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Abstract

In this paper, we present Al Programmer, a machine learn-
ing (ML) system that can automatically generate full soft-
ware programs, while requiring only minimal human guid-
ance. At its core, Al Programmer uses a genetic algorithm
(GA), coupled with a tightly constrained programming lan-
guage that minimizes the overhead of its ML search space.
Part of Al Programmer’s novelty stems from (i) its unique
system design, including an embedded, hand-crafted inter-
preter for efficiency and security and (ii) its augmentation of
classic GA to include instruction-gene randomization bind-
ings and programming language-specific genome construc-
tion and elimination techniques. We provide a detailed ex-
amination of Al Programmer’s system design, several ex-
amples detailing how the system works, and experimental
data demonstrating its software generation capabilities and
performance using only mainstream CPUs.

CCS Concepts <Software and its engineering — Ge-
netic programming; General programming languages;
* Theory of computation — Program analysis

Keywords Genetic algorithm, program synthesis, genetic
programming, evolutionary computation, artificial intelli-
gence, machine learning, programming languages, code gen-
eration and optimization

1.

Since the invention of the computer, having the ability to cor-
rectly and efficiently develop software programs has been
a principle challenge [4]. To help address this, countless
breakthroughs have been made in the field of software and
hardware development. Some of these include safety and
flexibility advances in static, dynamic, and gradual type sys-
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tems [2, 22]; simplification, safety, and robustness advances
using automatic memory management and garbage collec-
tion systems [5, 10]; generality and specificity progress in
both general-purpose and domain specific languages [21,
26]; and, of course, a plethora of tools aimed at assisting
programmers in nearly every way [8, 9, 19].

While such advances continue to broaden and deepen the
space of what is computationally tractable, they have the
fracturing side-effect of complicating and exacerbating the
tension between the ease of developing software and the
ability for humans to write maximally efficient code.

In this paper we explore an alternative approach to tra-
ditional human-driven software development; one that au-
tonomously creates software programs using a genetic algo-
rithm (GA) requiring only minimal human guidance.

1.1 The Evolution of Programming Languages

Over the last several decades, programming languages (PLs)
have followed a steady path of providing higher-level pro-
gramming abstractions, aimed at reducing the challenge of
human-driven software development [1]. To this end, PLs, in
general, have proliferated toward a design goal of simplify-
ing human use. Although this trend is natural in an era where
humans perform the majority of software development, as
we will show, it is suboptimal in an environment where pro-
gramming is performed predominantly by machines.
This paper makes the following technical contributions:

1. We present Al Programmer, a software generation frame-
work, which constructs programs using an enhanced ge-
netic algorithm coupled with a minimalistic program-
ming language.

. We present some observations, including an embedded
interpreter and simulator solution, for security and opti-
mization of ML-generated software.

. We provide empirical results demonstrating the efficacy
and efficiency of Al Programmer across several of its
fully generated software programs on mainstream CPU
hardware.



2. Background

A genetic algorithm (GA) is a type of artificial intelli-
gence, modeled after biological evolution, that begins with
no knowledge of the subject, aside from an encoding of
genes that represent a set of instructions or actions [6]. In
the concept of GA-driven computer programming, a series
of programming instructions are selected at random to serve
as an initial chain of DNA. The complete genome is exe-
cuted as a program, with the resulting fitness score calcu-
lated according to how well the program can solve a given
task. This is performed with a sufficiently large population
size. Those that have the best fitness are mated together to
produce offspring.

Each generation of programs receive extra diversity
from evolutionary techniques including roulette selection,
crossover, and mutation [17]. The process is repeated at
each epoch with each child generation hopefully produc-
ing more favorable results than its parents’ generation until
a target solution is found. Through this process, applying
GAs to computer programming automation enacts a survival
of the fittest model for computer program generation [16]. A
deeper examination of these GA principles are provided in
Section 3.

3. The Design of AI Programmer

In this section we provide a high-level overview of the Al
Programmer software architecture.

