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ABSTRACT
Hyper-Heuristics is an active research field that aims to automati-
cally select (or generate) the best low-level heuristic in each step of
the search process. This work investigates a Hyper-Heuristic with
a Deep Q-Network (DQN) selection strategy and compares it with
two state-of-the-art approaches, namely the Dynamic MAB and the
Fitness-Rate-Rank MAB. The experiments conducted on two do-
mains from the HyFlex framework showed that the DQN approach
outperformed the others on the Vehicle Routing Problem and was
competitive on the Traveling Salesman Problem. This indicates that
the DQN is a robust selection strategy that is less sensitive to the
domain than the MAB based approaches.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning; Search
methodologies;

KEYWORDS
Hyper-Heuristic, Reinforcement Learning, Combinatorial Optimiza-
tion

ACM Reference Format:
Augusto Dantas, Alexander Fiabane do Rego, and Aurora Pozo. 2021. Us-
ing Deep Q-Network for Selection Hyper-Heuristics. In 2021 Genetic and
Evolutionary Computation Conference Companion (GECCO ’21 Compan-
ion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3449726.3463187

1 INTRODUCTION
Real-world complex optimization problems often rely on heuris-
tic approaches to achieve a good feasible solution in a reasonable
computational time [2]. However, their performance heavily de-
pends on problem-specific configurations, meaning that a domain
knowledge is required for adapting them on new applications [17].

Because of that, in the past decade many researchers turned their
attention toHyper-Heuristics (HH) [6]. Besides offering competitive
results against problem-specific heuristics, HHs also aim at being
generalized approaches that deliver good solutions across different
domains [3].
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As a search methodology, HHs explore the search space of low-
level heuristics (e.g., evolutionary operators) [3]. Throughout an
iterative process, at each step of the search, a selection Hyper-
Heuristic chooses a heuristic and applies it to the current solution.
Then, it accepts or rejects the new solution according to an accep-
tance criteria. To avoid getting stuck into local optima solutions,
good HHs must know which is the appropriate low-level heuristic
to explore a different area of the search space at the time [3].

According to Burke et al. [3], HHs can be classified by its source
of learning feedback, which can be online, offline, or no-learning.
This work focuses on online approaches, which are usually achieved
by the use of Reinforcement Learning (RL) or meta-heuristic algo-
rithms as high level search engine [3].

There are several RL based selection strategies for Hyper-
Heuristics in the literature. Some of them use the received feedback
to update a probability vector that controls the selection (e.g., Prob-
ability Matching (PM) and Adaptive Pursuit (AP) [8]). Others are
based on selection rules that aim at tackling the exploration ver-
sus exploitation dilemma (e.g., Choice Function and Multi Armed
Bandit based strategies [8]).

In this work, we investigate a selection Hyper-Heuristic that uses
a Deep Q-Network to choose the heuristics. The selection agent is
updated while solving an instance using the Q-learning algorithm
[16] with an Artificial Neural Network as function approximator
[14]. In this way, we model the task of selecting the low-level heuris-
tics as a Markov Decision Process (MDP) [12], which implicates
that the decision of the agent is made based on the current observed
state representation. The advantage of using a state based approach
is that the selection strategy can learn a pattern that identifies the
proper heuristics for the current search behavior, instead of only
relying on the current operator probabilities.

We compare this approach with two state-of-the-art MAB based
selection rules, namely the Dynamic MAB (DMAB) [4] and the
Fitness-Rate-Rank MAB (FRRMAB) [10]. The MAB problem can be
seen as a special case of Reinforcement Learning with only a single
state [14], thus contrasting with the MDP state representation. We
perform experiments using the problems and heuristics from the
Hyper-Heuristics Flexible framework (HyFlex) [11].

There is a large literature on the use of MAB strategies for selec-
tion HHs. In an investigative approach, Almeida et al. [5] compared
three MABs: FRRMAB, Restless MAB, and Contextual MAB. They
considered four crossovers and two mutations operator of the ge-
netic algorithm and performed tests on the bi-objective Permutation
Flow Shop Problem. Similarly, Ferreira et al. [7] compared the Slid-
ing Window MAB and the FFRMAB with their proposal variant
Fitness-Rate-Average MAB. They conducted the experiments on
the HyFlex problem domains, presenting competitive results. MAB
based strategies are also employed as the selection mechanism on
more elaborate HH algorithms. Soria-Alcaraz et al. [13] proposed
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an Iterated Local Search (ILS) based HH that uses the Dynamic
MAB to select the move operator during the local search phase. The
reported results on the VRP domain from HyFlex demonstrated
that the DMAB is a powerful selection strategy for HHs.

