
Evolutionary Reinforcement Learning for Sparse Rewards
Shibei Zhu∗

Imperial College London
London, United Kingdom

shibei.zhu19@imperial.ac.uk

Francesco Belardinelli
Imperial College London
London, United Kingdom

francesco.belardinelli@imperial.ac.uk

Borja González León
Imperial College London
London, United Kingdom

b.gonzalez-leon19@imperial.ac.uk

ABSTRACT
Temporal logic (TL) is an expressive way of specifying complex
goals in reinforcement learning (RL), which facilitates the design
of reward functions. However, the combination of these two tech-
niques is prone to generate sparse rewards, which might hinder
the learning process. Evolutionary algorithms (EAs) hold promise
in tackling this problem by encouraging the diversification of poli-
cies through exploration in the parameter space. In this paper, we
present𝐺𝐸𝐴𝑇𝐿, the first hybrid on-policy evolutionary-based algo-
rithm that combines the advantages of gradient learning in deep
RL with the exploration ability of evolutionary algorithms, in order
to solve the sparse reward problem pertaining to TL specifications.
We test our approach in a delayed reward scenario. Differently from
previous baselines combining RL and TL, we show that 𝐺𝐸𝐴𝑇𝐿
is able to tackle complex TL specifications even in sparse-reward
settings.

CCS CONCEPTS
• Computing methodologies → Planning with abstraction
and generalization.

KEYWORDS
deep reinforcement learning, temporal logic, evolutionary algo-
rithm, sparse reward
ACM Reference Format:
Shibei Zhu, Francesco Belardinelli, and Borja González León. 2021. Evolu-
tionary Reinforcement Learning for Sparse Rewards. In Proceedings of the
Genetic and Evolutionary Computation Conference 2021 (GECCO ’21). ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3449726.3463142

1 INTRODUCTION
Reinforcement learning (RL) is an area of artificial intelligence
where a learning agent interacts with a given environment to
maximise her reward while taking a sequence of actions during
her interaction [22]. In recent years, deep reinforcement learn-
ing (DRL), which integrates deep neural networks into RL, has
emerged as a novel and effective method to solve RL problems,
which has shown promising results, especially in the game-related
∗Now at Aalto University, shibei.zhu@aalto.fi

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463142

domains [17, 19, 24]. In most games, the mechanism of reward (or
reward function) is often part of the game setting (i.e., rules of
chess or Go) that can be easily established. However, this is not
the case in several other domains, where the reward can rarely
be defined unequivocally. Moreover, in real-world scenarios, the
reward function often does not obey themarkovian assumption (i.e.,
the reward depends only on the agent’s last action and last state),
which is a fundamental feature that guarantees the convergence
of several solving methods for RL problems. The use of temporal
logic (TL) for goal specification in RL is attracting growing interest
in recent years [5, 6, 23]. The expressive power of TL allows us not
only to define the reward in a precise manner but also to deal with
non-markovian rewards. That is, it allows the reward to depend
on a sequence of past events besides the present state and action.
This non-markovian feature of tasks is often very common to be
observed in practical applications. For instance, if our goal is to
prepare dinner, first we need to get all the ingredients, and then
prepare the food by following an exact sequence of steps according
to the cooking recipe.

Unfortunately, temporally-defined goals often give rise to sparse
rewards, e.g., when the sequence of intermediate tasks tends to be
long. As the probability of finding an exact sequence of actions
decreases, and the length of its time horizon increases [10], it typi-
cally causes sparse feedback if the reward is given only when the
whole specification is satisfied. This scarce feedback can potentially
cause the agent to fail to learn the task at hand.