3.1 Programming Language Selection and Challenges

We chose a typeless programming language that contains
only eight instructions to drive Al Programmer’s software
generation [18]. We briefly discuss the advantages of this
approach and the modifications to the language that were
required to integrate it into a GA solution.

Table 1. Al Programmer Instruction Set and Gene Map

Instr Gene Range  Operation

> (0, 0.125] Increment the pointer

< (0.125, 0.25] Decrement the pointer

+ (0.25,0.375] Increment the byte at the pointer

- (0.375, 0.5] Decrement the byte at the pointer

. (0.5,0.625]  Output the byte at the pointer

, (0.625,0.75] Input a byte and store it at the ptr
(0.75,0.875]  Jump to matching ] if current O

] (0.875, 1.0] Jump back to matching [ unless 0

Turing Completeness. Al Programmer’s programming
language, listed in Table 1, is Turing complete. A Turing
complete programming language is theoretically capable of
completing any (single taped Turing machine) programming
task given an unlimited amount of time and memory [23].
In essence, a programming language with this characteris-
tic is capable of implementations of a vast number of pro-
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gramming problems. Likewise, programs generated with Al
Programmer are theoretically capable of expressing all tasks
that one might want to accomplished with computers.

GA Engine and Uniform Gene Distributions. Al Pro-
grammer’s genetic algorithm engine represents each gen-
erated program’s instructions as an array of floating point
values, which, when considered as a unit, is its genome.
Each individual location within a given genome is called a
gene. Each gene within a program’s genome corresponds to
a single instruction from Table 1.

Al Programmer binds a gene value range to each of its in-
structions across a continuous uniform distribution (or rect-
angular distribution) [3] (see Table 1), where each instruc-
tion’s gene range is equal in size to each of the others. This
was done so each instruction would have an equally ran-
dom probability of being chosen at any location in a gene
sequence when randomization was needed. !

Simplified Instruction Set. Each of Al Programmer’s in-
structions manipulate a memory “tape” of byte values, rang-
ing from 0-255. The language works by applying increment
and decrement operations to the current memory cell, while
shifting the memory cell up and down the tape, as instructed
by the program. The values at the current memory pointer
can be input from the user or output to the terminal. Primi-
tive looping instructions also exist (e.g., ‘[* and ‘"), offering
a complete instruction set for creating software. An example
program is shown in Figure 1.

Fot =D =< [F 4D+ +++4<HO++] > [ [-—— . = [ . ++++

[+++..1.1111

Figure 1. A generated program that outputs “hello”.

The simplified instruction set reduces the search space
in which a target program code can be found. As compu-
tational devices improve in speed, larger problem spaces can
be searched. However, on less powerful devices, the search
space needs to be constrained. As Al Programmer is in-
tended for general purpose developers, limiting the program-
ming instruction set to eight instructions enables the engine
to execute in reasonable times on commodity hardware (see
Section 5).

3.2 Genomes and Generations

To generate a software program using genetic algorithms,
one must first create a genome. A genome is a set of genes
that are grouped together as a single unit. For Al Program-
mer, the genome is encoded as an array of floating point val-
ues, with fixed value ranges per unique instruction ranging
between 0 and 1, as shown in the Gene Range column of
Table 1.

Once a genome is created, it is converted to a correspond-
ing program, executed, and the resulting program is assigned

'We did not examine the impact of weighted ranges for different programs,
but note that it may be of interest as future work.



a fitness score based on the program’s output. The closer a
generated program comes to solving the provided task, the
greater its fitness score and, the more likely it is to con-
tinue to the next evolutionary generation. At each generation
epoch, Al Programmer utilizes roulette selection, along with
crossover and mutation, to create child programs that contain
slight random perturbations, and potentially better, genomes
than their parents for solving the target task.

Constructing a Genome Figure 2 demonstrates an exam-
ple of constructing a genome from an array of floating point
values. Each value range maps to a specific instruction in the
programming language. Initially, these values are random,
resulting in generated programs that either won’t function
properly, throw errors, or simply fail 2. However, one or two
are bound to run and execute, at a minimum, some number
of valid instructions. The more successful a program is at
executing, the more likely it is to continue on and produce
offspring with code that achieves more successful results.