Moreover, there are a few works that define a state representa-
tion for a Reinforcement Learning based HH. Handoko et al. [9]
defined a discrete state space that relates to fitness improvement
and diversity level. Then, a tabular Q-learning [16] is used to update
the state-action values and select among the crossover operator of a
evolutionary algorithm. The experimental results demonstrate that
this approach is competitive with classical credit assignment mech-
anisms (AP, PM and MAB), while being less sensitive to the number
of operators. Similarly, Teng et al. [15] defined a continuous state
space that includes additional information about the population
and its offspring. Then, a Self-organizing Neural Network is trained
offline to select the crossover operator. The performance of this
approach was competitive with other selection mechanisms and
even better on some instances, thus highlighting the advantages of
using a state-based selection mechanism. In contrast to these works,
this paper investigates the use of an online learning selection agent
through Q-learning, but with a continuous state representation.

The remainder of this paper is organized as follows: in Sect. 2 we
describe the selection strategies performed during the experiments,
including our DQN-based approach. The experimental setup and
results are given in Sects. 3 and 4, respectively. Finally, we draw
some conclusions and indicate future works in Sect. 5.

2 SELECTION STRATEGIES
This section details the three selection strategies compared in this
work. Both MAB strategies use the same selection rule (Upper
Confidence Bound [1]). The state representation of DQN is based
on the sliding window strategy from FRRMAB.

2.1 Dynamic Multi-Armed Bandit
A MAB framework is composed of N arms (e.g., operators) and
a selection rule for selecting an arm at each step. The goal is to
maximize the cumulative reward gathered over time [13]. Among
several algorithms to solve the MAB, the Upper Confidence Bound
(UCB) [1] is one of the most known in the literature, as it provides
asymptotic optimality guarantees. The UCB chooses an action based
on the following rule

𝑝𝑖,𝑡 +𝐶

√√
2𝑙𝑜𝑔(∑𝑁

𝑗=1 𝑛 𝑗,𝑡 )
𝑛𝑖,𝑡

(1)

where 𝑛𝑖,𝑡 is the number of times the 𝑖𝑡ℎ arm has been chosen,
and 𝑝𝑖,𝑡 the average reward it has received up to time 𝑡 . The scaling
factor 𝐶 gives a balance between selecting the best arm so far (𝑝𝑖,𝑡 ,
i.e., exploitation) and those that have not been selected for a while
(second term in the Eq. 1, i.e., exploration).

However, the UCB algorithm was designed to work in static
environments. This is not the case in the Hyper-Heuristic context,
where the quality of the low-level heuristics can vary along the
HH iterations [8]. Hence, the Dynamic MAB, proposed by [4], in-
corporates the Page-Hikley (PH) statistical test to deal with this
issue. This mechanism resembles a context-drifting detection, but

is related to the performance of the operators throughout the exe-
cution of the algorithm. Once a change in the reward distribution
is detected, according to the PH test, the DMAB resets the empiri-
cal value estimates and the confidence intervals (𝑝 and 𝑛 in Eq. 1,
respectively) of the UCB [4].

2.2 Fitness-Rate-Rank Multi-Armed Bandit
The Fitness-Rate-Rank MAB [10] proposes the use of Fitness Im-
provement Rate (FIR) to measure the impact of the application of
an operator 𝑖 at time 𝑡 , which is defined as

𝐹𝐼𝑅𝑖,𝑡 =
𝑝 𝑓𝑖,𝑡 − 𝑐 𝑓𝑖,𝑡

𝑝 𝑓𝑖,𝑡
(2)

where 𝑝 𝑓𝑖,𝑡 is the fitness value of the original solution, and 𝑐 𝑓𝑖,𝑡
is the fitness value of the offspring.

Moreover, the FFRMAB uses a sliding window of size𝑊 to store
the indexes of past operators, and their respective FIRs. This sliding
window is organized as a First-in First-out (FIFO) structure and
reflects the state of the search process. Then, the empirical reward
𝑅𝑒𝑤𝑎𝑟𝑑𝑖 is computed as the sum of all FIR values for each operator
𝑖 in the sliding window.

In order to give an appropriate credit value for an operator,
the FRRMAB ranks all the computed 𝑅𝑒𝑤𝑎𝑟𝑑𝑖 in descending order.
Then, it assigns a decay value to them based on their rank value
𝑅𝑎𝑛𝑘𝑖 and on a decaying factor 𝐷 ∈ [0, 1]

𝐷𝑒𝑐𝑎𝑦𝑖 = 𝐷𝑅𝑎𝑛𝑘𝑖 × 𝑅𝑒𝑤𝑎𝑟𝑑𝑖 (3)
The D factor controls the influence for the best operator (the

smaller the value, the larger influence). Finally, the Fitness-Rate-
Rank (FRR) of an operator 𝑖 is given by

𝐹𝑅𝑅𝑖,𝑡 =
𝐷𝑒𝑐𝑎𝑦𝑖∑𝑁
𝑗=1 𝐷𝑒𝑐𝑎𝑦 𝑗

(4)

These 𝐹𝑅𝑅𝑖,𝑡 values are set as the value estimate 𝑝𝑖,𝑡 in the UCB
equation (1). Also, the 𝑛𝑖,𝑡 values considers only the amount of
time that the operator appears in the current sliding window. This
differs from the traditional MAB and other variants such as the
DMAB, where the value estimate 𝑝𝑖,𝑡 is computed as the average
of all rewards received so far.

