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ABSTRACT
Novelty search has become a popular technique in different fields
such as evolutionary computing, classical AI planning, and deep
reinforcement learning. Searching for novelty instead of, or in addi-
tion to, directly maximizing the search objective, aims at avoiding
dead ends and local minima, and overall improving exploration. We
propose and test the integration of novelty into Monte Carlo Tree
Search (MCTS), a state-of-the-art framework for online RL planning,
by linearly combining value estimates with novelty scores during
the selection phase of MCTS. Three different novelty measures are
adapted from the literature, integrated into MCTS, and tested in
four different board games. The initial results are promising and
point towards potential for novelty as “online generalization for
uncertainty” in more challenging search settings.
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1 INTRODUCTION
Sequential decision-making problems arise in a variety of domains,
and significant progress in this area has been achieved by studying
search in games. Monte Carlo Tree Search (MCTS) in particular han-
dles large search spaces well due to selective sampling of promising
actions. It has been shown to converge to the optimal policy in the
limit, if exploration and exploitation are traded off properly [11],
and it provides approximations at any time. MCTS and its many
variants have been successfully applied to countless domains in
recent years, for example to General Game Playing [6], to General
Video Game Playing [15], and to two-player board games in recent
breakthroughs that combined search with deep neural networks
[23, 24].
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The use of novelty in search and optimization has been a signifi-
cant line of research in several different subfields of AI in the last
decade, such as in evolutionary computing, in classical AI planning,
and in deep reinforcement learning. Searching for novel states or
novel behaviors as an intrinsic motivation of an AI agent has shown
surprising success compared to exclusively trying to optimize the
extrinsically given objective function, especially in domains where
the gradient of improvement with regard to that objective function
is sparse or misleading [13].

In this paper, we propose the integration of novelty search tech-
niques into MCTS, and test them in online RL planning. Specifically,
we bias search by linearly combining one of three novelty scores
with the MCTS node value estimates before adding the UCB explo-
ration bonus. Unlike in many previous applications of novelty to
search, we assume that a somewhat effective heuristic state eval-
uation function is already available to guide MCTS; and unlike
typical applications of novelty to deep RL, MCTS is able to use
count-based uncertainty estimates in its tree. Nevertheless, our pre-
liminary results indicate that novelty, as an auxiliary objective that
generalizes uncertainty across the state space, can lead to better
gameplay through further improvements in MCTS exploration.

This paper is structured as follows: Section 2 relates this paper to
the literature. Section 3 briefly sketches the three different novelty
measures used, and how we integrated them into MCTS. Section 4
presents experimental results in four board game domains, and
Section 5 discusses conclusions and future work.

2 RELATEDWORK
In evolutionary computation, it has been found that fitness func-
tions, meant to measure progress towards the actual objective of
the search, can often be deceptive, and thus lead into dead ends. A
sometimes surprisingly effective approach to circumventing this
problem is to ignore the objective entirely, and to search only for
(behavioral) novelty instead [12, 13]. In this work, we do not aim
to completely ignore our objective, i.e. heuristic estimates guiding
successful play, but integrate an additional novelty score in order
to improve exploration.

In classical AI planning, a simple blind-search procedure called
Iterated Width (IW) was developed [16]. IW is an iterative breadth-
first search that prunes states of insufficient novelty, relaxing the
requirement for novelty in every iteration. It was found to be ef-
fective in many benchmark planning problems due to their simple
enough goal structure, and lead to state-of-the-art performance
when integrated with other known planning techniques [16]. As
IW does not require knowledge of transitions and goals, it has
also been successfully applied to simulation-based planning, both
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in Atari games [17] and in General Game Playing (GGP) [8]. Its
pruning criterion, i.e. its novelty measure, was extended to take the
reward-so-far into account [22], which improved results in Atari
games; and it was modified to utilize heuristic value estimates of
states instead when those are available [10]. One of the novelty
measures we examine in this work is similar to the ones previously
proposed for classical planning [10, 22], where it has been called
ℎ𝐵𝑁 . However, we use it to modify value estimates in the MCTS
tree, instead of for improving the node ordering in a traditional
best first search queue.