0.8/0.3/0.4/0.3/0.7/0.9/0.6/0.1/0.8/0.9
-
[+ -+ ] >0l

Figure 2. Decoding a genome as a program.

Crossover and Mutation To create offspring, a parent
genome contributes part of its genes to the child, a process
called crossover, as shown in Figure 3. In addition to inher-
iting programming instructions from its parent, each child
can also experience mutation, which is the process of adding
controlled, but random perturbation, to specific genes. This
results in modified behavior of the value of a particular gene,
resulting in a change to the resulting programming instruc-
tion, and thus, the overall program.

[+ -+ L g
! 0.1=0.2
[+ - [+ |, |> > l< -

Figure 3. An example of crossover and mutation. The child
genome inherits the first 5 instructions from its parent. One
instruction is mutated.

Crossover copies forward potentially beneficial parts of
the parent, while mutation offers differing behaviors of in-
struction combinations, which may or may not, end up mak-
ing the child programs more successful.

2 Most initial programs in the gene pool fail immediately upon being ex-
ecuted. Others may result in endless loops. It is due to these reasons that
exception handling and maximum iteration limits are imposed on the inter-
preter.
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Survival of the Fittest Executable programs are ranked ac-
cording to how well they have performed. As shown in Fig-
ure 4, a particular program that has failed is often imme-
diately removed from the pool of genomes. However, pro-
grams that succeed are carried forward to produce child pro-
grams.’

:—‘

S i B - ]
e —,

,[+>]< - |+

Figure 4. Programs are weighted by fitness, with the most
successful used for child program generation.

3.3 The Fitness Test

To use GAs, a fitness test is needed to determine how well a
generated solution performs. In the context of AI Program-
mer, this can involve scoring the byte-level output of the
generated program, inspecting the generated program’s in-
ternal state, or even analysis of intermediate state changes
of the program throughout its execution. The score of the
fitness test is calculated by analyzing these characteristics,
and many others, and then comparing them against a user-
defined target.

This concept is similar to test-driven development. When
all unit tests pass, a program may be considered to be func-
tionally correct. Likewise, a fitness test for a GA can be con-
sidered as a set of unit tests. In the case of Al Programmer, a
fitness test typically contains a suite of tests for varying sce-
narios, which guide the genome selection, preserving only
programs that evaluate well on the test suite. Further details
about the construction of Al Programmer fitness tests are de-
scribed in Section 4.

3.4 Al Programmer’s Sandboxed Interpreter

Once a program has been generated, it must be executed so
it can be evaluated against human created fitness tests. How-
ever, the execution of ML generated programs may include
potential security risks as well as performance degradations.
Because of this and the need for complex fitness tests (Sec-
tion 3.3), we developed our own interpreter. This interpreter
is sandboxed within the Al Programmer system to provide
a secure, efficient, and GA-appropriate execution environ-
ment. We explain the challenges and benefits of this system
in the following subsections.

3.4.1 Execution of Generated Programs in a
Controlled Environment

As generated programs are executed to evaluate their fitness,
the results can often be undesirable and potentially danger-

3In Figure 4, the bottom program is a valid running program that takes one
byte for input, increments it, and then displays it twice as output.



ous. Consider a program generated with I/O instructions, al-
lowing for the modification of files on disk. A generated pro-
gram could potentially overwrite critical system files, ren-
dering the entire machine inoperable. Likewise, a program
generated with instructions to support networking could in-
advertently flood a computer network (e.g., denial of ser-
vice attack [28]) or replicate itself across machines (e.g.,
worm [12]).

Normally, these types of behaviors are malicious, yet ML
software generators happen upon these situations in an at-
tempt to satisfy fitness goals. By executing programs within
our own secure interpreter, which includes instruction-level
protection checks, Al Programmer can provide the addi-
tional security measures that are needed to prevent ML gen-
erated software from causing harmful behaviors. Non-ML
generating interpreters and compilers do not generally in-
clude these types of checks because management of such
issues are not usually within their scope [27].