2.3 Deep Q-Network
The classic Q-learning algorithm keeps a table that stores the Q-
values (the estimate value of performing an action at current state)
of all state-action pairs [16]. This table is then updated accordingly
to the feedback the agent receives upon interacting with the envi-
ronment. However, in a continuous state space, keeping the Q-table
is not feasible due to the high dimensionality of the problem [14].
Instead, we can use a function approximation model (called the
Q-model) that gives the estimate Q-values. In DQN, the Q-model is
defined by an Artificial Neural Network (ANN), in which the inputs
are the current observed state representation, and the output layer
yields the predicted Q-values for the current state-action pairs.

With these estimate Q-values, the agent selects the next action
(low-level heuristic) according to its exploration policy. We used
the 𝜖-greedy policy, that selects a random action with probability
𝜖 , and selects the action with the highest Q-value with probability
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1 − 𝜖 . Thus, 𝜖 is a parameter that controls the degree of exploration
of the agent and is usually set to a small value [14].

After performing the action, receiving the reward and observing
the next state, the Q-model is updated by running one iteration
of gradient descent on the Artificial Neural Network, with the
following target value

target = reward + 𝛾 max
𝑎′

𝑄
(
𝑠 ′, 𝑎′

)
(5)

where 𝑠 ′ is the next state after performing the action, and
max𝑎′ 𝑄 (𝑠 ′, 𝑎′) is the highest Q-value of all possible actions from
state 𝑠 ′. The discount factor 𝛾 controls the influence of the future
estimate rewards.

We defined the state representation as the normalized average
rewards of each operator. For this, we used the same sliding window
structure from FRRMAB. Hence, if we have 10 available low-level
heuristics, for example, the state is represented as a vector of 10
values ranging [0,1]. The idea is to investigate if the past observed
rewards can be representative enough to allow the DQN to learn a
proper selection policy.

3 EXPERIMENTAL SETUP
We employed the three selection strategies under a standard se-
lection Hyper-Heuristic algorithm, as shown in Algorithm 1. Iter-
atively, it selects and applies a low-level heuristic on the current
solution and computes the reward. Then, the acceptance criteria
decides if the new solution is accepted and, at last, the HH calls the
update method of the corresponding selection model.

Algorithm 1: Selection Hyper-Heuristic
Input: A initial solution 𝜙 with size 𝑛
Output: The best found solution
repeat

heuristic← SelectHeuristic()
𝜙′ ← ApplyHeuristic(𝜙, heuristic)
reward← GetReward(f(𝜙), f(𝜙′))
if AcceptSolution(𝜙′) then

𝜙 ← 𝜙′

end
UpdateSelectionModel(reward)

until stopping criteria is not met

The reward is defined as the FIR value (Eq. 2) and was kept the
same for all selection strategies. Since our goal is to investigate the
learning ability of the selection strategies, the acceptance criteria
accepts all solutions. In this way, the actions of the agent always
reflects a change in the environment.

We conducted the experiments on two problems from the HyFlex
Framework [11], the Traveling Salesman Problem (TSP) and the
Vehicle Routing Problem (VRP). The HyFlex provides 4 types of low-
level heuristics for each problem: mutational, ruin-and-recreate,
local search and crossover. We included all of them, except the
crossover group, into the selection pool. In this way, there are 9
heuristics available for the TSP, and 8 for the VRP. We refer to the
documentation for more details about these heuristics [11].

We executed each selection strategies 31 times on every instance
with different random seeds (10 TSP and 10 VRP instances). We
set the stopping criteria as 300 seconds of CPU running time on a
Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz. The source-code and
the data (such as the parameters configuration) will be available.

4 RESULTS AND DISCUSSION
We compared the results obtained by each approach on every in-
stance using the Friedman hypothesis test and a pairwise post-hoc
test with the Bergmann correction. Figure 1 shows that the DQN se-
lection strategy outperformed the others with statistical difference
(at 95% confidence level). Meanwhile, both MAB strategies were
statistically equivalent considering all VRP and TSP instances.

