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ABSTRACT
Genetic algorithms (GAs) are a subclass of evolutionary algorithms

often used to solve difficult combinatorial or non-linear problems.

However, most GAs have to be configured for a particular problem

type, and even then, the performance depends on many hyperpa-

rameters and reproduction operators. In this paper, a reinforcement

learning (RL) approach is designed to adaptively set parameters

for a GA used for solving a Capacitated Vehicle Routing Problem

(CVRP). An RL agent interacts with the GA environment by taking

actions that affect the parameters governing its evolution, starting

from a given initial point. The results obtained by this RL-GA pro-

cedure are then compared with those obtained by alternate static

parameter values. For a set of benchmark problems, the solutions

obtained by the RL-GA are better (up to 11% improvement) than

those obtained for the set as compared to the alternate approach.

Examination of the results shows that the RL-GA maintains great

diversity in the population pool, especially as the iterations accrue.

Computational runs are traced to show how the RL agent learns

from population diversity and solution improvements over time,

leading to near-optimal solutions.

CCS CONCEPTS
• Theory of computation → Reinforcement learning; • Com-
putingmethodologies → Genetic algorithms;Massively par-
allel algorithms; •Applied computing→Operations research;

KEYWORDS
Reinforcement Learning, Genetic Algorithms,Vehicle Routing Prob-

lem, Heuristics, Optimization, Tuning, Design of Experiments, Par-

allelism, GPU, Acceleration

∗
Corresponding author: mabdelrazik@uri.edu

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00

https://doi.org/10.1145/3449726.3463203

ACM Reference Format:
Jose Quevedo, Marwan Abdelatti, Farhad Imani, and Manbir Sodhi. 2021.

Using Reinforcement Learning for Tuning Genetic Algorithms. In 2021
Genetic and Evolutionary Computation Conference Companion (GECCO ’21
Companion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3449726.3463203

1 INTRODUCTION
The use of Evolutionary Algorithms (EA) for solving difficult combi-

natorial optimization problems is well documented in the literature

[4, 7]. Most related heuristics or metaheuristics are tested with

benchmark problems of established complexity such as the Trav-

eling Salesman Problem (TSP) and variants, or Vehicle Routing

Problems (VRPs) and variants, among others. Genetic algorithms

(GAs) are subclass of EAs that mimic a number of reproduction fea-

tures to emulate natural (genetic) growth processes. These features

are: chromosome selection, mating, and mutation processes [8]. In

nature, survival of the species is assumed to be the main reward. In

computational methods, a typical GA algorithm generates a popula-

tion of feasible solutions (i.e., individuals or chromosomes) each of

which is evaluated by a fitness function - usually related to the ob-

jective and constraints of the problem being solved. In subsequent

iterations, chromosomes with the greatest fitness are selected for

breeding and a crossover mechanism is applied to obtain the next

generation. A mutation process is also coded to introduce diversity

within the population. Iterations continue until no improvements

are recorded for several generations. What distinguishes GAs from

other heuristic methods is that they operate on a population of

potential solutions which increases the likelihood of maintaining a

good feasible solution and eventually moving to a better one.

GAs can take many generations, and corresponding computation

time, to converge. One approach to obtain good results in acceptable

times is to parallelize the algorithm by either using multi-core CPU-

based algorithms [21], or by utilizing recent hardware advances in

graphics processing units (GPUs) [9, 11] that led to decreases in

processing times by two to three dimensions of order [1]. One of

the applications involving GAs to solve combinatorial optimization

problems can be found in the well-known VRP problems that gain

special relevance in modern logistics and supply chain operations.

VRPs involve determining optimal delivery/pick up routes for mul-

tiple vehicles through a set of locations, subject to constraints [12].

Many variants of the VRP have been studied: the capacitated VRP
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(CVRP), periodic VRP (PVRP), VRP with time windows (VRPTW)

and others. The CVRP problem is a basic form of the VRP where

the total demands of the customers serviced by a vehicle cannot

exceed its capacity, and the customers must be visited only once.

GAs have been used effectively to solve many VRP scenarios

[7, 13]. The use of GPUs for solving VRPs has also been reported

in [21, 26]. [2] presented an improved GA incorporated with a

local search algorithm for the CVRP. The proposed framework was

entirely executed on a GPU and successfully provided high-quality

solutions within reasonable computational times, and near-optimal

solutions for smaller benchmark problems.