3.4.2 Termination of Infinite Loops

Automatically generated software has the potential to create
infinite loops. This can occur from unsatisfied loop termi-
nation constraints or unexpected looping instructions. In our
experiments, this type of behavior often arises in early pro-
gram generations due to the GA maximizing the goal fitness
score at the cost of program execution time. As a result, un-
terminated programs have the potential to halt the generation
process, resulting in a failure of further program evaluations.

In an attempt to mitigate this, one can add fitness con-
straints to prefer programs with fewer instruction counts
over larger ones. However, the generation of infinite loops,
especially in early generations of programs, remains a possi-
bility. AI Programmer’s interpreter includes a customizable
maximum instruction count per execution. Programs that ex-
ceed the instruction count are terminated. A fitness penalty
can then be applied, reducing the likelihood of future gen-
erations of programs carrying forward the infinite loop con-
structs. With this addition, AI Programmer is guaranteed to
terminate all infinite loops. Although this solution has unin-
tended consequences (such as terminating and discarding vi-
able programs prematurely), it does ensure forward progress.
We are exploring other possible solutions that do not have
such obvious negative side-effects.

3.4.3 Simulation of Complex Instructions

Optimizing program execution is a principle concern for
ML program generators. This is because such systems may
generate and execute dozens to millions of programs before
one with a high enough fitness score is found. While simple
operations, such as add, load, store, jmp, may take a
single clock cycle to complete, more complex operations
can require many. Examples include disk I/O, networking,
and peripheral device access. These types of operations can
significantly increase program execution time, as they often
rely on accessing services or devices with increased latency.

1516

Al Programmer can simulate the execution of these com-
plex instructions. In doing so, the GA-based programs it gen-
erates can execute more efficiently, while still retaining the
ability to check the program’s fitness goals. Moreover, such
simulation protects the devices themselves from overuse by
the plethora of programs that may attempt to access them
during exploratory evolution of GA program generation.

4. Using AI Programmer

Al Programmer consists of a modular framework, designed
in C# .NET. It includes an engine for running genetic algo-
rithms, an encoder and decoder for genomes, a sandboxed
interpreter for simulated program execution, and a compiler
to transform code into binary executables. While the initial
design of Al Programmer uses C#, it is important to note that
the principles employed by it are not bound to C#.

Al Programmer’s software framework for fitness test con-
struction is extensible and was developed so users can de-
vise a myriad of customized fitness suites, which eventually
guide the system’s GA generation and evolution of software
programs.

Specifying Requirements of a Program To generate a pro-
gram, Al Programmer must be provided with the require-
ments for the desired input and output of the target program.
For example, if a program should prompt a user for a nu-
merical input and then subsequently output a line of text,
this must be specified in the form of training data to Al Pro-
grammer. The following subsections detail the step-by-step
process of how a program is specified and generated with Al
Programmer.

Creating Your First Program To begin, a user creates a
C# class within the Al Programmer project, inheriting from
the FitnessBase base class. This class includes all the nec-
essary requirements for specifying a solution to be built by
Al Programmer, including fitness scoring functionality, pro-
gram termination rules, and program generation capabilities.

Specifying a Target Fitness Score Next, the user indicates
a target fitness score which is specified in the constructor
of the class as shown in Figure 5. The score is typically
based upon characteristics of the desired program. For ex-
ample, if the target program is intended to output a string,
such as “Hello World”, the fitness score might be the num-
ber of characters in the string (i.e., 11). However, since Al
Programmer generates programming code at the byte level,
the fitness score should account for incremental differences
in output characters. In this case, one should multiply each
target character in the output by 256, resulting in 2816 (e.g.,
11 * 256) and use that as the resulting target fitness score.
Al Programmer is designed to continue execution, gen-
erating incrementally better programs that satisfy the fitness
conditions, until the current fitness score reaches its target.