In (deep) reinforcement learning, novelty has been studied as a
form of intrinsic motivation for the RL agent [1], meant to aid in
representation learning as well as in improving exploration. Unlike
IW-like algorithms, for which a binary classification of states into
novel or non-novel is often sufficient, these RL approaches aim
for a finer-grained measure of the agent’s uncertainty about its
environment, in order to guide the agent towards less familiar
regions of the state space and thus encourage learning. In analogy
to the tabular case, where we can simply count how often each state
has been visited and intrinsically reward the agent for visiting states
with lower visit counts, RL novelty techniques are often based on
pseudocounts – a generalization of state counts which allows to
generalize uncertainty across large state spaces. Pseudocounts can
be defined based on a density model that assigns probabilities to
observing a given state [4]. Such pseudocounts have been proposed
based on state hashing [25], on neural density models [5, 20], or
on successor representations [18]. Two of the novelty measures
we study in this work are based on the state-visitation density
model [4], as well as on a similar model constructed on a feature
representation of the state instead of on the raw state [19]. However,
we use it for sample-based planning instead of learning.

The closest relatedwork to ours is an unpublished student project
with the goal of combining IW-like novelty search and MCTS, ap-
plied to GGP [14]. In contrast to our work in which we bias search,
novelty was used for hard pruning of the tree, which invalidates the
convergence guarantees of MCTS; it was not applied to MCTS using
heuristic evaluation functions for state evaluation; and its experi-
mental evaluation was insufficient to draw statistically significant
conclusions.

3 NOVELTY AND MCTS
In this section, we describe the three novelty measures we use
in this exploratory study, and how we integrate them into the
MCTS framework. All novelty measures assume a state space 𝑆
with internal structure, with factored states 𝑠 that consist of a vector
of distinct components or variables and their assigned values. In
board games for example, “square d4” could be such a variable. A
variable plus assigned value, e.g. “white pawn on d4”, is also called
a fact.

3.1 Defining novelty
The techniques briefly outlined in this subsection aim at measuring
the novelty of a newly discovered state, and are slightly modified
techniques from the literature.

3.1.1 Evaluation novelty. This technique is adapted from reward-
based novelty [10, 22]. Given a heuristic state evaluation function

𝑉 : 𝑆 → R defined on the set of states 𝑆 , and 𝑆𝑡 as the set of states
observed until time step 𝑡 , the novelty score of a fact (variable &
value) 𝑓 at time step 𝑡 is defined as

𝑁𝑡 (𝑓 ) =


max
𝑠∈𝑆𝑡 ,𝑓 ∈𝑠

𝑉 (𝑠) if 𝑓 ∈ 𝑠 for some 𝑠 ∈ 𝑆𝑡

−∞ otherwise,
(1)

i.e. as the highest evaluation of any state with that particular fact
seen so far. Given a state 𝑠 , its evaluation novelty 𝑁𝐸 (𝑠) is then
defined as

𝑁𝐸 (𝑠) =
{
𝛼 if 𝑉 (𝑠) > 𝑁𝑡 (𝑓 ) for some 𝑓 ∈ 𝑠

0 otherwise,
(2)

where 𝛼 is a tunable parameter. This means that this novelty mea-
sure is binary – it distinguishes only between novel and non-novel
– and that a state is considered novel iff for at least one of the facts
it consists of, the evaluation of the state is higher than that of any
state observed before with that particular fact1.

3.1.2 Raw-state pseudocount novelty. This technique is adapted
from the 𝜙-Exploration-Bonus algorithm [19]. It does not make use
of a heuristic evaluation function, but of a probability distribution
over states. Given a feature mapping 𝜙 : 𝑆 → 𝑇 from the state
space into an𝑀-dimensional feature space 𝑇 , we define a density
model 𝜌𝑡 (𝜙) at time 𝑡 – a probability distribution over the feature
space – as the product of independent factor distributions 𝜌𝑖𝑡 (𝜙𝑖 )
over the𝑀 individual features:

𝜌𝑡 (𝜙) =
𝑀∏
𝑖=1

𝜌𝑖𝑡 (𝜙𝑖 ). (3)

For the factor models, we use the empirical estimator

𝜌𝑖𝑡 (𝜙𝑖 ) =
𝐶𝑡 (𝜙𝑖 )

𝑡
, (4)

where 𝐶𝑡 (𝜙𝑖 ) is the number of times feature 𝜙𝑖 has been observed
until time step 𝑡 . This allows us to define the 𝜙-pseudocount for a
given state 𝑠 at time 𝑡 as

𝐶
𝜙
𝑡 (𝑠) =

𝜌𝑡 (𝜙 (𝑠)) (1 − 𝜌𝑡+1 (𝜙 (𝑠)))
𝜌𝑡+1 (𝜙 (𝑠)) − 𝜌𝑡 (𝜙 (𝑠))

, (5)

where 𝜌𝑡 is the density model before 𝜙 (𝑠) has been observed, and
𝜌𝑡+1 is the model after the observation [4]. The pseudocount novelty
𝑁𝐶 (𝑠) is then defined as

𝑁𝐶 (𝑠) =
𝛼√

𝐶
𝜙
𝑡 (𝑠)

, (6)

where 𝛼 is again a tunable parameter [19].
Different feature mappings 𝜙 are imaginable; for the raw-state

pseudocount novelty tested in this work, we use the atomic facts
our states consist of (resulting in 𝑁 raw

𝐶
). An atomic fact in chess

could for example be “black knight on e5” or “white pawn on a3”.

1Note that a higher value 𝑁𝑡 (𝑓 ) of a fact 𝑓 does not mean that 𝑓 is considered more
novel. The values 𝑁𝑡 (𝑓 ) are simply called “novelty scores” because they allow us to
compute the novelty 𝑁𝐸 (𝑠) of a given state, where higher values indeed mean more
novel.
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3.1.3 Feature-based pseudocount novelty. The feature-based pseu-
docount novelty variant is computed analogously to the raw-state
variant. The difference is that instead of using atomic facts, we
compute the density model with the features used by our heuristic
evaluation functions (resulting in 𝑁 eval

𝐶
), as originally intended

for this novelty measure [19]. An evaluation function in chess for
example could use more abstract features such as “Black still has
both knights”, or “White controls the f-file with a rook”, which are
potentially more meaningful in terms of future rewards.

Evaluation novelty could in principle also be defined on atomic
state variables as well as on arbitrary features extracted from states
– here, we only include experiments with the raw state facts (𝑁 raw

𝐸
).

3.2 Using novelty within MCTS
When integrating novelty measures into MCTS, our goal is to im-
prove exploration under short time controls, without losing conver-
gence guarantees in the limit. We achieve this through a relatively
small change to vanilla MCTS: by combining regular value esti-
mates with novelty scores in the selection phase of MCTS, using
a technique originally proposed for Rapid Action Value Estimates
(RAVE) [9].

Each MCTS simulation produces an evaluation𝑉 (𝑠), returned by
the heuristic evaluation function, and additionally a novelty score
𝑁 (𝑠), produced by the chosen novelty measure, of the state 𝑠 that
was just added to the tree. Just like the value estimate in vanilla
MCTS, the additional novelty score is then also backpropagated
to all states that were visited in the current simulation; and in
each tree node representing one of these states, an average 𝑁𝑎

is maintained of all novelty scores seen in the subtree below the
traversed state-action pair, analogously to how value estimates 𝑉𝑎
in MCTS tree nodes are formed by averaging over all evaluations
seen in the subtrees below. For each visited tree node from which
an action 𝑎 was chosen, with 𝑛𝑎 the number of times that action
has been chosen so far, the backpropagation updates are:

𝑛𝑎 = 𝑛𝑎 + 1, 𝑉𝑎 = 𝑉𝑎 + 𝑉 (𝑠) −𝑉𝑎

𝑛𝑎
, 𝑁𝑎 = 𝑁𝑎 + 𝑁 (𝑠) − 𝑁𝑎

𝑛𝑎

During the selection phase, the selection policy of MCTS can now
be changed from the classic UCB1 policy that is based on value
alone:

𝑉𝑎 + 𝑘

√
ln𝑛
𝑛𝑎

, (7)

where 𝑛 is the number of times the given node has been traversed
chosing any action, and 𝑘 is a factor trading off exploration and ex-
ploitation, to a new policy that linearly combines value and novelty
averages:

𝑏𝑁𝑎 + (1 − 𝑏)𝑉𝑎 + 𝑘

√
ln𝑛
𝑛𝑎

, (8)

where 𝑏 is a weighting coefficient as given by√
𝛽

3𝑛𝑎 + 𝛽
, (9)

with 𝛽 as a tunable parameter regulating how quickly 𝑏 decays over
time, i.e. how quickly novelty is phased out as the node becomes
increasingly certain of its value estimates over time. After the search
has been completed, MCTS choses the root action with the highest

value estimate (ignoring novelty) for execution; chosing the root
action with the highest sample count is another popular option,
but did not lead to significantly different results in exploratory
experiments.

Note that in the limit, the MCTS search will visit every possible
state an infinite number of times, and all novelty averages will
approach zero. In short search times however, the parameter 𝛽
helps us to control how quickly MCTS should forget about novelty
and focus on value.

4 EXPERIMENTAL RESULTS
We tested novelty-enhanced MCTS against vanilla MCTS in four
different board game domains: Connect 4,Othello, Breakthrough, and
Knightthrough. These are fully observable, deterministic, alternating-
turn, two-player games, although our approach does not require
these constraints. All MCTS players use traditional linear heuristic
evaluation functions instead of random rollouts for state evaluation;
these evaluation functions also provide us with feature represen-
tations for 𝑁 eval

𝐶
(see Section 3.1.3). All experiments allowed for

either 1000 or 5000 MCTS simulations per move, in order to test
whether novelty can improve the sample efficiency of the search.
Vanilla MCTS has one parameter: the exploration factor 𝑘 of UCB1.
All novelty-based approaches have two additional parameters: a
parameter 𝛼 that controls the magnitude of the novelty term, and a
parameter 𝛽 that controls how quickly the novelty term’s influence
on the search decreases. The parameters of all agents were first
tuned (requiring about 24,000 games per agent), followed by a test
of the best found parameter settings with at least 2000 additional
games. The results of these tests are presented here. In all tables,
boldface indicates statistical significance at the 95% confidence
level of an improvement over the vanilla MCTS baseline (winrate
of novelty-enhanced MCTS higher than 50%).

Our experiments are divided into three groups, depending on
the novelty measure used. In the first group, we enhanced MCTS
with pseudocount novelty based on the raw state itself (𝑁 raw

𝐶
). The

results are shown in Table 1. In the second set of experiments,
we kept the pseudocount novelty measure, but now computed it
based on the same features that are used by the heuristic evaluation
function in each domain (𝑁 eval

𝐶
). Table 2 shows the results. In the

third group of experiments finally, we used the evaluation-based
novelty measure of Subsection 3.1.1, again computed on raw states
(𝑁 raw

𝐸
). The results are given in Table 3.

We can summarize the results with three observations. First,
novelty-enhanced exploration seems to be promising in principle:
It led to statistically significant improvements over vanilla UCB1
selection in 14 out of 24 conditions. Second, it seems to be more
promising when higher search budgets are available: Only 4 of
12 conditions at 1000 simulations per move are improved, but 10
of 12 conditions at 5000 simulations per move. And interestingly,
differences between domains and search budgets were relatively
robust to the choice of novelty measure. Whether novelty helps or
not seems to depend more on the domain and/or the evaluation
function used – possibly on how frequently it is misleading – than
on the precise technique chosen for computing novelty.