A common problem with GAs is the premature convergence, i.e.,

the inability to escape from locally optimal, but globally subopti-

mal, solutions. This can be addressed by preserving the population

diversity, whereby a local optima can be escaped from by "jumping"

to a mutant solution substantially different from the stagnant popu-

lation. However, keeping the balance between speedy convergence

and high diversity is not easy. The selection of appropriate parame-

ter values for executing a GA for a particular class of problems is

known as the parameter tuning problem. Correctly tuning a GA is

essential for establishing a high-performing algorithm that can be

used for yielding, it is a persistent challenge for developers because

of the large number of options and the limited knowledge about

the effect of the parameters on the performance [16].

Numerous techniques for tuning GA have been reported, includ-

ing but not limited to: fuzzy logic [23], meta-EA [14] and design

of experiments (DOE) [5]. [6] proposed a factorial DOE-based ap-

proach for setting GA parameters considering the interaction of the

crossover and mutation rates. Multiple DOE methods have been

studied in [5] for tuning GA applied to the single machine total

weighted tardiness problem (TWTP). Although these methods re-

sulted in near-optimal solutions, low efficiency remains a problem.

First, solutions are obtained after many generations - this precludes

their utilization as a means of finding solution for real-time systems.

Second, the results obtained are sensitive to the values of several

GA parameters such as mutation and crossover rates and changing

these leads to instabilities of the algorithm [15]. Previous studies

with self-adaptive controllers for online parameter tuning have

improved solutions but suffer from premature convergence too[3].

RL is an effective learning-based controller that is used to deter-

mine parameter values for sequential stochastic decision problems.

The multistage decision processes have been previously imple-

mented in this domain for parameter selection by [10, 20, 22]. [19]

utilized temporal difference (TD) learning to control the mutation

step size for real-valued encodings. However, these decision models

have focused on utilizing an off-the-shelf evolutionary algorithm

and controlling a single parameter at a time (e.g., probability of per-

mutation) to mitigate estimating a large state-action model. These

deficiencies, in turn, cause patchwork issues, which are associated

with ignoring the effect of parameter interactions when solving

large-scale and dynamic real-world problems.

2 PROPOSED APPROACH
This paper introduces RL as a generic control mechanism to guide

the GA to decide multiple parameters, aiming to achieve near-

optimal results with reduced computational cost. We tune both

Figure 1: Proposed RL approach for adaptive tuning of a GA

the mutation and crossover probabilities (𝑝𝑚 and 𝑝𝑐 respectively)

simultaneously to employ decisions based on the feedback received

from the evolutionary process. More specifically, the GA environ-

ment responds to the actions taken by the RL agent, namely the

𝑝𝑚 and 𝑝𝑐 values, and generates a new population with the asso-

ciated rewards. This RL-based parameter controller improves the

performance of the algorithm towards solving large-scale and prac-

tical problems. The proposed algorithm is tested on a number of

common CVRP benchmark problems in the literature.

To evaluate the effectiveness of the proposed algorithm, we

compare the results of our proposed approach with the results

obtained by tuning the same GA using a design of experiments

(DOE) on the same problems. The tuning settings by the DOE are

the result of a two-level (2
𝑘
) full factorial design of experiment

[18] pilot runs on small scale problems which are then reflected on

medium and large problems.

3 RL-BASED PARAMETER SELECTION
The proposed framework is defined according to the Q-learning

model [17, 24, 25], which iteratively improves the off-policy method

by estimating transitions from one state-action pair to another.

Therefore, to learn the value of the current policy and to improve

it iteratively, we define RL to control GA operators as follows:

• State space: The state space (𝑆) is defined as a tuple of two

indices, namely, the change (𝐶) in the value of the best cost

from the older and the recent generation, and the diversity

index (𝐷𝐼 ) that tells the rate of the number of unique chro-

mosomes in the new generation. It’s noted from Table 1 that

the state space is of size 6 × 5 as detailed in the sequel.

• Action space: The action space defined as 𝐴, is the tuple

(𝑝𝑚, 𝑝𝑐 ), where 𝑝𝑚 and 𝑝𝑐 denote the mutation and the

crossover rate respectively. The ranges of each of these two

parameters are from 0 to 1 discretized separately into 𝑑 = 10

intervals, and therefore, create 𝑑2 = 100 possible action pairs.