Specifying Fitness Conditions Next, the user must spec-
ify the rules that are used to score each of the generated



public StringFitness(GA ga, int maxIterCount)

: base(ga, maxIterCount)
{
_targetStr = "Hello World";
_targetFit = _targetStr.Length * 256;
}

Figure 5. Example target fitness score for “Hello World.”

programs (i.e., the fitness test). At each generation epoch,
Al Programmer will favor programs that have fitness scores
that are closer to the target fitness score. Therefore, care-
ful crafting of the fitness conditions are required so fitness
scores accurately represent the desired goal of the program.

In the “Hello World” example, the user must specify that
the output of the program should match the target string. To
achieve this, one can add to the fitness score according to
how close each character in the generated output string is to
the target string. In particular, the fitness test can simply loop
over the characters in the string "Hello World”, and compare
each one against the characters produced in the output of
the generated program, adding or subtracting accordingly,
as shown in Figure 6.

for (int i = 0; i < _targetStr.Length; i++)
if (_console.Length > i)
Fit += 256-Math.Abs(_console[i]-_targetStr[i]);

Figure 6. Adding and subtracting the fitness score based
upon program output.

After assigning a fitness score to each generated pro-
gram within the current pool, a check is made to determine
whether the target fitness score has been achieved by any of
the generated programs. If so, AI Programmer halts and re-
turns the solution program. Otherwise, it continues with the
next generation of programs.

Specifying Conditions for Variable Output Previously, we
presented an example on how to train Al Programmer to find
an exact string. However, for more complex scenarios, such
as variable outputs or calculated values, a series of training
examples may be required. In such scenarios, training data
can be created to serve as an initial set of examples to base
the fitness score upon. Thereafter, Al Programmer can be
guided with an evolutionary goal to generalize from the
training data and provide correct results for new data.

As an example of variable output, consider the generation
of a program to output the summation of two numbers. The
target fitness score for this program would be the desired
output, which, in this case, would be one byte, multiplied by
the range of potential values (256). To construct the target
fitness score, we can simply multiply the target fitness for a
single result by the number of training examples. Therefore,
in this case, the target fitness is trainingCount * 256.

After specifying the target fitness score, we can imple-
ment the actual fitness check for adding two numbers by
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looping over each training set combination (consisting of
two numbers), inputting those values to our program, and
checking the output for the correct sum. An example of this
is shown in Figure 7. By providing varying training input
values we can help foster the generalization of the solution
program, rather than the generation of a program that only
solves the exact training examples provided.

int val;

if (Int32.TryParse(_console.ToString(), out val)) {
Fit += 256 - Math.Abs(val - (inputl + input2));

}

Figure 7. Calculating the fitness of adding two numbers.

Programmatic Sequences of Action Because different
programs require different sequences of actions (e.g., re-
questing input, outputting a result, etc.), Al Programmer
provides users with a mechanism to specify the necessary
programmatic sequence of actions within the fitness method.

Programmatic sequences can be provided in the form of a
simple state machine within the fitness check method. When
the generated program executes a command to request input
from the user, a bonus score can be applied to the fitness if
it is executed at the correct time in the sequence of actions.
Likewise, when data is output, one can add or subtract from
the fitness score according to the time the action is executed.

It is important for users to account for programmatic se-
quence bonuses when they are generating the initial target
fitness. Doing so will ensure the generated solution will sat-
isfy all required constraints, including sequences of events,
before returning a viable solution program.

5. Results

Using AI Programmer, we were able to generate numerous
complete software programs. A complete listing of these
programs, their associated program generation time, and the
total number of evolutionary generations used to build them
are shown in Table 2. It is important to note that the num-
ber of evolutionary generations is not equivalent to the total
computational time to generate a program. This is due, in
large part, to varying genome size and fitness function com-
putation, which is unique to each program.

For the remainder of this section, we highlight the details
of some of the programs listed in Table 2 and discuss novel
aspects that emerged when generating them.

