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ABSTRACT
We investigate a hierarchical scheme for the joint optimisation of
robot bodies and controllers in a complex morphological space.
An evolutionary algorithm optimises body-plans while a separate
learning algorithm is applied to each body generated to learn a
controller. We investigate the interaction of these processes using a
weak and then strong learning method. Results show that the weak
learner leads to more body-plan diversity but that both learners
cause premature convergence of body-plans to local optima. We
conclude with suggestions as the framework might be adapted to
address these issues in future.
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1 INTRODUCTION
Automating the process of robot design is a long term goal of the
field of evolutionary robotics. Many studies now focus on the joint
optimisation of morphology and control, usually in simulation.
Approaches that operate in a morphological search-space defined
by pre-defined modules are particularly common [6, 7, 12, 14] while
increasingly the idea is being applied in soft-robotics, using voxel
based simulators [7, 8]. Recent work by Buchanan et al [1] extends
the approach to a very complex morphological space that mixes
some pre-definedmodules (sensors, wheels, joints) with a 3d printed
skeleton that can take any shape or form. Unlike the vast majority
of previous work relating to joint body-control optimisation, the
robots contain a variety of sensors, which introduces additional
challenges regarding automate design of controllers: most previous
approaches optimise controllers to produce actuation (e.g. through
the use of central pattern generators) but do not attempt to link
externally sensed information with actuation.
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Figure 1: Interaction between an evolutionary loop to evolve
body-plans and learning-loop to learn controllers

While some authors have attempted to simultaneously optimise
morphology and control, Cheney et al [3] show (in the soft-robotics
domain) that this can lead to convergence of morphology before
convergence of control, and a failure to adequately explore the
space of morphology parameters. More strongly, they suggest that
simultaneously changing morphology and control parameters can
even be counter-productive, as a controller is specialised for some
particular morphology [3]. Liao et al [10] propose that using a
hierarchical approach is preferable, in which given a batch of mor-
phologies, each robot independently learns a controller, and then
the performance of these learned prototypes influences selection
of the next generation of morphologies.

The general idea is illustrated in figure 1 and consists of two
loops. The outer loop uses an evolutionary algorithm to evolve
morphology, while the inner loop applies a learning algorithm
to each new morphology to optimise a controller. The learning
algorithm can itself be an evolutionary algorithm but alternative
algorithms have also been used, e.g. Reinforcement Learning (RL) in
[6], Bayesian Optimisation (BO) in [10]. The separation of the two
loops brings an additional advantage compared to simultaneous
optimisation when considering the co-design of robots that also
need to be fabricated: while it is extremely costly (in terms of
time and material) to generate a physical body, learning trials are
relatively computationally cheap, hence it makes sense to be able
to allocate more budget to learning controllers than bodies [10].

In this paper we investigate the interaction between morphology
evolution and controller learning in the rich morphological space
defined in [1] that includes a variety of sensors and actuators using
the hierarchical method shown in figure 1.We evaluate two forms of
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learning, used in conjunction with a single evolutionary approach
to optimise morphology. Specifically we compare a ‘strong’ form
of learning based on an evolution strategy (ES) with a weaker
form that uniformly samples controllers. The ES used is a variant
of NIPES [9] which combines novelty search with a dynamically
increasing population size and has been shown to be both sample
and time efficient. We use the most recent version [5] in which the
learning is bootstrapped wherever possible by use of an external
archive that stores the best controller found for a given ‘type’ of
robot. Type is defined by a tuple (sensors, wheels, joints)1.Using
two environments and a photo-taxis task, we investigate:

• The effect of the choice of learner on overall task perfor-
mance

• The influence of the learning method on the diversity of
morphologies explored by the evolutionary algorithm

The results raise some interesting issues regarding diversity
and convergence that will need to be addressed in the future to
make further progress towards the end-goal of autonomous robot
evolution.

2 RELATEDWORK
Cheney et al [3] first highlighted the potential issues arising through
simultaneous evolution of morphology and control. Several authors
have attempted to address these using variations on the hierar-
chical scheme given in figure 1, using a diverse range of learning
mechanisms in diverse morphological spaces.

For example, in [6], an evolutionary algorithm is used to evolve
morphologies in a design space of consisting of spheres and limbs,
using RL as the learner. Although the robots do not have "sensors",
the RL algorithmmakes use of a large amount of proprioceptive and
exteroceptive state information. They find that the system selects
for morphologies that are capable of learning faster as the algorithm
runs.

A potential drawback of the hierarchical approach is that de-
coupling the morphology and controller optimisers can prevent
information sharing between them. In [10] Bayesian Optimisa-
tion approach is used for both morphology and control loops to
design hexapod micro-robots, selected for its efficiency as all op-
timisation takes place in reality. Here, the controller optimisation
process exploits knowledge collected from optimising previous mor-
phologies, providing an information-sharing method that improves
data-efficiency by removing the need to start from scratch.