Figure 1: Friedman rankingwith pairwise statistical test (𝑝 <

0.05). The smaller the rank, the better. The connected lines
indicate the approaches that are statistically equivalent

Additionally, we also compared their performance by individual
instances. Table 1 reports the average and standard deviation of
the best solution found by each selection strategy in the 31 runs.
Bold values indicate that the corresponding approach achieved a
better performance with statistical difference, and gray background
highlights all approaches that were statistically equivalent to the
approach with the best rank at that instance. For this, we applied a
Kruskal-Wallis hypothesis test on the whole sample, followed by a
pairwise Dunn’s test using the approach with the best rank (lowest
average) as the control, considering a confidence level of 95%.

As we can observe, the DQN selection strategy was the best
approach on the VRP instances, outperforming the others on 9
out of 10 instances. Meanwhile, for the TSP instances the DMAB
strategy achieved better results. However, the DQN was still able
to beat it on 1 instance and to be statistically equivalent on 3 other
instances. This shows that the DQN can be more stable regarding
the problem domain.

In fact, the DQN achieved results with less variant distributions
on most instances. Figure 2 shows the distribution of the found
solutions by all approaches on some selected instances. Figure 2a
shows that even on the VRP instance where the DQN did not outper-
form the FRRMAB, it presented less variance. Figure 2b highlights
the big advantage that DQN achieved on the larger VRP instances.
Meanwhile, Figures 2c and 2d shows that the DQN were also more
stable on the TSP instances where it was better or equivalent to the
MAB approaches.

5 CONCLUSION AND FUTUREWORKS
This paper investigates the use of Deep Q-Network for selecting
heuristics under a simple Hyper-Heuristic algorithm. We compared
this approach with two state-of-the-art selection strategies based on
Multi-Armed Bandit. We conducted experiments on two problem
domains from the HyFlex Framework: Traveling Salesman Problem
and Vehicle Routing Problem. The results showed that the DQN
was able to outperform the others on the VRP and be competitive
on the TSP, thus highlighting the stability of the approach.
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Table 1: Average (and standard deviation) results of each approach on every instance. Gray cells indicate statistical equivalence
(𝑝 < 0.05) and bold values mean the approach outperformed the others

Instance DMAB DQN FRRMAB
VRP-R106 18197.53 (505.2) 15218.17 (361.84) 17364.95 (470.25)
VRP-R201 6687.58 (256.58) 6242.36 (299.0) 6136.91 (327.37)
VRP-RC207 5660.12 (69.08) 5283.58 (34.73) 5512.13 (41.16)
VRP-RC103 16688.23 (502.44) 14393.77 (283.84) 15841.86 (37.09)
VRP-R101 25823.02 (551.51) 21695.33 (253.92) 24502.68 (471.45)
VRP-R1_10_1 244992.11 (4287.55) 184949.94 (2371.5) 238701.77 (3034.91)
VRP-RC2_10_1 111955.36 (2367.44) 73007.29 (1911.51) 100931.69 (2736.13)
VRP-RC1_10_5 222961.69 (2928.4) 170396.88 (1681.64) 211305.28 (3506.5)
VRP-C1_10_1 361489.34 (5239.53) 229452.75 (10321.13) 353573.25 (5041.99)
VRP-C1_10_8 315320.2 (4759.64) 207166.83 (4454.09) 309303.99 (5272.82)
TSP-rat783 9083.56 (8.03) 9142.91 (17.01) 9184.83 (15.0)
TSP-usa13509 23362208.03 (511453.42) 23891901.99 (1358305.32) 25053111.68 (151623.85)
TSP-u2152 72642.16 (554.91) 72978.04 (813.04) 78817.99 (1121.79)
TSP-pr299 48640.43 (95.54) 49266.58 (217.65) 49950.87 (321.47)
TSP-rat575 6954.3 (7.83) 6995.99 (12.4) 7023.34 (14.92)
TSP-pcb1173 59157.25 (106.0) 59771.29 (214.07) 61332.71 (205.04)
TSP-pr439 115080.16 (1700.91) 113408.47 (1154.81) 135922.79 (3307.8)
TSP-d1291 62049.33 (1272.44) 61478.9 (1415.23) 62119.02 (1515.55)
TSP-d18512 684357.59 (2142.31) 704437.29 (31325.38) 792899.46 (3327.09)
TSP-u724 42914.55 (79.12) 43290.67 (118.07) 43667.19 (119.84)

(a) VRP-R201 (b) VRP-C1_10_8

(c) TSP-pr439 (d) TSP-d1291

Figure 2: Boxplot distributions of the objective values achieved by each approach. The smaller the box, the better (less variance)

The main goal of using DQN instead of MAB is to take advantage
of a Markovian state representation. In this work, we used the
reward information to define the states. In future works, we want
to expand the study to use different metrics for representing the
search state, like those from Fitness Landscape Analysis. Moreover,
with a well-defined MDP, we can investigate the use of other novel

reinforcement learning strategies, such as policy optimization and
actor-critic models.
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