5.1 Greetings

“Hello World” is usually one of the first programs human
programmers create when they begin learning programming.
As such, we found it fitting to guide Al Programmer to learn
some basic greetings for its early programs. Rather than
starting with “Hello World”, we first had Al Programmer
create a more simplistic program that simply output “hi.” It



Table 2. AI Programmer Results

Name Duration (s)  Generations
hi 52 5,700

Hi! 7,644 1,219,400
hello 1,713 252,000
hello world 7,702 580,900
reddit 1,362 195,000
Keep Calm Keep Coding 944 21,400

I love all humans 36,000 6,057,200
hello {user} 1,793 42,800
Addition 2,698 92,400
Subtraction 4,305 177,900
Multiply x2 6,353 242,000
Multiply x3 5,165 87,200
XOR 2,095 146,400
Fibonacci 21,862 151,900
If/then conditionals 8,313 46,200
cats are evil 10,209 814,400
Bottles of Beer on the Wall 2,957 61,400
Reverse string 49 2,600
CSV parse 173 9,000
Extract in quotes 6,478 212,100
Extract in quotes 2 9,996 188,400
Trim left of quote 9,030 341,700
XML to JSON 6,866 820,900
Warning countdown 48 900

+ [ =D+ > H A+ 4<L] >+, [+.]

Figure 8. Generated program: “hi”

was successfully after 5,700 generations and the generated
code is shown in Figure 8.

The generated program fulfilled its requirement to output
the target text, but interestingly included subsequent random
characters, which contained parsing errors, including non-
matching brackets. However, Al Programmer’s interpreter
computes results until the program fails. In this manner, the
syntax error (which is later on in the code, after a solution
is reached) does not negatively impact its fitness score, and
thus offers a working solution. In fact, the generated code
can be executed in almost any third-party interpreter as a
valid working program (provided, warnings are ignored).

Next, we guided Al Programmer to generate the famous
“hello world” output which was successfully constructed
after 580,900 generations and consists of the code shown in
Figure 9.

> [>=<+++] DO>++++ [+H++H <] > -
Fotttttbt A A HOKH [ A=<

Figure 9. Generated program: “hello world”
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“I love all humans” As a humorous aside, we asked Al
Programmer to create the program to output “I love all hu-
mans,” which was successfully generated after 6,057,200
generations. It consists of the code shown in Figure 10. The
fitness method for this example includes a check on the out-
put string length to ensure an exact matching output, without
extraneous text.

To ensure an exact output string, the fitness score includes
not just a check on the output characters, but also a check
on the length of the string. In this case, the target fitness
included an additional 10 points, of which a percentage of
this amount is added to the resulting fitness, depending on
how close the length of the output string matches the length
of the target. This forces the generation of a program that
outputs the exact target string, without extraneous output
instructions, as the generation process will not halt until the
target fitness is reached, of which, 10 points comprise having
the correct output length.

+[>+<H++] +> - <t
B T o S
., bR,
B I S e E e T
B S S

Figure 10. Generated program: “I love all humans”

// Assigning the target fitness.
_targetFitness = _targetString.Length * 256;
_targetFitness += 10;

// Calculating the fitness length bonus.

Fitness += 10 * ((_targetString.Length -
Math.Abs(_console.Length -
_targetString.Length)) /
_targetString.Length);

Figure 11. A percentage of 10 points is added to the fitness,
according to how exact the length of the output is to the
target.

5.2 Input-Output Computations

We next guided Al Programmer to generate programs that
perform computations based on user input. In such pro-
grams, the user provides some input and the computer pro-
gram then generates the appropriate output.

Reversing a String Al Programmer was able to generate
the program to reverse any string after only 2,600 genera-
tions. The generated code is shown in Figure 12.

+->,>, [>+,] —<[.+<]

EEIE

Figure 12. Generated program for reversing a string.



When executed, the program prompts the user for input. The
user then types one character at a time until a value of “0” is
entered. A novelty of this program is that it is required to take
variable size input first before performing the majority of
its program logic. However, the program’s internal memory
state must manage the variable input, as the program must
read all input first to locate the final character entered, which
is the first character in the reversed string. The genetic al-
gorithm was able to produce this logic automatically, based
upon the fitness method.

Addition and Subtraction Al Programmer was able to
generate programs for addition after 92,400 generations
(Figure 13) and subtraction after 177,900 generations (Fig-
ure 14).