The knowledge-transfer issue was also addressed in our previ-
ous work [5] in which we proposed the use of an external archive
to store previously discovered controllers. The archive contains
discrete cells, each corresponding a specific type of robot as de-
scribed in section 1. One controller is stored corresponding to the
highest-performing controller found for the type, providing a start-
ing point for controller learning where a type has been previously
discovered. Morphology optimisation is performed using NEAT
[13] (optimising a CPPN) and the learner with NIPES [9].

Other variants also exist. In [12], simultaneous evolution is aug-
mented with learning: an evolutionary loop evolves a genome that
specifies both morphology and controller in a modular system, but

1note however that two robots of the same type may in fact have very different
skeletons and layouts of sensors/actuators

Figure 2: Top picture represents the head, joint, wheel, sen-
sor, and castor organs; bottom left picture the typical suc-
cessful robot; and bottom right a more complex robot but
unsuccessful.

Figure 3: The environments on which the experiments are
conducted. A beacon detectable by IR sensors is placed on
the target position.

each offspring is further improved by separately applying a learning
algorithm (CMA-ES) to refine the controller. [14] introduce a Graph
Heuristic Search algorithm with the goal of designing fabricable
robots: this interleaves a design phase (sampling morphologies),
an evaluation phase (optimising the controller of a single selected
robot), and a so-called learning phase which learns a heuristic func-
tion used to guide the morphology search phase.

3 METHOD AND EXPERIMENTS
We conduct experiments using the following setups of the hierar-
chical optimiser:

• The design-space consists of two types of components:
skeleton and organs (head, joint, wheel, sensor and castors)
shown in figure 2.

• Morphology is optimised using an evolutionary algorithm
described in [1] that uses a generative encoding (NEAT-
CPPN) to produce the robot’s body-plan (first creating the
skeleton then positioning organs).

• The controller for each body is a modified version of an
Elman network(ElNet)[4] (a recurrent neural network). Net-
work weights are optimised via one of two learning algo-
rithms: (1) greedy selection from a set of random controllers
generated by Latin Hyper-cube Sampling (LHS)[11] and (2)
the ES algorithm NIPES used in conjunction with an external
archive and described in [5].
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We compare two distinct schemes: morpho-evolution (ME) plus
learning using Latin Hyper-cube Sampling (MEL-LHS) and morpho-
evolution plus learning using NIPES (MEL-NIPES). Both algorithms
utilise a population of 20 body-plans.

MEL-LHS. For each body-plan generated via the ME algorithm,
100 sets of ElNet’s parameters are sampled using LHS. The fit-
ness attributed to the body-plan within the ME is the best task-
performance score obtained among the 100 ElNets. The algorithm
runs for 40 generations. Thus, one run uses 80000 evaluations (20
body-plans x 40 generations x 100 controllers).

MEL-NIPES. For each body-plan the network parameters are
optimised using NIPES. NIPES starts either from scratch or from
a controller stored in an archive [5]. This is a three dimensional
grid in which each cell correspond to a type of robot as defined in
section 1. It is filled over the course of a run with the best controller
found per type and enables learning for a previously discovered
type to be bootstrapped. NIPES has a maximum budget of 200
evaluations with two early stopping criteria: (1) task-performance
reaches a threshold of 0.95 and (2) the robot does not move during
the 50 first evaluations. MEL-NIPES runs for 20 generations2. The
maximum number of evaluations allowed is 80000 (like MEL-LHS)
but it typically uses fewer. MEL-LHS is given more generations as
the only optimisation process is the ME.

Experiments are conducted on two environments described pre-
viously in [1, 5] dubbed Hard Race and Two Rooms on a photo-taxis
task to locate a beacon (figure 3)3. The fitness assigned to each
body-plan is calculated as the normalised distance between the fi-
nal position of the robot and the position of the beacon (subtracted
from 1 to create a maximisation problem).

3.1 Results
Figure 4 compares the effect of the the two learning methods on per-
formance. It is clear that in both environments, MEL-NIPES delivers
higher task-performance and lower variance over repeated runs.
Moreover, in both environments MEL-LHS fails to find successful
solutions (≥ 0.95), despite locating a high-fitness initial solution
in both environments. However, NIPES learns rapidly, typically
overtaking MEL-LHS within 10000 evaluations.