Contribution. In this paper, we tackle complex TL instructions
where the agent has scarce feedback to learn from. We propose a
novel solution to learn from sparse rewards generated from co-safe
LTL specifications by using an evolutionary algorithm to perform
the parameter space exploration. The EA method we develop is
inspired by the hybrid genetic algorithms (GA) proposed in [12] that
combines GA with off-policy policy gradient networks. Here we
propose to use a new combination of GA with on-policy gradient
methods that uses a different synchronisation scheme between
them that can be applied for both discrete and continuous action
space. We are interested in the on-policy methods since this may be
more stable in practice (as it learns from experience sampled from
its own policy rather than using experience generated by other
policies) compare to its off-policy counterpart. And, unlike the off-
policy methods, on-policy methods do not need to use experience
replay buffer.

To the best of our knowledge, our Gradient-Evolutionary Algo-
rithm with Temporal Logic (GEATL) is the first algorithm to combine
temporal logic, (deep) reinforcement learning, and evolutionary
algorithms to allow agents to learn complex, temporally-extended
tasks. In Sec. 4, we show that GEATL can achieve competitive re-
sults with TL specifications for both sequential and interleaving

1508

https://doi.org/10.1145/3449726.3463142
https://doi.org/10.1145/3449726.3463142

GECCO ’21, July 10–14, 2021, Lille, France Trovato and Tobin, et al.

tasks proposed by earlier works [1, 23], even in scenarios with
sparse feedback (see Sec. 4.1), where previous approaches struggle.

Related work. While there is a wealth of contributions combining
RL and TL [14, 15, 23], they mainly focus on integrating increas-
ingly expressive logical languages or on convergence proofs for
non-Markovian rewards [7, 23]. The inefficient learning ability of
agents due to sparsity of the temporally-extended reward is partially
addressed in [4], where the TL system is enhanced with additional
search techniques, in this case, reward shaping for MDP planners,
such as PROST [11].

The underlying issue of sparse rewards is sometimes referred to
as hard-exploration problem [8]. Previous approaches integrating
TL specifications into RL [6, 9, 14] rely on continuous access to a
global oracle, typically a labelling function, that provides feedback
on the progress of the specification to the RL agent. In Sec. 4.2 we
discuss that similar approaches struggle when facing environments
where the feedback from the oracle is delayed to the end of an
episode. Amongst thewealth of techniques intended to tackle sparse
feedback, of particular relevance for the present work are [12, 21].
In [21] genetic algorithms (GA) are combined with novelty search
to deal with tasks that have sparse or deceptive reward functions,
which however require to detect the novelty in the action space
given the environment. In [12], GA is combined alongside with
gradient learning that uses an off-policy method with experience
replay, which is more immediate to implement by using gradient
learning.

2 BACKGROUND
2.1 Reinforcement Learning
Problems in reinforcement learning are typicallymodelled asMarkov
decision processes (MDP), which are tuples 𝑀 = ⟨𝑆,𝐴, 𝑅,𝑇 ,𝛾⟩,
where 𝑆 is the finite set of states of the system,𝐴 is the set of actions
available to the agent, 𝑇 : 𝑆 × 𝐴 × 𝑆 ′ → [0, 1] is the transition
probability function, 𝑅 : 𝑆 ×𝐴 × 𝑆 → R is the reward function, and
𝛾 ∈ [0, 1] is the discount factor. The learning process of the agent is
based on the principle of trial-and-error [22]: at each time-step, the
agent receives a reward from the environment, while finding the
optimal policy 𝜋∗ : 𝑆 → 𝐴 that maximises the discounted future
reward or discounted return. This return is defined at time 𝑡 as
𝐺𝑡 =

∑∞
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘+1, where 𝑅𝑡+𝑘+1 is the reward at time 𝑡 + 𝑘 + 1.
Deep reinforcement learning (DRL)makes use of deep neural

networks (DNN) as function approximator and incorporates replay
buffer, a memory buffer to enable the reuse of experiences generated
by the agent for the training process of the DNN. Several approaches
in DRL have been proposed, which can be classified as value-based
(or critic-only), which approximate the value function by using
gradient descent, or policy-based (or actor-only), which use gradient
ascent to estimate the policy directly by maximising the overall
return. In this paper, we adopt a third category, known as actor-critic,
which uses both value function and policy approximator.