As expected, the optimal values for 𝛼 and 𝛽 determined by our
experiments tended to be higher for conditions where novelty has
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Table 1: Winrate of MCTS using raw-state pseudocount nov-
elty (𝑁 raw

𝐶
) vs. baseline MCTS

Game simulations/move

1000 5000

Connect 4 59.5% 64.1%
Othello 48.8% 51.7%
Breakthrough 52.7% 59.9%
Knightthrough 49.3% 55.9%

Table 2: Winrate of MCTS using feature-based pseudocount
novelty (𝑁 eval

𝐶
) vs. baseline MCTS

Game simulations/move

1000 5000

Connect 4 51.1% 63.1%
Othello 50.5% 52.8%
Breakthrough 49.6% 57.7%
Knightthrough 53.2% 53.4%

Table 3: Winrate of MCTS using raw-state evaluation nov-
elty (𝑁 raw

𝐸
) vs. baseline MCTS

Game simulations/move

1000 5000

Connect 4 58.0% 65.3%
Othello 51.2% 49.2%
Breakthrough 50.6% 57.6%
Knightthrough 52.9% 54.9%

a stronger positive effect, and zero or close to zero for conditions
where novelty does not help, minimizing its effect. For example,
𝑁 raw
𝐶

in Connect 4 at 1000 simulations per move worked best with
𝛼 = 2 and 𝛽 = 0.01, while for Othello 𝛼 = 0.003 and 𝛽 = 0.0006
were returned by our optimization. The algorithms were not very
sensitive to these parameters, and sometimes using a higher 𝛼
or using a higher 𝛽 even seemed interchangeable to a degree, as
they both increase the influence of novelty. While in Connect 4
at 1000 simulations, as just mentioned, 𝛼 was much higher than
𝛽 for example, the opposite was true for Breakthrough at 5000
simulations with 𝛼 = 0.02 and 𝛽 = 1 – with similar performance.
Note however that comparisons of the absolute values of these
parameters in different domains are difficult, as they depend on
the variance of the heuristic evaluation function used: When all
heuristic values fall between 0.499 and 0.501, a very small weight to
a novelty score can already make a large difference when choosing
moves.

5 CONCLUSIONS AND FURTHERWORK
In this preliminary work, we tested three different state novelty
measures with the goal of improving the exploration behavior of
MCTS. Results in several board games were promising.

Our method of linearly combining novelty scores with MCTS
value estimates exposes a nuance that may be more subtle than
using novelty as an added reward bonus in the literature on intrinsic
motivation, or as the sole objective in evolutionary search: novelty
is here exploited as a heuristic value estimate. We compute this
novelty-as-a-value-estimate as a sort of prior, and combine it with
the regular action value estimates of the MCTS tree using a weight
factor. This weight factor decays to zero as online observations
replace the prior that biases the exploration of search. With novelty
providing a form of online generalization for uncertainty, it appears
complementary to the exploration/uncertainty term of UCB1 when
sufficiently many samples are available.

Future work includes the testing of additional novelty measures,
and scaling up to more, and more varied, test domains. Time-
controlled experiments should be conducted in order to take the
overhead of the different novelty computations into account, not
just their sample efficiency. Multiple types of novelty could be
combined during search in order to exploit different ways of gen-
eralizing uncertainty online, for example as in Multiple Estimator
MCTS [3]. Novelty could also be compared to, and combined with,
a variety of MCTS enhancements that generalize value online, such
as for example RAVE and its variants [9], MAST/PAST/FAST [7],
or OMA [2].

Furthermore, it would be interesting to examine the relationship
between the quality of the heuristic evaluation function (state value
estimator), and the usefulness of novelty-enhanced search. Perfect
value estimates would of course make search and exploration un-
necessary; and novelty is meant to help in particular with deceptive
and misleading heuristics, whose gradients do not necessarily lead
the agent (directly enough) to its goal [13]. In first experiments with
MCTS guided by random rollouts instead of evaluation functions,
we did not find novelty to work for any of the tested domains – even
though the random-rollout-guided MCTS players are far weaker
than the ones guided by heuristic value estimates. This deserves
further study.

Future work could also shed light on whether novelty-based ap-
proaches can improve the exploration behavior of MCTS guided by
neural networks, such as in the AlphaZero or MuZero frameworks
[21, 23]. Here, novelty could potentially help improve both learning
and planning performance.
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