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ABSTRACT
Model-based Relative Entropy Policy Search (MORE) is a population-
based stochastic search algorithm with desirable properties such as
a well defined policy search objective, i.e., it optimizes the expected
return, and exact closed form information theoretic update rules.
This is in contrast with existing population-based methods, that
are often referred to as evolutionary strategies, such as CMA-ES.
While these methods work very well in practice, the updates of the
search distribution are often based on heuristics and they do not
optimize the expected return of the population but instead implic-
itly optimize the return of elite samples, which may yield a poor
expected return and unreliable or risky solutions. We show that
the MORE algorithm can be improved with distinct updates based
on coordinate ascent on the mean and covariance of the search
distribution, which considerably improves the convergence speed
while maintaining the exact closed form updates. In this way, we
can match the performance of elite samples of CMA-ES while also
showing a considerably improved performance of the sample av-
erage. We evaluate our new algorithm on simulated robotic tasks
and compare to the state of the art CMA-ES.

CCS CONCEPTS
• Computer systems organization → Robotics; • Computing
methodologies → Continuous space search; Machine learn-
ing algorithms; Continuous space search.
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1 INTRODUCTION
Many problems in robotics can be formulated as episodic, open-
loop tasks, such as peg-in-a-hole, ball-in-a-cup or hitting a ball in
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robotic table tennis [2, 6]. However, they are not easy to be tackled
with standard reinforcement learning approaches as the control
frequency can be high and rewards non-Markovian, i.e., they have
to be computed over whole movement trajectories.

One way to solve these problems is to use movement primitives
such as Dynamical Movement Primitives [5] as a low dimensional
way to parameterize trajectories. A trajectory is then described by a
set of basis functions and a weight matrix that shapes the trajectory.
The goal of the learning algorithm is to find a probability distribu-
tion over the policy’s parameters (e.g. the weight matrix) that 1)
maximizes the reward while 2) being robust towards perturbations
of the parameters.

A class of algorithms to approach these problems are stochastic
search algorithms [4, 7, 9]. The only information available to the
algorithm are the function evaluations as usually no gradient infor-
mation is available. Individual solution candidates are sampled from
a search distribution which is typically chosen to be a multivariate
normal distribution where the mean and covariance constitute the
set of parameters to be optimized by the search algorithm.

In this paper, we re-visit and improve Model-based Relative En-
tropy Stochastic Search (MORE) [1]. The key idea behind MORE
is to approximate the objective function with a surrogate model
which allows for exact closed form updates. The search distribu-
tion is updated based on the surrogate model’s parameters under
information-theoretic constraints. Originally, a bound on the loss
of entropy between iterations is supposed to ensure that the algo-
rithm won’t converge prematurely. Instead, we apply a coordinate
ascent strategy which results in independent updates for the mean
and covariance and only slowly update the covariance. Addition-
ally, we take inspiration from the Covariance Matrix Adaptation -
Evolutionary Strategies (CMA-ES) [4], one of the state-of-the-art
stochastic search algorithms, which makes use of an entropy con-
trol mechanism in form of the step-size update. We include the
step-size update into the MORE optimization and augment the al-
gorithm with an adaptive entropy adaptation based on an evolution
path (a smoothed sum over previous mean updates).

One benefit of MORE compared to CMA-ES in the policy search
context is the objective it optimizes. While CMA-ES has no defined
objective and mainly cares about finding one particular parame-
ter vector that "works well", MORE optimizes an expectation of
the reward under the current policy distribution over parameters.
Optimizing the expectation can take into account uncertainties in
execution which is especially useful in real world robot learning
since badly behaving policies can result in damaging a robot.

We empirically evaluate our algorithm on two simulated robotics
tasks.
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2 COORDINATE ASCENT MORE
The goal of MORE is to find a search distribution (or policy) 𝜋 that
maximizes the expectation of an objective function 𝑓 (𝒙), 𝒙 ∈ R𝑘 .
This is achieved by an iterative process of sampling and updating
the policy’s parameters under information-theoretic constraints.
Using a quadratic surrogate 𝑓 (𝒙) ≈ 𝑓 (𝒙) = −1/2 𝒙T𝑨𝒙 + 𝒙T𝒂 + 𝑎0
allows for exact closed form updates if the search distribution is
Gaussian.

