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ABSTRACT
Hyperparameter optimization in machine learning (ML) deals with
the problem of empirically learning an optimal algorithm configu-
ration from data, usually formulated as a black-box optimization
problem. In this work, we propose a zero-shot method to meta-learn
symbolic default hyperparameter configurations that are expressed
in terms of the properties of the dataset. This enables a much faster,
but still data-dependent, configuration of the ML algorithm, com-
pared to standard hyperparameter optimization approaches. In the
past, symbolic and static default values have usually been obtained
as hand-crafted heuristics. We propose an approach of learning such
symbolic configurations as formulas of dataset properties from a
large set of prior evaluations on multiple datasets by optimizing over
a grammar of expressions using an evolutionary algorithm. We eval-
uate our method on surrogate empirical performance models as well
as on real data across 6 ML algorithms on more than 100 datasets and
demonstrate that our method indeed finds viable symbolic defaults.

CCS CONCEPTS
• Computing methodologies → Supervised learning by classifi-
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1 INTRODUCTION & RELATED WORK
The performance of most machine learning (ML) algorithms is
greatly influenced by their hyperparameter settings. While various
methods exist to automatically optimize them, the additional com-
plexity and effort cause many practitioners to forgo optimization.
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Defaults provide a fallback but are often static and do not take prop-
erties of the dataset into account, even though the success of tuning
hyperparameters suggests values should be based on properties of
the data. Contrary to static defaults, symbolic defaults should be a
function of the meta-features (dataset characteristics) of the dataset,
such as the number of features. A well-known example for a sym-
bolic default is the random forest algorithm’s default 𝑚𝑡𝑟𝑦 =

√
𝑝

for the number of features sampled in each split. In this paper we
explore how such formulas can be obtained in a principled, empiri-
cal manner, especially when multiple hyperparameters interact, and
have to be considered simultaneously1. We propose to learn such
symbolic default configurations by optimizing over a grammar of
potential expressions, in a manner similar to symbolic regression [3]
using evolutionary algorithms. We validate our approach across a
variety of state-of-the-art ML algorithms and propose default can-
didates for use by practitioners. The proposed approach is general
and can be used for any algorithm as long as their performance is
empirically measurable on instances in a similar manner.

2 METHOD
A symbolic configuration is a set of functions, one for each hyperpa-
rameter of the algorithm. Each function maps the meta-features of
the given dataset to a value for a hyperparameter, e.g.𝑚𝑡𝑟𝑦 =

√
𝑝.

Note that it is not needed for any or all meta-features to be used in
the mapping, i.e. the function may be constant (static) or only use
few meta-features. We want to learn a symbolic default configuration
𝜆(.) for algorithm A that minimizes the expected risk induced by
the model produced by A𝝀 across datasets.

We define a context-free grammar of transformations, which de-
fine the space of potential expressions for all functions 𝜆(.). We
select a small set of simple dataset characteristics for use in formu-
las, e.g. number of observations, features, or missing values. Given
𝐾 datasets, a risk function 𝑅(𝜆(.),D𝑖 ) that denotes the risk induced
by the model learnt using algorithm A with symbolic configuration
𝜆(.) on dataset D𝑖 , we can formulate a global objective to minimize:
𝑅D (𝜆(.)) = 1

𝐾

∑𝐾
𝑖=1 𝑅(𝜆(.),D𝑖 ). As estimating 𝑅D (𝜆(.)) empiri-

cally using cross-validation (CV) is costly in practice, we instead
employ surrogate models that approximate 𝑅D (𝜆(.)).

Meta-learning. To create surrogate models, we collect data about
the performance of randomly sampled constant configurations. These
configurations are evaluated across all datasets using 10-fold CV.
For each dataset we train a random forest model mapping hyper-
parameter configurations to expected performance. We can then
approximate the average risk of 𝜆(.) by querying each surrogate
1Code available at https://github.com/PGijsbers/symbolicdefaults
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model after first computing the real configuration values using the
dataset’s characteristics.

Optimization. The problem we aim to solve requires optimization
over a space of mathematical expressions. Several options to achieve
this exist [4, 5]. We opt for a tree representation of individuals, where
nodes correspond to operations and leaves to terminal symbols or
numeric constants, and optimize this via genetic programming [3].
We differentiate between real-valued and integer-valued terminal
symbols to account for the difference in algorithm hyperparameters.
We use a 𝜇 + 𝜆 algorithm to evolve candidate solutions via crossover
and mutation. We jointly optimize performance of solutions while
preferring formulas with smaller structural depth using NSGA-II
selection [1] without explicitly limiting length of the expressions.

3 RESULTS
We investigate symbolic defaults for 6 ML algorithms using a large
set of meta-data, containing evaluations of over a hundred datasets
available from OpenML [6]. We optimize the average logistic loss
(normalized to [0,1]), but our methodology trivially extends to other
performance measures. We evaluate using a leave-one-dataset-out
strategy to obtain symbolic defaults. As baselines, we employ ran-
dom search and 1-nearest neighbour, an approach that selects the
configuration that worked best on the most similar dataset, compara-
ble to warm-starting in auto-sklearn [2].

Table 1 shows the mean and standard deviation of the normalized
log-loss for each algorithm across all tasks, as predicted by surrogate
models. The symbolic and constant columns denote the performance
of defaults found with our approach including and excluding sym-
bolic terminals respectively. The package column shows the best
result obtained from either the scikit-learn or mlr default, and the
last column denotes the best-found performance sampling 8 random
real-world scores on the task for the algorithm. Note that the best
rank can deviate from the best average performance.

The default mean rank is never significantly lower than that of
other approaches, but in some cases, it is significantly higher. The
only implementation default which does not score a significantly
lower mean rank than our approach is the default for SVM, which
has carefully hand-crafted defaults. For more nuance about the per-
formance differences per dataset, Figure 1 shows the predicted nor-
malized log-loss per dataset for SVM configurations obtained by
different methods.

We further show the non-normalized log-loss per dataset obtained
with 10-fold CV experiments in Figure 2. The median performance
for symbolic defaults is slightly lower, though overall very similar
performance is achieved by this automatically obtained symbolic
default to the hand-crafted one in scikit-learn, or per-dataset recom-
mendations from 1NN.
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algorithm symbolic constant package opt. RS 8

glmnet 0.917(.168) 0.928(.158) 0.857(.154) 0.906(.080)
knn 0.954(.148) 0.947(.156) 0.879(.137) 0.995(.009)
rf 0.946(.087) 0.951(.074) 0.933(.085) 0.945(.078)
rpart 0.922(.112) 0.925(.093) 0.792(.141) 0.932(.082)
svm 0.889(.178) 0.860(.207) 0.882(.190) 0.925(.084)
xgboost 0.995(.011) 0.995(.011) 0.925(.125) 0.978(.043)

Table 1: Mean normalized log-loss (standard deviation) across
all tasks with baselines. Boldface values indicate the average
rank was not significantly worse than the best (underlined) of
the four settings.
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Figure 1: Normalized log-loss comparison of symbolic defaults
to constant defaults (left) and budget 8 random search (right).
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Figure 2: Comparison of 1NN, symbolic, and implementation
default using log-loss across all datasets performed on real data.
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