
Paradiseo: From a Modular Framework for Evolutionary
Computation to the Automated Design of Metaheuristics

22 Years of Paradiseo

Johann Dreo∗
Systems Biology Group,

Dep. of Comp. Biology, USR 3756,
Institut Pasteur and CNRS

Paris, France
johann@dreo.fr

Arnaud Liefooghe
Univ. Lille, CNRS, Inria, Centrale Lille,

UMR 9189 CRIStAL
F-59000 Lille, France

arnaud.liefooghe@univ-lille.fr

Sébastien Verel
Univ. Littoral Côte d’Opale

Calais, France
verel@univ-littoral.fr

Marc Schoenauer
TAU, Inria, CNRS & UPSaclay

LISN, Saclay, France
marc.schoenauer@Inria.fr

Juan J. Merelo
University of Granada

Granada, Spain
jjmerelo@gmail.com

Alexandre Quemy
Poznan University of Technology

Poznan, Poland
alexandre.quemy@gmail.com

Benjamin Bouvier
Lyon, France

public@benj.me

Jan Gmys
Inria

Lille, France
jan.gmys@inria.fr

ABSTRACT
The success of metaheuristic optimization methods has led to the
development of a large variety of algorithm paradigms. However,
no algorithm clearly dominates all its competitors on all problems.
Instead, the underlying variety of landscapes of optimization prob-
lems calls for a variety of algorithms to solve them efficiently. It
is thus of prior importance to have access to mature and flexible
software frameworks which allow for an efficient exploration of
the algorithm design space. Such frameworks should be flexible
enough to accommodate any kind of metaheuristics, and open
enough to connect with higher-level optimization, monitoring and
evaluation softwares. This article summarizes the features of the
Paradiseo framework, a comprehensive C++ free software which
targets the development of modular metaheuristics. Paradiseo pro-
vides a highlymodular architecture, a large set of components, speed
of execution and automated algorithm design features, which are
key to modern approaches to metaheuristics development.

CCS CONCEPTS
• Software and its engineering→Object oriented frameworks;
Search-based software engineering; • Computing methodologies
→ Randomized search.

∗Corresponding author.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463276

KEYWORDS
Software Framework, Evolutionary Computation, Metaheuristics,
Automated Algorithm Design

ACM Reference Format:
Johann Dreo, Arnaud Liefooghe, Sébastien Verel, Marc Schoenauer, Juan
J. Merelo, Alexandre Quemy, Benjamin Bouvier, and Jan Gmys. 2021. Par-
adiseo: From a Modular Framework for Evolutionary Computation to the
Automated Design of Metaheuristics: 22 Years of Paradiseo. In 2021 Genetic
and Evolutionary Computation Conference Companion (GECCO ’21 Com-
panion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3449726.3463276

1 INTRODUCTION
In the research domain of metaheuristics for black-box optimiza-
tion, a very large variety of algorithms has been developed since the
first Evolution Strategies appeared in 1965 [31]. Starting from nature-
inspired computing methods and following recent mathematical
approaches, numerous applications have shown the efficiency of
those randomized search heuristics. However, following Wagner et
al. [33], we observe that the metaheuristic research domain lacks
mature software, while it is crippled with short-lived research pro-
totypes on over-specific features sets. We believe this state hinders
the adoption of those technologies in the industrial world and is an
obstacle to breakthrough innovations. Therefore, the development
of a full-featured and mature metaheuristic optimization frame-
work is of prior importance, for both the scientific and the applied
communities. In this article, we summarize our efforts towards this
goal, in the guise of the Paradiseo project.

The Paradiseo framework is a 22 years old effort which aims at
developing a flexible architecture for the generic design of meta-
heuristics for hard optimization problems. It is implemented in
C++, a very mature object-oriented programming language,which
is probably one of the fastest, if not the fastest, object-oriented

1522

https://doi.org/10.1145/3449726.3463276
https://doi.org/10.1145/3449726.3463276


GECCO ’21 Companion, July 10–14, 2021, Lille, France Dreo, et al.

programming platforms on the market [19, 28, 30]. It is also highly
portable and benefits from very extensive tooling as well as an
active community. Paradiseo is released as a free and open-source
software, under the LGPL-v2 and CeCILL licenses (depending on
the module). Its development is open and the source code is freely
available on the Inria1 and Github2 code repositories.