In our new algorithm Coordinate Ascent MORE with Step Size
Adaption (CAS-MORE), we parameterize the covariance as 𝚺 = 𝜎2𝑪
with an additional step-size parameter 𝜎 which scales the covari-
ance matrix 𝑪 . This parameter controls the overall entropy of the
distribution and has an additional benefit on the numerical stability
of the matrix operations. We employ a coordinate ascent strategy
on the following optimization problem for the mean, the covariance
matrix, and the step size which allows for setting different bounds
on each of the components.

maximize
𝜋

∫
𝒙
𝜋 (𝒙) 𝑓 (𝒙)dx

subject to KL(𝜋 (𝒙) ∥ 𝜋𝑡 (𝒙)) ≤ 𝜖

We additionally incorporate an adaptive entropy control mechanism
based on previous updates of the search distribution.

Let the current policy be 𝜋𝑡 (𝒙) = N(𝒙 | 𝝁𝜋𝑡 , 𝜎𝜋𝑡 𝑪𝜋𝑡 ) and the
new policy 𝜋 (𝒙) = N(𝒙 | 𝝁𝜋 , 𝜎𝜋𝑪𝜋 ). Where unambiguous, we
leave out the subscript 𝜋 for easier notation. After inserting the
quadratic model, the integral in the objective can be solved in closed
form and written as∫

𝒙
𝜋 (𝒙) 𝑓 (𝒙)dx = −1

2
𝝁T𝑨𝝁 − 1

2
tr(𝑨𝜎2𝑪) + 𝝁T𝒂 + 𝑎0

where we can leave out 𝑎0 since it has no influence on the opti-
mal parameters 𝝁, 𝑪 and 𝜎 . The KL divergence between the two
distributions can also be written in closed form and is given by

KL(𝜋 (𝒙) ∥ 𝜋𝑡 (𝒙)) =
1
2

{
(𝝁𝑡 − 𝝁)T (𝜎2𝑡 𝑪𝑡 )−1 (𝝁𝑡 − 𝝁)

+𝜎
2

𝜎2𝑡
tr(𝑪−1

𝑡 𝑪) − 𝑘 + log |𝜎2𝑡 𝑪𝑡 | − log |𝜎2𝑪 |
}
.

The optimization problems can be solved using a non-linear opti-
mization algorithm such as L-BFGS using the method of Lagrangian
multipliers.

2.1 Updating the Mean
We start updating the mean by setting 𝜎 = 𝜎𝑡 and 𝑪 = 𝑪𝑡 and in-
troducing a bound 𝜖𝜇 to limit the change of the mean displacement.
The optimization problem is given by

maximize
𝜋

∫
𝒙
𝜋 (𝒙) 𝑓 (𝒙)dx

����
𝜎=𝜎𝑡 ,𝑪=𝑪𝑡

subject to KL(𝜋 (𝒙) ∥ 𝜋𝑡 (𝒙)) |𝜎=𝜎𝑡 ,𝑪=𝑪𝑡
≤ 𝜖𝜇

The optimal solution 𝝁∗ in terms of the Lagrangian multiplier 𝜆 is
then given by

𝝁∗ = (𝜆(𝜎2𝑡 𝑪𝑡 )−1 +𝑨)−1 (𝒂 + 𝜆(𝜎2𝑡 𝑪𝑡 )−1𝝁𝑡 )

2.2 Updating the Covariance Matrix
Next, we set 𝝁 = 𝝁𝑡 and𝜎 = 𝜎𝑡 and solve the following optimization
problem

maximize
𝜋

∫
𝒙
𝜋 (𝒙) 𝑓 (𝒙)dx

����
𝝁=𝝁𝑡 ,𝜎=𝜎𝑡

subject to KL(𝜋 (𝒙) ∥ 𝜋𝑡 (𝒙)) |𝝁=𝝁𝑡 ,𝜎=𝜎𝑡 ≤ 𝜖𝐶

The optimal solution 𝑪∗ can be found analogously and is given by

𝑪∗ = 𝜈 (𝜈𝑪−1
𝑡 + 𝜎2𝑡 𝑨)−1 .

where 𝜈 is again a Lagrangian multiplier.