2.2 Linear Temporal Logic
Linear temporal logic (LTL) is a propositional modal logic originally
introduced to reason about reactive systems [18]. Amongst the
variants of LTL, co-safe LTL and LTL over finite traces (𝐿𝑇𝐿𝑓) have

been successfully applied to specify agent’s goals in reinforcement
learning [5, 6, 23]. In this paper, we adopt co-safe LTL, which is a
fragment of LTL with a restricted syntax to ensure deciding the
truth of formulae in a finite number of steps. The formulae of co-safe
LTL are built according to the following grammar [13]:

𝜑 ::= 𝑝 | ¬𝑝 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ⃝𝜑 | 𝜑𝑈𝜑

where 𝑝 ∈ AP is a propositional atom.

2.3 Evolutionary Algorithms
Evolutionary Algorithms (EAs) are black-box optimisation tech-
niques inspired by Darwin’s principle of natural selection [2]. Its
application to neural networks is being often referred to as neuroevo-
lution [20] as it explores the parameter space of neural networks
(i.e., weights and bias matrices). Given an objective function (some-
times referred to as fitness function) to be optimised, and a set of
randomly initialised solutions, where the set is also known as pop-
ulation and each of its elements as an individual, EA iteratively
updates or "evolves" this set towards a possibly better solution
space, by using the processes of selection, mutation and recombi-
nation (aka crossover) [3]. As evolution favours those individuals
that best adapt to the environment, the selection operator is always
biased toward individuals with higher fitness to produce the next
generation of solutions.

3 EVOLUTIONARY REINFORCEMENT
LEARNING

In this work, we put forward a solution to alleviate the learning
inefficiency problem caused by sparse reward signal under a de-
layed reward scenario (see Sec. 4.1) using temporal logic as reward
function. This sparsity of feedback can disorientate the agent’s
decision as no immediate learning guidance is given. We use an
evolutionary algorithm to address this issue as it does not need
immediate feedback, but rather than a fitness (or quality) measure-
ment for the performance to optimise the final solution. We use an
elite-based exploration in the parameter space that can potentially
deal with hard-exploration scenarios by perturbing the parameters
space to encourage diversity of actions. However, the convergence
speed of EAs with large parameter space can be slow. Thus, we use
gradient-learning to speed-up the learning process of the evolution-
based agent. To this end, we first define the representation of the
EA population and the architecture for the network of gradient
learning, and then the integration of these two mechanisms.

EAs encourage more diverse policies for long-term goals by
perturbing the parameter space (i.e., weight matrices of the neural
networks). This motivates for the individuals of our population to
be policy-based rather than value-based, as perturbations in the
parameter space for the latter do not necessarily encourage more
diverse actions. Specifically, value-based networks approximate
the value function that calculates the Q-value for each state-action
pair, and then a greedy policy simply selects the action with the
highest Q-value. Hence, perturbations in value-based networks do
not necessarily lead to more diverse policies, but rather introduce
randomness in the value function prediction that is acting as a proxy
when choosing actions. Thus, we use a different policy network

1509

Evolutionary Reinforcement Learning for Sparse Rewards GECCO ’21, July 10–14, 2021, Lille, France

Figure 1: Workflow of GEATL

Figure 2: Synchronisations between the EA-based agent and
the gradient-based agent.

(also known as actor networks) to represent each individual within
the population.

The workflow of EA solutions is comprised of the processes of
fitness evaluation and evolution of the solution (selection, muta-
tion, and crossover). We integrate gradient learning by adding a
synchronisation step between the EA population and the gradient
learner. We refer to the process of integrating the gradient learner
with the EA policies as synchronisation that is comprised by 2 types
which are detailed hereafter. Our solution applies EA as the main
learning framework, and uses gradient learning to improve the so-
lution generated by the EA. The workflow of the proposed solution
is outlined in Fig. 1, and details about the procedure in Alg. 1.