1.1 History
The “Evolving Objects” (EOlib, then simply EO) framework was
started in 1999 by the Geneura team at the University of Granada,
headed by Juan Julián Merelo. The development team was then
reinforced by Maarten Keijzer, who designed the current modular
architecture, and Marc Schoenauer [21]. Later came Jeroen Eg-
germont, who, among other things, did a lot of work on genetic
programming, Olivier König, who did a lot of useful additions and
cleaning of the code, and Jochen Küpper.

The Inria Dolphin team, headed by El-Ghazali Talbi, did a lot
of contributions starting from around 2003, on their own module
collection called Paradiseo. Thomas Legrand worked on particle
swarm optimization, the regretted Sébastien Cahon and Nouredine
Melab worked on parallelization modules [4–7]. Arnaud Liefooghe
and Jérémie Humeau worked a lot on the multi-objective mod-
ule [24] and on the local search one along with Sébastien Verel [18].
In the same team, C. FC.3 and Jean-Charles Boissonmade significant
contributions.

The (then) EO project was taken over by Johann Dreo, who
worked with the help of Caner Candan on adding the EDO module.
Johann and Benjamin Bouvier have also designed a MPI paralleliza-
tionmodule, while Alexandre Quemy alsoworked on parallelization
code.

In 2012, the two projects (EO and Paradiseo) were merged into a
single one by Johann Dreo, Sébastien Verel and Arnaud Liefooghe,
who have been acting as maintainers ever since.

In 2020, automated algorithm selection design and binding to-
ward the IOHprofiler validation tool were added by Johann Dreo.

Along the life of the project, several spin-off software have been
developed, among which a port of the EO module in Java [1], an-
other one in ActiveX4; GUIDE, a graphical user interface for as-
sembling algorithms [10]5, and EASEA, a high-level declarative
language for evolutionary algorithm specification [9], which later
became independent [26] of the specific library.

1.2 Related Frameworks
The 1998’s version of the hitch-hiker’s guide to evolutionary compu-
tation (frequently asked question in the comp.ai.genetic Usenet
newsgroup6) already lists 57 software packages related to the im-
plementation of evolutionary algorithms (among which EOlib, the
ancestor of Paradiseo).

Most of those software are now unmaintained or impossible to
find. There has been, however, a constant flow of new frameworks,

1https://gitlab.inria.fr/paradiseo/paradiseo
2https://github.com/jdreo/paradiseo
3Redacted by author’s demand.
4http://geneura.ugr.es/~jmerelo/DegaX/
5Which also supported ECJ.
6Discussion forumwhich was popular before theWorldWideWeb and social networks.
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm

Table 1: Main software frameworks for evolutionary compu-
tation and metaheuristics. Fastest languages are figured in
green and slowest in red, copyleft licenses are in red. “kloc”
stands for “thousands of lines of code”.

N
am

e

L
an

g
u

ag
e

U
p

d
at

e

L
ic

en
se

C
o

n
tr

ib
u

to
rs

kl
o

c

E
vo

l.

E
D

A
s

P
S

O

L
o

ca
l 

S
ea

rc
h

C
lu

st
er

M
u

lt
ic

o
re

G
P

G
P

U

M
u

lt
io

b
je

ct
iv

e

L
an

d
sc

ap
es

S
ta

te
s

A
u

to
. 

D
es

ig
n

ParadisEO C++ 2021 LGPLv2 33 82 Y Y Y Y Y Y ~ Y Y Y Y
jMetal Java 2021MIT 29 60 Y N Y N Y N N Y N ? N
ECF C++ 2017MIT 19 15 Y N Y N Y N N N N Y N
ECJ Java 2021AFLv3 33 54 Y Y Y N Y Y Y Y N Y N
DEAP Python 2020 LGPLv3 45 9 Y N N N Y Y N Y N Y N
CIlib Scala 2021Apachev2 17 4 Y N N N N N N N N ? N
HeuristicLab C# 2021GPLv3 20 150 Y N Y Y Y Y N Y ~ Y N
Clojush Clojure 2020EPLv1 17 19 Y N N N N N N N N N N

library or solvers every year, for decades. We were able to find
at least 47 of them readily available on the web7. Among those
projects, only 8 met all the following criteria:

(1) open-source framework aiming at designing algorithms8,
(2) being active since 2015,
(3) having more than 15 contributors.