2.3 Updating the Step Size
Last, we apply the same technique as before to update the step size.
We set 𝝁 = 𝝁𝑡 and 𝑪 = 𝑪𝑡 and solve

maximize
𝜋

∫
𝒙
𝜋 (𝒙) 𝑓 (𝒙)dx

����
𝝁=𝝁𝑡 ,𝑪=𝑪𝑡

subject to KL(𝜋 (𝒙) ∥ 𝜋𝑡 (𝒙)) |𝝁=𝝁𝑡 ,𝑪=𝑪𝑡
≤ 𝜖𝜎

The optimal solution 𝜎∗ is given by

𝜎∗ =

√√√
𝛼𝑘

𝛼𝑘

𝜎2
𝑡

+ tr(𝑨𝑪𝑡 )

with Lagrangian multiplier 𝛼 .

2.4 Incorporating an Evolution Path
It can be shown that optimizing the expectation inMORE’s objective
always leads to the entropy of the search distribution becoming
smaller. However, sometimes a slower decrease or even an increase
in entropy is beneficial to the overall optimization process. To this

end, we track consecutive mean updates𝒘 = 𝑪
− 1
2

𝜋𝑡 /2𝜖𝜇𝜎𝑡 (𝝁𝑡+1 − 𝝁𝑡 )
and summarize them in an evolution path 𝒆𝑡+1 = 𝑐𝜎 𝒆𝑡+𝒘 . The factor
𝑪

− 1
2

𝜋𝑡 /2𝜖𝜇𝜎𝑡 ensures ∥𝒘 ∥ ≤ 1. The length of 𝒆 is an indicator of the
correlation between consecutive mean updates. A long evolution
path is the result of several update steps in the same direction
meaning that one larger step could have been sufficient, while a
short evolution path is the result of having no clear update direction
(see also [4]. In the first case, we want to increase the entropy
to allow for larger steps, while in the second case we want to
decrease entropy to find a meaningful update direction. The change
in entropy is given by 𝛽 = 𝑝 (1 − ∥𝒆𝑡+1 ∥/𝑒des) where 𝑒des is a desired
length of a fully uncorrelated evolution path vector and 𝑝 a gain
factor. The adapted step size is given by 𝜎𝑒 = 𝜎∗ exp (−𝛽/𝑘).

2.5 Learning a Quadratic Model
The original MORE algorithm uses a Bayesian dimensionality re-
duction method to estimate the model parameters of the surrogate
which proved to be brittle and time consuming. Instead, we propose
to learn the model with standard ridge regression, augmented by
several data pre-processing techniques. We apply whitening to the
samples, normalization of the design matrix and a special mean and
standard deviation normalization to the function values where we
normalize with the mean and standard deviation of the top 50% of
the data and cap outliers below -3. This has shown to stabilize the
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(a) Peg-in-a-hole task. (b) Ball-in-a-cup task.

Figure 1: Illustrations of the two tasks.

Task 𝜖𝜇 𝜖𝐶 𝜖𝜎 𝑐𝜎 𝑝

Peg-In-A-Hole 0.5 0.005 0.001 0.9 1
Ball-In-A-Cup 0.5 0.01 0.001 0.9 1
Table 1: Hyperparameters for the tasks.

model parameter estimates especially in the case of reward func-
tions with large jumps due to penalties. Additionally, we collect old
samples in a FIFO queue buffer and start the optimization with a
linear model once sufficient data is present (usually 1.5 times the
number of parameters of the model). Finally, we reject a model if
its solution 𝑨−1𝒂 is vastly outside a feasible range of solutions.

3 EXPERIMENTS
We evaluate CAS-MORE on two robotic benchmark tasks. A peg-
in-a-hole task and the game of ball-in-a-cup. As a comparison, we
use the original formulation of MORE, Coordinate Ascent MORE
without step size adaptation (CA-MORE) and CMA-ES 1, a widely
used stochastic search algorithm. All variants of MORE use the
model learning approach as introduced in Section 2.5.

3.1 Peg-In-A-Hole
In this task, a 5-link robot arm has to reach into a narrow hole with
its endeffector. Each link has a length of 1m. The base is at position
(0, 0) and the hole is 25cm wide, 1m deep and at a distance of 2m.
An illustration of a successful trial can be seen in Figure 1a. The
trajectory is defined by a DMP where we learn 25 parameters for
a weight matrix and 5 parameters for the final joint position. The
length of a trajectory is 200 time steps which corresponds to 2s.
The reward is given as the negative final distance of the endeffector
to the bottom center of the whole minus an action cost for each
time step. If the robot collides with itself, the ground, or a wall,
an additional penalty is added to the reward and the episode is
terminated.