Synchronisation of the gradient-based learner. This process aims to
guide the learning process of the gradient-based agent by inserting
the policy network of the fittest individual of the population in the
gradient-based learner to accelerate the convergence, especially
when it encounters saddle points. Given the actor network 𝜋𝜃𝑟𝑙
of the gradient-based learner parameterised by 𝜃𝑟𝑙 , and the best
individual of the population represented by an actor network 𝜋𝜃𝑒𝑎
parameterised by 𝜃𝑒𝑎 . The resulting 𝜋𝜃𝑟𝑙 is defined as:

𝜋𝜃𝑟𝑙 =

𝜋𝜃𝑒𝑎 if 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝜋𝜃𝑟𝑙) < 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝜋𝜃𝑒𝑎);
𝜋𝜃𝑒𝑎 if 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝜋𝜃𝑟𝑙) = 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝜋𝜃𝑒𝑎) and 𝑝𝑟𝑜𝑏 < 0.5;
𝜋𝜃𝑟𝑙 otherwise.

(1)
Where the fitness function is the episodic return of the agent

which is detailed in Sec. 3. In Eq. 1, when the EA-based actor has
the same performance of the gradient-based learner, we still have
a 50% chance of synchronising the actor of the EA solution into
the gradient-based learner to encourage exploration with gradient
learning as well.

Algorithm 1: GEATL
Initialise the gradient-based learner 𝑟𝑙𝜃 with actor 𝜋𝜃 and
critic 𝑄𝜃 with weights 𝜃 .
Initialise a population 𝑝𝑜𝑝𝜋 of k actors.
Define random number generator 𝑟 () ∈ [0, 1], number of
generation 𝑥 synchronisation period 𝜔 .
for generation = 1, 𝑥 do

for actor 𝜋 ∈ 𝑝𝑜𝑝𝜋 do
fitness = Fitness_evaluation(𝜋)

end
𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑟𝑙 = Fitness_evaluation(𝑟𝑙𝜃)
Select the individual with𝑚𝑎𝑥 (𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠𝑝𝑜𝑝𝜋)
if 𝑚𝑎𝑥 (𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠𝑝𝑜𝑝𝜋) > 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑟𝑙 then

Synchronisation(𝑝𝑜𝑝𝜋 , 𝑟𝑙𝜋)
end
Evolution_EA_population(𝑝𝑜𝑝𝜋)
Update 𝑟𝑙𝜃 using
∇𝜃 ′𝑙𝑜𝑔𝜋𝜃 ′ (𝑎𝑡 |𝑠𝑡)𝐴𝜃,𝜃 ′ (𝑠𝑡 , 𝑎𝑡) + 𝛽∇𝜃 ′𝐻 (𝜋𝜃 ′ (𝑠𝑡))

if generation mod 𝜔 = 0 then
Synchronisation(𝑟𝑙𝜋 , 𝑝𝑜𝑝𝜋)

end
end

Algorithm 2: Evolution EA population
Select the first 𝑒 individuals 𝜋 ∈ 𝑝𝑜𝑝𝜋 based in fitness as
elites where 𝑒 = int(𝜓 ∗ 𝑘)
Select (𝑘 − 𝑒) actors 𝜋 from 𝑝𝑜𝑝𝑝𝑖 , to form the set S using
tournament selection with replacement

while |𝑆 | < (𝑘 − 𝑒) do
𝜋1, 𝜋2 = tournament_selection(𝜋𝑒)
𝜋𝑛𝑒𝑤 = Crossover(𝜋1, 𝜋2)
Append 𝜋𝑛𝑒𝑤 to 𝑆

end
for Actor 𝜋 ∈ 𝑆 do

if r() <𝑚𝑢𝑡𝑝𝑟𝑜𝑏 then
Mutate(𝜋)