The features of those main frameworks are compared in Table 1,
where the number of lines of code was computed with the cloc
tool9. Note that for HeuristicLab, the code for the GUI modules was
excluded from the count. The GPGPU module of Paradiseo [27] is
not counted either, as it is not maintained anymore. The number of
contributors has been retrieved from the code repository’s commit
histories, which underestimates the number of people involved in
the case of Paradiseo; the extracted number is however kept, for
fairness in comparison with the other frameworks, that might face
a similar bias.

Among the software close in features to Paradiseo, ECF has
not been updated in 4 years. ECJ, jMetal are close competitors,
albeit programmed in Java, which is expected to run near 2.6 times
slower than programs in C++10, a key drawback for automated
algorithm design (see Section 4.3). HeuristicLab suffers from the
same drawback, but provides a graphical user interface for the run
and analysis of solvers. Paradiseo does not provide such a GUI, but
relies on dedicated third-party tools for this kind of functionality
(see [10] and Section 4.3). The other frameworks do not provide the
same level of features and use languages that are generally slower
than C++ [28].

2 ARCHITECTURE
From its inception [29],Paradiseo opted for an original architecture
design, exemplified by its name, “Evolving object”, as opposed to
a procedural or functional view of the algorithm. In this section,
we expose first the main concepts used in its architecture, to focus

7Paradiseo, jMetal, ECF, OpenBeagle, Jenetics, ECJ, DEAP, CIlib, GP.NET, DGPF, JGAP,
Watchmaker, GenPro, GAlib, HeuristicLab, PyBrain, JCLEC, GPE, JGAlib, pycma, PyE-
volve, GPLAB, Clojush, µGP, pySTEP, Pyvolution, PISA, EvoJ, Galapagos, branecloud,
JAGA, PMDGP, GPC++, PonyGE, Platypus, DCTG-GP, Desdeo, PonyGE2, EvoGrad,
HyperSpark, Nevergrad, Pagmo2, LEAP, Operon, EMILI, pso-de-framework, MOACO.
8Libraries of solvers, like Pagmo2 or Nevergrad, do not match this criterion.
9version 1.82 of https://github.com/AlDanial/cloc
10Following the "n-body" setup of the "Computer Language Benchmarks Game", which
is the closest problem to our setting: https://benchmarksgame-team.pages.debian.net/
benchmarksgame/performance/nbody.html

1523

https://gitlab.inria.fr/paradiseo/paradiseo
https://github.com/jdreo/paradiseo
http://geneura.ugr.es/~jmerelo/DegaX/
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
https://github.com/AlDanial/cloc
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/nbody.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/nbody.html


Paradiseo: From Modular Framework to Automated Design GECCO ’21 Companion, July 10–14, 2021, Lille, France

next on the design patterns that have been used in it, giving it room
for evolution and improvement along the years.

2.1 Main Concepts
The core of Paradiseo is formed by the EO module, which has
been designed for general evolutionary algorithms. Most of its core
concepts are used across the other modules and are named after its
vocabulary:

Encoding: The data structure modelling a solution to the op-
timization problem (which type is generally denoted EOT).

Evaluation: The process of associating a value to a solution,
thanks to an objective function.

Fitness: The value of a solution as seen by the objective func-
tion.

Operator: A function which reads and/or alters a (set of) so-
lutions.

Population: A set of solutions.

2.2 Main Design Patterns
Paradiseo is a framework, providing a large set of components
that the user can assemble to implement a solver. To facilitate and
enforce the design and use of components, Paradiseo is based on
four main design patterns: Functor, Strategy, Generic Type and
Factory. Figure 1 shows a high-level view of the global design
pattern.

Interface
+operator()(args…)

encoding:EOT

OperatorSemantic
+operator()(args…)

:EOT

Operator
+parameters…

+operator()(args…)
{manipulates any EOT}

:EOT

OperatorAggregate
+parameters…
+operator: OperatorSemantic&

+operator()(args…)

:EOT

Figure 1: UML diagram of a high-level view of the main de-
sign pattern used in the Paradiseo framework.

Functor: In Paradiseo, most of the operators are functions
(exposing the operator() interface) holding a state between
calls [21, 32]. Member variables of the functors are either
parameters or references to other functors, involved in the
computation.