Results. For our evaluation, we let each algorithm sample 14 tra-
jectories per iteration. We collect samples in a buffer of size 744
(1.5 times the number of parameters in the quadratic model) and
discard older samples once it is full. Remaining hyper-parameters
are summarized in Table 1. Each algorithm is run 20 times with
different random seeds. The initial position of the robot is upright
as well as the initial goal position. We make several interesting
conclusions from our experiments. We can see from Figure 2 that

1We use the official implementation from [3]
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Figure 2: Peg-In-A-Hole Task The figure shows the median
negative reward of the mean of the search distribution on a
log scale (lower is better).
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Figure 3: Peg-In-A-Hole Task The figure shows the mean re-
ward of all samples drawn in an iteration.
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Figure 4: Peg-In-A-Hole Task The figure shows the mean ra-
tio of successful samples.

our coordinate ascent MORE algorithm converges much faster than
the original formulation of MORE. This can be attributed to the
higher bound on the mean displacement we can choose for our new
algorithm compared to the standard KL bound. While CMA-ES is
quicker to converge to a point estimate, Figure 3 shows that it only
cares about the mean of the search distribution. The samples drawn
from the search distribution are of much worse quality. Figures 4
and 5 show the ratio of samples that achieved a final distance of
0.05 or smaller and the ratio of samples that lead to penalties over
the optimization process, further illustrating this behavior.

3.2 Ball-In-A-Cup
The second task is the game of ball-in-a-cup played by a simulated
7 degrees of freedom Barrett WAM robotic arm. The trajectory
is again parameterized by a DMP with 5 basis functions and we
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Figure 5: Peg-In-A-Hole Task The figure shows the mean ra-
tio of samples where penalties occurred (lower is better).

actuate only the three joints that move the robot in the x-z plane.
We choose the goal position to be the same as the start position
resulting in a 15 dimensional parameter vector to be learned. The
cost in this task is given as the distance of the ball to the bottom of
the cup at the end of an episode plus the smallest distance of the
ball to the central opening of the cup and the deviation of the cup to
an upright position to encourage the cup to be upright and the ball
to actually enter the cup and not simply touch it with its bottom.
The reward is chosen to be the exponential of the negative cost
plus an action penalty for each time step and a penalty whenever
the robot goes into joint limits or collides with itself. A trajectory
is deemed to be successful if no penalty occurs and the ball is in the
cup at the end of an episode. We use mujoco [8] for the physical
simulation of the robot. An illustration of the task can be seen in
Figure 1b.

Results. For this experiment, we run 10 individual trials with CMA-
ES and our new MORE algorithm. The weight matrix of the DMP
is initialized with zeros meaning the task needs to be learned from
scratch. In each iteration we sample 12 new weight matrices and
evaluate the resulting trajectories and we keep the last 204 samples
in the buffer (other hyper-parameters are shown in Table 1).

Figure 6 shows that on this task, CAS-MORE is on par with
CMA-ES in terms of convergence speed and again chooses better
samples during optimization (Figure 7). Upon visual inspection, the
solutions found by CAS-MORE also show amore natural movement
(probably as it further optimizes the energy cost) compared to CMA-
ES. We can see the same behavior as in the previous experiment in
the success rate of the samples drawn from the search distribution
as well as the percentage of samples that lead to violations of joint
limits or the simulation breaking (Figures 8 and 9).

4 CONCLUSION
In this paper, we proposed a new approach to the MORE algorithm
based on a coordinate ascent strategy and an adaptive entropy
regularization using an evolution path. Compared to the original
formulation, we have higher convergence speed with stable closed
form updates. Furthermore, we have an advantage over CMA-ES
as we use the actual reward values to optimize the policy and not a
ranking leading to a meaningful search distribution over parameter
values.
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Figure 6: Ball-In-A-Cup Task The figure shows the median
reward of the mean of the search distribution.
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Figure 7: Ball-In-A-Cup Task The figure shows the mean re-
ward of all samples drawn in an iteration.
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Figure 8: Ball-In-A-Cup Task The figure shows the mean ra-
tio of successful samples.
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Figure 9: Ball-In-A-Cup Task The figure shows the mean ra-
tio of samples where collisions occurred (lower is better).
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