end
end

Synchronisation of the EA-based learner.This process is performed
at each generation after the gradient learning of our gradient-based
learner. The actor of the gradient-based agent is inserted to replace
the worst-performing individual of the EA population, which im-
proves the overall performance of the whole population. Note that
the critic (which is not present in the EA population) remains unal-
tered throughout this process so that the gradient learner retains
some of its previous knowledge even when its actor is updated.
Given 𝜋𝜃𝑟𝑙 as the parameter vector of the gradient-based learner
parameterised by 𝜃𝑟𝑙 , and the worst individual of the population
represented by an actor network 𝜋𝜃𝑒𝑎 parameterised by 𝜃𝑒𝑎 . The
resulting 𝜋𝜃𝑒𝑎 is defined as: 𝜋𝜃𝑒𝑎 = 𝜋𝜃𝑟𝑙 .

Fitness evaluation. The performance of the individuals in the EA
population is evaluated by the fitness function under a time-limited
(i.e., one episode) scenario,this uses the same reward function for

1510

GECCO ’21, July 10–14, 2021, Lille, France Trovato and Tobin, et al.

the standard RL agent with the exception that its (episodic) value
is given at the end of the episode. Evolution defines how EA iter-
atively generate (or evolve toward) a better solution space based
on the fitness score and the current population. This process com-
prises ofselection, mutation, and crossover, which are probabilistic
operations that introduce more randomness into the new solution.
The selection method used to choose parents is tournament selection
with replacement [16].

Mutation. Given a population of individuals where each individ-
ual is a policy network parameterised by parameter 𝜃 that outputs
policy 𝜋𝜃 , the mutation of individuals is a probabilistic operation
that perturbs the parameter vector 𝜃 . Different criteria can be used,
here we used the following appearing in [12]:

𝜃 =

𝜃 + N(0, 𝜃 ∗ 𝑠𝑢𝑝𝑒𝑟_𝑚𝑢𝑡_𝑠𝑡𝑟𝑒𝑔𝑡ℎ) if prob < 𝑠𝑢𝑝𝑒𝑟𝑚𝑢𝑡_𝑝𝑟𝑜𝑏;
N(0, 1) elif prob < 𝑟𝑒𝑠𝑒𝑡_𝑝𝑟𝑜𝑏;
𝜃 + N(0, 𝜃 ∗𝑚𝑢𝑡_𝑠𝑡𝑟𝑒𝑔𝑡ℎ) otherwise.

(2)
where 𝑠𝑢𝑝𝑒𝑟_𝑚𝑢𝑡_𝑠𝑡𝑟𝑒𝑔𝑡ℎ set to 10 and 𝑠𝑢𝑝𝑒𝑟𝑚𝑢𝑡_𝑝𝑟𝑜𝑏 ∈ [0, 1] are
the super mutation probability and the mutation rate respectively,
which determine the Gaussian noise to introduce, and 𝑟𝑒𝑠𝑒𝑡_𝑝𝑟𝑜𝑏 ∈
[0, 1] is the probability of resetting the parameter into a normal dis-
tribution. Lastly, the normal mutation probability and rate depend
on𝑚𝑢𝑡_𝑠𝑡𝑟𝑒𝑔𝑡ℎ that is set to 0.1.

Crossover. Given two parent parameters vectors 𝜃𝑎 and 𝜃𝑏 , the
process of crossover defines the resulting parameter vector 𝜃 as the
concatenation of the parent vectors as follow:

𝜃 =

{
𝑐𝑜𝑛𝑐𝑎𝑐𝑡 (𝜃𝑎 [0, 𝛼], 𝜃𝑏 [𝛼, 𝑛]) if prob < 0.5
𝑐𝑜𝑛𝑐𝑎𝑐𝑡 (𝜃𝑏 [0, 𝛼], 𝜃𝑎 [𝛼, 𝑛]) otherwise

(3)

where 𝑛 is the length of the parameter vector and 𝛼 ∈ [0, 𝑛] is
generated randomly to determine the exact point of intersection.