Strategy: Operators can be composed to form another one.
For instance, an eoAlgo is essentially an operator holding
a loop which calls other operators. These operators must
then honor an interface, which provides the semantic of
the underlying operation [14]. For instance, an eoSelectOne

exposes the interface to pick a solution within a population:
const EOT& operator()(const eoPop<EOT>&).

Generic type: Almost all the operators in Paradiseo are de-
fined over a EOT template holding the encoding of a solution
to the optimization problem. This allows for two crucial
features: (i) the user can provide her own data structure,

without major redesign, and (ii) any operator deep in the
call tree may have access to any specific interface of the
encoding [32]. This was one of the earliest decisions taken,
and was already presented in [21].

Factory: As many operators are abstracted through their in-
terfaces, Paradiseo provides ways to manage them as collec-
tions or high-level aggregates, so that the user does not have
to manage the details. For instance, Paradiseo provides clas-
sical stopping criterion collections or on-the-fly instantiation
(see also Section 4.3).

With this approach, Paradiseo is enforcing the use of composition
of objects, limiting the use of inheritance to interfaces (generally
of abstract classes). One of the main goals of the framework is to
be able to easily compose new algorithms, by (i) reusing existing
common features (logging, parallelization, state serialization, etc.)
and (ii) assembling existing algorithmic operators, for instance by
hybridizing algorithms.

Figure 2 shows an example of the core concepts which a user
may see: the EO class, from which a solution to the optimization
problem will inherit the interface necessary to be used across the
operators, and a set of operator interfaces and implementations,
which define an algorithm.

3 MODULES
Paradiseo targets modular algorithms and is thus organized in
several modules: Evolving Objects (EO) for population-based al-
gorithms such as evolutionary algorithms and particle swarm op-
timization, Moving Objects (MO) for local search algorithms and
landscape analysis, Estimation of Distribution Objects (EDO) for
estimation of distribution algorithms, and Multi-Objective Evolving
Objects (MOEO) for multi-objective optimization. Each module
brings its own specific concepts and features, on top of the common
core features provided in the EO module. The following sections
summarize this organization.

3.1 Evolutionary and Particle Swarm
Algorithms — EO

The EO module defines a number of common operators which are
used across all the framework:

Evaluation of populations: Operators which call the objec-
tive function for a set of solution.With several parallelization
options [4–7].

Initialization: Operators which generate solutions, out of the
optimization loop (generally at random).

Continue: A stopping criterion which returns false if the iter-
ation loop of an algorithm is to be stopped.

Checkpoints: A generic operator which is called at each iter-
ation (for instance to collect statistics).

Updater: A generic operator which can update a parameter.
State: A serialization of a state of an algorithm.
Wrappers: Operators which transform a (set of) operators as

another one.
Generic encodings: Some solution representations which are

often used when solving optimization problems, like numer-
ical vectors, binary vectors, trees, permutations.

1524



GECCO ’21 Companion, July 10–14, 2021, Lille, France Dreo, et al.

eo[Bin|Mon|Quad]Op
:EOT

EO
+fitness: F

+fitness(): F
+fitness(fitness:F)
+invalidate()
+invalid(): bool
+operator<(other:EO<F>): bool

fitness:F

eoObject
+className(): string

eoPersistent
+readFrom(input:istream)

eoPrintable
+printOn(output:ostream)

eoScalarFitness
+operator<(other:T): bool

scalar:T
comp:CMP

eoDualFitness
+operator<(other:T): bool

scalar:T
comp:CMP

eo[U|B]F
+operator()(args…:EOT): bool

encoding…:EOT…
returns:bool

eoAlgo
:EOT

eoFastGA
+_crossover: eoQuadOp
+_mutation: eoMonOp
+_select_cross: eoselectOne
+_select_aftercross: eoSelectOne
+_select_mut: eoSelectOne
+_replace: eoReplacement
+_continue: eoContinue
+_pop_eval: eoPopEvalFunc
+_rate_crossover: double
+_rate_mutation: double
+_offspring_size: double

+operator()(pop:eoPop<EOT>)

:EOT

eoSelectOne
+operator()(pop:eoPop&): EOT&

:EOT

eoReplacement
+operator()(par:eoPop&,off:eoPop&)

:EOT

eoContinue
+operator()(pop:eoPop&): bool

:EOT

eoPopEvalFunc
+operator()(eoPop&,eoPop&): bool

:EOT

Figure 2: General overview of the main classes involved in assembling one of the Paradiseo-EO algorithms. Concrete class
implementations manipulated by the user are shown in dark gray. Interfaces which define generic behavior are figured in
white. Low-level convenience classes provided by the framework are figured in light gray.