, >, - [-<+>]<+.

Figure 13. Generated program for performing addition.

,—=>, = [-<—>]<+.

Figure 14. Generated program for performing subtraction.

If-Then Conditionals with User Input Generating pro-
grams involving more complex programming logic, such as
the ability to perform if-then decisions and actions, requires
a more advanced type of fitness function. However, as de-
scribed in Section 3.4, Al Programmer’s embedded inter-
preter provides significantly more access to program state
than just its output, which is essential for generating a large
variety of more complex programs.

For example, Al Programmer was able to produce a pro-
gram which prompts the user for input (e.g., 1, 2 or 3) and
outputs text based on which value was entered, similar to se-
lecting an option from a menu. By entering the value “17,
the program would output “hi”. Entering “2”, resulted in the
program output of “z”. Entering “3”, resulted in the output
“bye”. The program was generated in 446,200 generations.

The produced code was notably larger than previously
generated programs, containing 650 instructions (although
not all instructions are needed). The larger code was re-
quired, as the conditional branches are contained within in-
dividual blocks of the code.

5.3 Complexity in Fitness Functions

As the complexity of the target program grows, so too does
the fitness function. After all, the fitness function needs to
guide the engine in determining how well a particular child
program matches the targeted solution. For conditionals and
branching, successful program generation required more ad-
vanced techniques within the fitness function.

In particular, a check was needed to examine the inter-
preter’s memory register (i.e., current data pointer via shift
operations), where the distinct number of memory registers
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being used by the program was counted, providing a bonus
to fitness to favor more memory register usage over less.
This aided in inspiring diversity amongst child programs.
Additionally, the instruction pointer used for each print com-
mand was recorded and weighed against the fitness score. A
penalty was applied for reuse of the same print command.
This helped to foster diversity and achieve a successful if-
then result.

6. Optimizing Program Generation

We noticed that the program generation time increased sig-
nificantly as the length of the target output increased. Fur-
thermore, the need to extend Al Programmer beyond the ba-
sic instruction set was deemed a necessity if we were to have
it produce programs with more interesting features, such as
file I/O and networking capabilities.

As such, we extended Al Programmer to use an extended
programming instruction set, which reduced code genera-
tion time and improved code compression due to an in-
creased range of instruction specificity (i.e., fewer instruc-
tions to achieve the same result). However, a disadvantage
of utilizing the extended instruction set is that the generated
programs would be difficult to test in standard interpreters.
As the extended instruction set for AI Programmer deviated
from the traditional programming language, standard inter-
preters would no longer be able to run the produced code. In
our case, Al Programmer’s internally developed interpreter
was modified to support the extended instruction set, so this
was not a practical obstacle.

6.1 Extended Instruction Set

Several extensions of the programming language used by Al
Programmer exist, which are suitable to decrease program
generation time. Specifically, the speed-enhancing extension
set, Extended Type III [7], offers several programming in-
structions that aid generation. These instructions include the
ability to immediately set the value of a particular cell to
a multiple of 16, also called “fast cell initializers”. This aids
in allowing a generated program to quickly reach displayable
ASCII range characters for output, thus, decreasing the num-
ber of individual increment programming instructions that
would normally be required.

In addition to key instructions taken from Extended Type
III, we added several new instructions to support calling
functions from within a program, allowing for increasingly
complex programs to be generated.

Fibonacci Sequence With these extensions in place, Al
Programmer was able to generate a program to output the
Fibonacci sequence up to 233 #, which was was generated in
approximately six hours. The program prompts the user for
input of the two starting values in the sequence. It then out-
puts the next digits in the Fibonacci sequence. The generated

4255 is the max value for a byte, with the next Fibonacci sequence value
being 377.
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Figure 15. Generated program to output the Fibonacci se-
quence from two starting input values.

code for this, using the extended instruction set, is shown in
Figure 15.

Advancing Complexity The ability of the GA to generate a
program for solving the Fibonacci sequence was a profound
advancement. The solution program contains several distinct
programming tasks, including prompting the user for input
of two numbers at the beginning of execution, calculating
the addition of values, determining the correct mathematical
sequence, outputting the result, and looping to repeat the
process for each value in the sequence.