• Estimated state-action:Q-learning is a values-based learn-
ing algorithm, which updates the value function (𝑄) for each
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state-action pair ((𝑆,𝐴)) in Q-table using the following Bell-

man equation:

𝑄 (𝑆 (𝑡), 𝐴(𝑡)) ← (1 − 𝛼)𝑄 (𝑆 (𝑡), 𝐴(𝑡))+
𝛼 (𝑅(𝑡) + 𝛾 max

𝐴(𝑡+1)
𝑄 (𝑆 (𝑡 + 1), 𝐴(𝑡 + 1))) (1)

The selection of an action is made based on the epsilon-

greedy policy, and this policy chooses a random action either

from the Q-table with a probability 𝜖 , or picks the greedy

action with the highest Q-value.

• Reward: The reward 𝑅 is determined based on the state 𝑆

returned from the GA environment using two indices: the

cost improvement 𝐶 and the diversity index 𝐷𝐼 . Table 1

shows the returned reward values based on different 𝐶 and

𝐷𝐼 levels. The rows in the table correspond to the possible

values of the cost improvement (𝐶); from very high change

(VHC) to very low change (VLC) as well as a stalled state

and an increase in cost; whereas the columns correspond to

five possible values for the diversity index (𝐷𝐼 ) from very

high diverse (VHD) to very low diverse (VLD).

VHD HD MD LD VLD

VHC 200 150 100 50 25

HC 150 112.5 75 37.5 18.75

LC 100 75 50 25 12.5

VLC 50 37.5 25 12.5 6.25

Stalled 0 0 -10 -20 -30

Increased -1000 -1500 -2000 -2500 -3000

Table 1: Rule table for reward values

As opposed to the conventional GA, where the mutation and

crossover rates 𝑝𝑚 and 𝑝𝑐 are fixed throughout the run, our ap-

proach depicted in Figure 1 involves an adaptive change of these

parameters. The population during the current state is denoted as

Population(𝑡 ), and its evolution to Population(𝑡 + 1) is governed
by the values of 𝑝𝑐 and 𝑝𝑚 for the current state. The GA applies

the selected values for parameters only for a fixed number of gen-

erations after which the reward is returned to the RL agent. The

expected long-term impact and the influence of the action from

this state are updated based on the reward value 𝑅. As a result, the

proposed framework preserves the best chromosomes and changes

the parameter values as the algorithm iterates. The learning rate

(𝛼) is used to control the influence of the target on the current

Q-values. Since the target is the TD between two updates by the

RL, it will be influenced by the improvement scale problem of GA.

As the GA evolves, improvements to the fitness value will taper off.

Consequently, we only consider the fitness value of the current gen-

eration. When GA is evolving, the learning rate of RL is controlled

to decrease the influence of the target on the learned Q-values to

prevent fitness decay. A complete pseudocode algorithm for the RL
part of RL-GA is given in Algorithm 1. Interested readers can clone

the functioning code from the GitHub repository
1
.

1
https://github.com/J-Que/RL-GA

Algorithm 1 RL-enabled GA for tuning the hyperparameters

Input: Population (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛): initial population at t=0

States (𝑆): {𝐶, 𝐷𝐼 }
Action (𝐴): {(𝑝𝑐0, 𝑝𝑚0), (𝑝𝑐0, 𝑝𝑚1), . . . , (𝑝𝑐99, 𝑝99)}
Reward function (𝑅): 𝑆 ×𝐴→ R
Probabilistic transition function (𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛): 𝑆 ×𝐴→ 𝑆

Parameters: {𝛿, 𝜆,𝛾, 𝜖, 𝛼}
function GA𝑅𝐿(.)

𝑄 (𝑆 (𝑡), 𝐴(𝑡)) ← initialize

while 𝑄 (𝑆 (𝑡), 𝐴(𝑡)) is not converged do
Use State Set 𝑆 (𝑡)
while 𝑡 < 𝑇 do

𝑝𝑐 ← 𝑆 (𝑡) .𝑆𝑒𝑡𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑃𝑟𝑜𝑏 ()
𝑝𝑚 ← 𝑆 (𝑡) .𝑆𝑒𝑡𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏 ()
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) .𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐺𝑒𝑛𝑒𝑠
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) .GA(𝑝𝑐 , 𝑝𝑚)
𝑅(𝑡) ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡).𝑅𝑒𝑤𝑎𝑟𝑑 ()
𝑆 (𝑡 + 1) ← 𝑆 (𝑡).𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝐴(𝑡))
𝐴(𝑡) ← 𝑆 (𝑡).𝜋 (𝐴(𝑡))
𝑄 (𝑆 (𝑡 + 1), 𝐴(𝑡)) ← (1 − 𝛼)𝑄 (𝑆 (𝑡), 𝐴(𝑡)) + 𝛼 (𝑅(𝑡)