4 EXPERIMENTAL EVALUATION
The environment used for the experiments is a Minecraft-inspired
2D grid world proposed in [1], as modified in [23]. The agent can
interact with different objects that are distributed on a finite size
map. Potential tasks include mining raw materials (i.e., iron, wood,
and grass), combining different material in a specific order to create
new objects or tools. Detailed description is given in the supple-
mentary material. The experiments were run on a machine with
Intel i7-7700k as CPU and Nvidia GTX1080 as GPU.

4.1 Reward Distribution
The reward is similar to the one used in previous works of TL and
RL [6, 23], where the agent has access to a labelling function, which
provides feedback on the progression of the specification. However,
we evaluate harder scenarios, where the feedback of the labelling
function is available only at the end of the episode. That is, at every
interaction the agent only receives standard negative feedback for
the steps it takes, and only at the end of the episode, the labelling
function provides the positive feedback as the result of completing
the tasks. We refer to this setting as delayed rewards, where the
agent is forced to solve the problem of temporal credit assignment,
i.e., to solve the problem where the agent needs to discover which
actions contribute the most to the final reward.

nºtasks GA A2C LPOPL ERL GEATL

2 -6.5(5.8) -6.5(5.8) -6.5(5.8) -6.5(5.8) -6.5(5.8)
3 -98(0.5) -84.33(14.3) -83.67(1) -12(2.5) -12.5(2.5)
4 -99(0) -98(1) -98 (1) -36.75(50.4) -15(28.1)
5 -300(0) -300 (0) -300 (0) -16(28.4) -17(20.7)

Table 1: Episodic reward obtained for sequential tasks. For each group, we
give the median with its corresponding IQR. The groups with tasks from 2 to
4 have the worst value as -100 where the group of 5 has it worst value as -300
(which means that the agent has 100/300 steps per episode respectively).

nºtasks GA A2C LPOPL ERL GEATL

2 -6.5(5.8) -6.5(5.8) -6.5(5.8) -6.5(5.8) -6.5(5.8)
4 -98(0.5) -84.33(14.3) -83.67(1) -8.8(0.2) -9.6(1.6)
5 -98(0.5) -84.33(14.3) -83.67(1) -30.2(15.8) -24.42(10.4)
6 -300(0) -300(0) -300(0) -297(3) -23(2)
7 -300(0) -298(0) -299(1) -27 (136) -27(23)

Table 2: Episodic reward obtained for interleaving tasks. The groups with
tasks from 2 to 5 have the worst value as -100 while the tasks of 6 to 7 has
their worst value as -300.

4.2 Experimental Setting
We now compare the result of EA (specifically Genetic Algorithm
(GA)), A2C, LPOPL, GEATL and ERL algorithms in dealing with the
experimental setting here proposed. The setting of these approaches
is detailed in the supplementary material attached (Sec.3). The
results are shown on Tab 1 and Tab 2.

As different length of specifications have a different level of dif-
ficulty and the total number of specifications is rather huge, we
group and measure the performance of the specifications accord-
ing to its number of tasks, i.e., all the specifications with 2 tasks
belong to the same group. We use the median (also known as the
50th percentile) that is not skewed by atypical data (i.e. extremely
high or low values) as the main measurement to show the central
tendency of the results. We also give the interquartile range (IQR)
to visualise the dispersion amongst the result of the same group.
Both median and IQR are calculated using the average reward for
each specification in 3 independent training processes. The IQR is
given by subtracting the 75th percentile with the 25th percentile.
For the groups that only have one specification per group, in this
case, only the specification of interleaving with 6 and 7 tasks, we
use the results of 3 different run to calculate their median and IQR.
The reason of having only one specification per group is due to the
time limitation we had.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced GEATL, a gradient-evolutionary RL
algorithm to tackle the problem of sparse rewards caused by tem-
poral specified goals. Previous works on RL-TL show promising
approaches to solve complex specifications [1, 6, 9, 23]. However,
these works rely on online access to a "global oracle" called labelling
function to guide the learning process of their agents. Our exper-
iments show that when such guidance, i.e., the positive rewards
from the labelling function, is given only at the end of the episode,
those agents may fail to solve the proposed specification.