This combination of tasks, spreading across a range of
programming abilities, might typically be given to human
programmers in order to evaluate their programming profi-
ciency. The capability of the GA to automatically generate
this type of program demonstrates the potential for future
expansion of the system.

7. Related Work

Genetic algorithms have previously been applied in some
restricted cases. A key limitation in their broader applica-
tion has been in the computational density of the search
space involved in program generation, which exponentially
increases as programs grow in complexity [13]. Al Program-
mer provides to novel mitigation of this inefficiency by using
a minimalistic programming language, exploiting the natu-
ral parallelism of GAs, simulating complex instructions, and
embedding an optimized interpreter for fast execution and
fast-failure of defunct programs.

7.1 Genetic Algorithms in Other Domains

Somewhat related to our work, is the use of program syn-
thesis driven by genetic programming in hardware-based
niche fields. Koza et al. used an automated process for cre-
ating analog circuits, involving genetically evolved designs
with evolutionary computation to produce circuit compo-
nents that typically require human-level intelligence to con-
struct [14]. In addition, they used human constructed fitness
methods to guide their circuit design. Although applied in
different domains, the high-level machine learning approach
of Koza et al.’s system is similar to AI Programmer.

One of the key components of our research is the usage
of a minimalistic programming language to limit the com-
putational complexity of generated programs. This approach
been found useful in other areas of genetic programming, in-
cluding the simulation of artificial life, as described in Ling’s
work [15]. In a simulation library based on genetic algo-
rithms and biological hierarchy, the system, called Ragaraja,
uses biological concepts to form an esoteric programming
language, consisting of a set of 3-character instructions. In
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this manner, the system is able to simplify the genetic algo-
rithm generation and mutation process by limiting the num-
ber of possible instruction combinations. Although applied
in a completely different domain, the affects of this approach
are similar to Al Programmer, specifically for optimizing the
generation time and limiting the complexity of generated so-
lutions to a constrained set of instructions.

7.2 Different Approaches in Program Generation

Al Programmer has similarities to a program synthesis tech-
nique called sketching in that each approach attempts to au-
tomatically generate software by using some human guid-
ance. However, the similarities between the two approaches
ends there. On one hand, sketching is a program synthesis
technique where a programmer provides only a minimalistic
outline of an implementation and the compiler generates the
remaining code [24, 25]. On the other hand, AI Programmer-
requires no partial implementation, but instead requires hu-
man developers to design fitness tests which guide the evo-
lutionary algorithm for the entire program construction.

Another slightly related work is verified lifting [11]. Ver-
ified lifting aims to lift algorithms written in one language
and place a formally verified equivalent in another language.
The benefits of verified lifting are highly practical, especially
when considering the need for such systems as real software
systems often migrate from one programming language to
another. However, verified lifting and AI Programmer are
only loosely similar in that both systems perform automatic
code generation, but do not possess any other similarities in
their approaches.

8. Conclusion and Future Work

The results presented in this paper, provide early notions
about the power that machine learning techniques, specifi-
cally genetic algorithms, may offer a partial solution for au-
tomatic program generation. We showed that fully functional
programs can indeed be automatically generated, provided
they are supplied with some human guidance in the way of
input parameters and training data.

In addition to correctness, efficient implementation of fit-
ness methods are imperative to the practical application of
Al Programmer. This is because each generated program is
checked against the fitness method every time a new pro-
gram is evaluated. An important open area of future work is
the deep examination of how to implement fitness methods
as efficiently as possible while still retaining a high degree
of correctness. One possible solution is to build superopti-
mizers specifically for fitness test optimizations [20].

Another important open area in ML-based program gen-
eration is the need for specifically crafted programming lan-
guages that have strong alignment with the constraints of
ML computation. By re-thinking the type of languages used
for ML-based program generation, we can envision a new



future of software development, driven by artificial intelli-
gence systems, with human creativity guiding the way.
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