and Patrick Veenstra. 2018. Firefly-Inspired Algorithm for Job Shop Scheduling. In Adventures Between Lower Bounds and Higher Altitudes – Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, Hans-Joachim Böckenhauer, Dennis Komm, and Walter Unger (Eds.). Springer, 423–433. https://doi.org/10.1007/978-3-319-98355-4_24
- [26] S. Narendhar and T. Amudha. 2012. A Hybrid Bacterial Foraging Algorithm For Solving Job Shop Scheduling Problems. Intl. Journal of Programming Languages and Applications 2, 4 (2012), 1–11. https://doi.org/10.5121/ijpla.2012.2401
- [27] Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. 2017. Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles. *Journal of Machine Learning Research* 18 (2017), 1–65. http://jmlr.org/papers/v18/14-467.html
- [28] Guoyong Shi, Hitoshi Iima, and Nobuo Sannomiya. 1997. New Encoding Scheme for Solving Job Shop Problems by Genetic Algorithm. In 35th IEEE Conf. on Decision and Control (CDC'96), Dec. 11–13, 1996, Kobe, Japan, Vol. 4. IEEE, 4395– 4400. https://doi.org/10.1109/CDC.1996.577484
- [29] Oleg V. Shylo. 2019. Job Shop Scheduling. http://optimizizer.com/jobshop.php
- [30] Robert H. Storer, S. David Wu, and Renzo Vaccari. 1992. New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling. *Management Science* 38, 10 (1992), 1495–1509. https://doi.org/10.1287/mnsc.38.10.1495
- [31] Éric D. Taillard. 1993. Benchmarks for Basic Scheduling Problems. European Journal of Operational Research 64, 2 (1993), 278–285. https://doi.org/10.1016/ 0377-2217(93)90182-M
- [32] Jelke Jeroen van Hoorn. 2016. Job Shop Instances and Solutions. http://jobshop. jjvh.nl
- [33] Shao-Juan Wang, Chun-Wei Tsai, and Ming-Chao Chiang. 2018. A High Performance Search Algorithm for Job-Shop Scheduling Problem. In 9th Intl. Conf. on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN'18) / 8th Intl. Conf. on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH'18) / Affiliated Workshops, Nov. 5–8, 2018, Leuven, Belgium. Elsevier, 119–126. https://doi.org/10.1016/j.procs.2018.10.157
- [34] Thomas Weise. 2019–2020. jsspInstancesAndResults: Results, Data, and Instances of the Job Shop Scheduling Problem. https://github.com/thomasWeise/ jsspInstancesAndResults as viewed on 2020-11-25.
- [35] Thomas Weise, Mingxu Wan, Ke Tang, Pu Wang, Alexandre Devert, and Xin Yao. 2014. Frequency Fitness Assignment. IEEE Transactions on Evolutionary Computation 18, 2 (2014), 226–243. https://doi.org/10.1109/TEVC.2013.2251885
- [36] Thomas Weise, Zhize Wu, Xinlu Li, and Yan Chen. 2021. Frequency Fitness Assignment: Making Optimization Algorithms Invariant under Bijective Transformations of the Objective Function Value. *IEEE Transactions on Evolutionary Computation* 25, 2 (April 2021). https://doi.org/10.1109/TEVC.2020.3032090 preprint available at arXiv:2001.01416v5 [cs.NE] 15 Oct 2020.
- [37] L. Darrell Whitley. 1989. The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best. In 3rd Intl. Conf. on Genetic Algorithms (ICGA'89), June 4–7, 1989, Fairfax, VA, USA. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 116–121.
- [38] Takeshi Yamada and Ryohei Nakano. 1992. A Genetic Algorithm Applicable to Large-Scale Job-Shop Instances. In *Parallel Problem Solving from Nature 2 (PPSN II), Sept. 28–30, 1992, Brussels, Belgium*. Elsevier, Amsterdam, The Netherlands, 281–290.