We next consider whether changing the learner has an impact on
the extent of the morphological space explored. Table 1 summarises
the number of different types discovered by each method and the
overlap in types: overlap measures similarity between the distribu-
tions of type of all robots generated over a run. For both learners,
the number of types continues to increase throughout the optimisa-
tion process MEL-LHS delivers more types than MEL-NIPES in both
environments, and at both 20 and 40 generations. This suggests that
the stronger learner decreases the diversity of body-plans discov-
ered. However, there is considerable overlap between the two set of
robots discovered (82.5% and 93% in the hard-race and two-rooms
respectively). This suggests that MEL-LHS explores more types but
that those types do not result in high-performing robots. Neverthe-
less, the stronger learner seems to decrease the exploration power

2previously shown to be optimal for MEL-NIPES [5]
3The source code of these experiments is available at this address: https://bitbucket.
org/autonomousroboticsevolution/evorl_gecco_2021

Figure 4: Best fitness over the number of evaluations. For
MEL-NIPES, the number of evaluations is the theoretical
maximum.

Table 1: The table shows themean(std) of (1) number of types
discovered per learning and (2) Overlap between the types of
robots generated by MEL-LHS and MEL-NIPES

Types Overlap
MEL-LHS MEL-NIPES

Gens 20 40 20
HardRace 68.7 (11.5) 82.5 (17) 50.4 (9.7) 93 (3.4) %
2Rooms 63 (5.2) 73.3 (8.4) 50.2 (13.2) 82.5 (14.4) %

of the algorithm. Figure 6 summarises the type of the best robot
found in each of the 10 runs for each experiment. Note that all
experiments converge to one of 13 distinct types. NIPES tends to
converge to fewer types overall. For a given environment, there
is considerable ‘agreement’ on types between the two algorithms.
It is interesting that in the hard-race, half of the MEL-NIPES runs
converge to the same single type, but none of the MEL-LHS runs
find this, suggesting the 2-wheeled robot has a large basin of attrac-
tion for MEL-NIPES. Examples of some of the evolved robots are
shown in figure 2.

Figure 5 characterises the best robots found per generation in
terms of the three type attributes (wheels, joints and sensors). As
previously demonstrated by Cheney et al. in the voxel-based soft-
robotics domain [3], the morphology also converges very quickly to
an approximate type. With MEL-NIPES, in the hard-race, evolution
quickly converges on a type with 3 wheels in the first couple of
generations; joints are eliminated after around 7 generations; in
many runs, the best morphology found per generation contains
a single sensor. In contrast, in the two-rooms setup, sensors are
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Figure 5: The number of wheels, joints, and sensors of the best body-plan over the generations.

Figure 6: The types of the best robot found in each of the
10 runs in each environment (hard-race HR and two-rooms
2R). y-axis shows [wheels, joints, sensors]

eliminated around generation 10, while some runs maintain robots
with one joint throughout a run.

With respect to MEL-LHS, in the hard-race, the overall pattern
is similar to MEL-NIPES although with greater instability in the
evolutionary dynamics. Note that the best in generation rarely
includes a joint, likely explained by the fact that this is harder to
find a good controller. In the two-rooms setup, in contrast to MEL-
NIPES, MEL-LHS appears capable of maintaining morphologies
that include a sensor, while tending to eliminate joints. However,
given that this is a photo-taxis task, the low number of sensors
suggests that both algorithms converge to sub-optimal body-plans.
It also appears that task fitness converges around the same time as
the morphologies converge, suggesting that the learners are unable
to improve the converged morphologies further.

4 DISCUSSION AND CONCLUSION
We investigated two version of a hierarchical scheme for jointly
optimising body-plans and controllers of robots. As in the work of
Cheney et al. [3], the two algorithms studied in this article become
trapped in a local optima w.r.t morphology. The hierarchical scheme
used does not overcome this issue: this is in contrast to the findings
of [10] although here this is almost certainly due to the vastly
more complex morphological space used. MEL-LHS generates more
diversity, but still results in sub-optimal body plans. We hypothesise
that although the choice of learner clearly plays a role here, it is not
the main issue: improvements to the morpho-evolution component
of the algorithm are required as suggested in [3, 6].

The experiments described require evaluation of up to 200 body-
plans and 20000 evaluations to converge.While these are reasonable
amounts in simulation, if robots need to be fabricated and evaluation
time cannot be compressed, these numbers are impractical. Meth-
ods to address the premature convergence of body-plans will only
increase the number of body-plans requiring testing. Moreover, this
study only tackled relatively easy tasks and environments in which
wheeled solutions could be found quickly. However, we believe the
hierarchical method is worthy of further investigation. Flexibility
in allocating budget to either of the two components could allow
it to be customised to a particular context, e.g accounting for the
relative costs of body-plan fabrication vs learning trials. Equally,
the choice of optimiser for each component can be adapted to the
context: for example, Bayesian Optimisation is data-efficient[2]; RL
is a good choice handling very high dimensional spaces; ES provides
a reasonable trade-off between exploration and exploitation.
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