Parameters: An abstraction of parameters, which can be used
for command line interfaces, state management and dynamic
algorithms.

Those features are generally used by the following modules.
The EO module holds the following necessary classes to im-

plement evolutionary algorithms, as illustrated in Figure 3 (lower
part):

Selection: Operators which pick (a set of) solutions within a
population. Two levels are available: operators which pick a
single solution (eoSelectOne interface), and operators which
select more than one solution (eoSelect).

Variation: Operators which generate new solutions by alter-
ing existing ones. They are generally called “mutations”,
when they alter a single solution, and “crossover” when they
alter two or more solutions at once. Both types return a
boolean which is true if an alteration has actually been done.

Replacement: Operators which merge two populations, typi-
cally “parents” with “offsprings” (produced by the alteration
of parents with variation operators).

Algorithms: High-level operators which manipulate a popu-
lation generated at initialization, and iteratively apply a set
of operators until a stopping condition is satisfied.

More information on the design of evolutionary algorithms within
Paradiseo-EO can be found in [21].

EO also defines classes which target particle swarm optimization
algorithms:

Particle: An interface on top of the EO class, which defines a
freely moving particle.

Velocity: Operators which control the speed at which a parti-
cle is moving.

Flight: Operators which control the next position at which the
particle will be.

3.2 Local Search and Landscape Analysis — MO
The MO module adds an interface which can manage single solu-
tions instead of populations, mainly providing a fine-grained level of
abstraction, following the same components as the EO module. It
also adds the important concept of incremental evaluation, to allow
the design of objective functions which compute the value of a
solution based on the application of a move to an already evaluated
solution. The objective function can thus take into account only
the sub-parts of the solutions that have been altered, effectively im-
proving the computation time. Those operators are tightly coupled
with neighborhoods, which are variation operators applied to single
solutions.

The MO module additionally provides components to sample
the search space and estimate statistics for characterizing the fitness
landscape of the problem in terms of features, such as the density of
states, the fitness distance correlation, the autocorrelation function,
the length of adaptive walks, the landscape neutrality, or the fitness
cloud [11, 17]. More information about local search and landscape
analysis in Paradiseo-MO can be found in [18].

3.3 Multi-Objective Optimization — MOEO
The MOEO module adds the necessary features to handle multi-
objective optimization [8, 35]:

Fitness assignment: Large set of operators which convert
raw objective values into ranks or fitness values used for
selection and replacement. They include state-of-the-art
scalarizing-, dominance- and indicator-based approaches.

Diversity preservation: Operators which maintain diversity
in the population, seeking for well-spread and uniformly-
distributed solutions in the objective space.

Selection: Operators which combine the ones above in order
to guide the population towards Pareto-optimal solutions.

1525



Paradiseo: From Modular Framework to Automated Design GECCO ’21 Companion, July 10–14, 2021, Lille, France

populationEstimator

Distrib

po
pu

latio
n

Sampler

Repairer

Stop. criteria?

Modifier

Best solution

Best solution

Evaluation

Selection

Stop. criteria?

Replacement

Best solution

Parents

Genitors

O
ffs

pr
in

gs
Initialization

Estimator

Sampler Distrib
Stop. criteria?

Figure 3: Modular estimation of distribution algorithm as
seen from Paradiseo-EDO. The lower part of the diagram is
the modular evolutionary algorithm loop. EDO adds a set
of operators to replace “implicit” variation operator by “ex-
plicit” ones. The operators managing the probability distri-
bution are shown in orange.

Archive: Secondary population which maintains non-domina-
ted solutions.

Performance metrics: Quality indicators computed over pop-
ulations or archives to measure solution quality in multi-
objective optimization.

More information about the Paradiseo-MOEO module, and how
to design multi-objective local search and evolutionary algorithms
in Paradiseo are detailed in [24].

3.4 Estimation of Distribution — EDO
The EDO module encompasses the features to manage population-
based algorithms which have an explicit state from which the pop-
ulation is derived at each iteration.