1511

Evolutionary Reinforcement Learning for Sparse Rewards GECCO ’21, July 10–14, 2021, Lille, France

REFERENCES
[1] Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular multitask rein-

forcement learning with policy sketches. In International Conference on Machine
Learning. 166–175.

[2] Thomas Back. 1996. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford university press.

[3] Thomas Bäck and Hans-Paul Schwefel. 1993. An overview of evolutionary
algorithms for parameter optimization. Evolutionary computation 1, 1 (1993),
1–23.

[4] Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila A McIlraith. 2017. Non-
markovian rewards expressed in LTL: guiding search via reward shaping. In
Tenth Annual Symposium on Combinatorial Search.

[5] Alberto Camacho, R Toro Icarte, Toryn Q Klassen, Richard Valenzano, and
Sheila A McIlraith. 2019. LTL and beyond: Formal languages for reward function
specification in reinforcement learning. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI). 6065–6073.

[6] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. 2019. Foun-
dations for restraining bolts: Reinforcement learning with LTLf/LDLf restraining
specifications. In Proceedings of the International Conference on Automated Plan-
ning and Scheduling, Vol. 29. 128–136.

[7] Giuseppe De Giacomo and Moshe Y Vardi. 2013. Linear temporal logic and linear
dynamic logic on finite traces. In Twenty-Third International Joint Conference on
Artificial Intelligence.

[8] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
2019. Go-explore: a new approach for hard-exploration problems. arXiv preprint
arXiv:1901.10995 (2019).

[9] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. 2018.
Using reward machines for high-level task specification and decomposition in
reinforcement learning. In International Conference on Machine Learning. PMLR,
2107–2116.

[10] Sham Kakade and John Langford. 2002. Approximately optimal approximate
reinforcement learning. In ICML, Vol. 2. 267–274.

[11] Thomas Keller and Patrick Eyerich. 2012. PROST: Probabilistic Planning Based
on UCT.. In ICAPS. 119–127.

[12] Shauharda Khadka and Kagan Tumer. 2018. Evolution-guided policy gradient in
reinforcement learning. In Advances in Neural Information Processing Systems.

1188–1200.
[13] Orna Kupferman and Moshe Y Vardi. 2001. Model checking of safety properties.

Formal Methods in System Design 19, 3 (2001), 291–314.
[14] Borja G León and Francesco Belardinelli. 2020. Extended Markov Games to

Learn Multiple Tasks in Multi-Agent Reinforcement Learning. arXiv preprint
arXiv:2002.06000 (2020).

[15] Xiao Li, Cristian-Ioan Vasile, and Calin Belta. 2017. Reinforcement learning with
temporal logic rewards. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 3834–3839.

[16] Brad L Miller, David E Goldberg, et al. 1995. Genetic algorithms, tournament
selection, and the effects of noise. Complex systems 9, 3 (1995), 193–212.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[18] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, 46–57.

[19] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[20] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[21] Felipe Petroski Such, VashishtMadhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. 2017. Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks for reinforcement
learning. arXiv preprint arXiv:1712.06567 (2017).

[22] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[23] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith.
2018. Teaching multiple tasks to an RL agent using LTL. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 452–
461.

[24] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575, 7782 (2019), 350–354.

1512

	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Linear Temporal Logic
	2.3 Evolutionary Algorithms

	3 Evolutionary Reinforcement Learning
	4 Experimental Evaluation
	4.1 Reward Distribution
	4.2 Experimental Setting

	5 Conclusions and Future Work
	References