+𝛾 max

𝐴(𝑡+1)
𝑄 (𝑆 (𝑡 + 1), 𝐴(𝑡 + 1)))

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡 + 1)
𝑆 (𝑡) ← 𝑆 (𝑡 + 1)
𝑡 ← 𝑡 + 1

end while
end while

Output: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡 = 𝑇 ), 𝑅(𝑡 = 𝑇 )

4 COMPUTATIONAL RESULTS
To test the performance of the RL-GA, several instances of bench-

mark problems from the literature were solved, and the results are

reported in Table 2. Problems involving 40 to 70 customer nodes

were selected, as well as a larger 200 node problem. Each problem

was solved five times using the RL-GA algorithm. The first column

on Table 2 is the sequence number. Column 2 is the problem label

and it details the number of nodes and the number of vehicles. Col-

umn 3 is the best known solution as reported by the site
2
. Column

4 is the best solution obtained by the GA algorithm run only on a

CPU. Column 5 reports the results obtained by solving the problem

using a GPU version of the algorithm, as detailed in [2]. 𝑝𝑚 and 𝑝𝑐
for the results in Columns 4 and 5 were set based on a Design of

Experiments approach, detailed in [1]. The sixth column reports

the results of the RL-GA algorithm and the last two columns report

the average value of the results obtained from the five runs and

their respective standard deviation.

As can be seen from Table 2, RL-GA shows equal or better per-

formances than the CPU-GA and the GPU-GA implementations for

eleven of the twelve problems. For problem 8 (P-n22-k8), all the GA

implementations improve the best known solution, and for problem

11 (P-n55-k15), the CPU-GA finds a better solution than the current

best known solution. The averaged results also demonstrate equal

or better performance than the GPU-GA for nine of the twelve

problems, showing its consistency.

2
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
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Problem

Published

Optimal

GPU-GA CPU-GA RL-GA

Average

RL-GA

Std Dev

RL-GA

1 B-n31-k5 672 691 677 672* 675.6 4.41

2 B-n45-k5 751 840 762 751* 756 4.29

3 B-n50-k8 1312 1329 1327 1316 1324 4.15

4 M-n200-k17 1373 1473 1598 1434 1482.6 34.3

5 P-n16-k8 450 450 450 450* 450 0

6 P-n20-k2 216 216 216 216 216 0

7 P-n21-k2 211 211 211 211 211 0

8 P-n22-k8 603† 590 592 590* 596.2 5.04

9 P-n23-k8 529 529 529 529* 529 0

10 P-n40-k5 458 479 478 458* 465.2 9.37

11 P-n55-k15 989† 1058 975* 981 996 9.93

12 P-n70-k10 827 845 892 853 865.2 11.29

Table 2: Runs results and comparisons

Figure 2: Solution trajectory for B-n50-k8

Figure 2 illustrates example trajectory (i.e., cost vs generations)

taken whilst solving problem 3 (B-n50-k8). Here it can be seen

that RL-GA finds a better solution than the DOE tuned GA. This

also manifests when examining the solutions of the other problems

tested, except for problem 12 where the GPU-GA ultimately attains

a better solution.

Figure 3: Solution diversity for B-n50-k8 with GPU-GA

Figures 3 and 4 show the diversity changes over the course of

the entire run for problem (B-n50-k8). From the figures, it can be

observed that RL-GA biases against population diversity when the

Figure 4: Solution diversity for B-n50-k8 with RL-GA

objective solutions are improving rapidly, and towards increasing

diversity when the solution stagnates. This is indeed the behavior

that we wanted to inculcate - and is evidence that the reward

function is therefore correctly defined.

5 CONCLUSIONS
In this paper, a reinforcement learning (RL) approach has been

designed to adaptively set parameters for a genetic algorithm (GA)

used to solving a Capacitated Vehicle Routing Problem (CVRP). For

a set of benchmark problems, the solutions obtained by the RL-GA

are better than those obtained for the same set of problems using

a static, Design of Experiments-based approach. The RL-GA ap-

pears to be promising in that it is able to maintain greater diversity

in the population pool. Tests with problems involving a greater

number of nodes for the CVRP are planned and these will require

significant computing effort. Successful with larger problem sets,

will add to the methods that can be used to obtain good solutions

for complex practical problems using genetic methods with rea-

sonable computing effort. Since the approach presented here acts

on parameters that are fundamental to all genetic algorithms, they

can widely be implemented for solving other combinatorial and

nonlinear optimization problems utilizing GAs.
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