Distribution: A template, wrapping the encoding EOT and hold-
ing the data structure representing a probability distribution.

Estimator: Operators which compute distribution parameters
from a given population.

Sampler: Operators which compute a population from a given
distribution.

Several other operators allow to manipulate and combine those
objects and to plug them within EO evolutionary algorithm’s vari-
ation operator, as shown on Figure 3.

4 KEY FEATURES
4.1 Modular Algorithms
The main feature of Paradiseo is to provide a large set of modular
algorithms, which are assembled from a large variety of operators.
This is motivated by the fact that there exists a large diversity of
optimization problems, which would be more efficiently solved by
specific algorithms rather than generic ones.

It is thus of prior importance to be able to easily explore the
design space of algorithms, in order to find the best one for a given
problem. Having a large set of reusable components is key to allow
the practitioner to quickly try new algorithm variants, which may
not have been tested yet. New ideas can also be experimented with
minimum effort, by allowing the user to focus on a single (new)
component. Figure 4 shows a simple example of a modular genetic
algorithm (inspired from [12]), which allows for the instantiation
of 1 630 475 different algorithm instances. In that case, an algorithm
instance is a combination of parameterized operators, with varying
functions and/or parameters11. Of course, considering the whole
footprint of Paradiseo would allow for far larger design space.

It is also worth noting that the hybridization of two algorithms
in Paradiseo is as simple as encapsulating operators with a similar
interface. For instance, it is straightforward to use a local search
algorithm implemented with MO as a variation operator of an
evolutionary algorithm implemented with EO, then ending up
with a so-called memetic algorithm.

Moreover, this modular architecture facilitates a fair comparison
of algorithms in practical use cases, where wall-clock performance
is of prior importance; e.g., for applications involving interactions
with a human. In such a case, having a common code base helps
conducting more unbiased studies.

4.2 Fast Computations
Paradiseo is one of the few optimization frameworks written in
C++, a compiled programming language known for its runtime
speed. Moreover, its design is thought to directly plug components
at compile time rather than relying exclusively on dynamically-run
conditional expressions.

A typical rationale in black-box optimization is to state that
the efficiency of the algorithm computations is not a concern, be-
cause in real cases the objective function dominates the runtime.
While this is true in essence, this argument forgets that, during
the design phase of algorithms, practitioners most often do not use
complex objective functions, but synthetic ones, which are very
fast to compute. In that case, fast computation means fast design
iterations.

For example, a CMA-ES algorithm implemented with Paradiseo
is 10 times faster than its heavily optimized counterpart imple-
mented with Python/Numpy, when solving a standard synthetic
benchmark. Those measures are obtained using the reference im-
plementation of CMA-ES available in the pycma package12, solv-
ing the Black-Box Optimization Benchmark (BBOB [15]) of the
COmparing Continuous Optimizers (COCO13) platform [16]. The

11Generally numerical or integer parameters, sometimes boolean or categorical ones.
12Version 3.0.0 of https://github.com/CMA-ES/pycma
13Version 2.3.2 of https://github.com/numbbo/coco

1526

https://github.com/CMA-ES/pycma
https://github.com/numbbo/coco


GECCO ’21 Companion, July 10–14, 2021, Lille, France Dreo, et al.

Replacement

Selection

<<Bits>>
Mutations

<<FixedLength>>
Crossovers

eoFastGA
+rate_crossover: double
+rate_mutation: double
+crossover: eoQuadOp
+select_aftercross: eoSelectOne
+select_cross: eoSelectOne
+select_mut: eoSelectOne
+mutation: eoMonOp
+replace: eoReplacement

eoRandomSelect

eoSequentialSelect

eoDetTournamentSelect
+tour_size = [2,6,… 11[

eoStochTournamentSelect
+tour_rate = 0.5

eoProportionalSelect

eo1PtBitXover

eoUBitXover
+preference = [0.1, 0.3,… 1[

5

eoNPtsBitXover
+num_points = [1,3,… 10[

11

5

eoDetSingleBitFlip
+num_bits = [1,2,…11[

[0, 0.2, 0.4,…1]

5
5

5

eoUniformBitMutation
+rate = 1

eoStandardBitMutation
+rate = 1

eoConditionalBitMutation
+rate = 1

eoShiftedBitMutation
+rate = 1

eoNormalBitMutation
+rate = 1

eoFastBitMutation
+rate = 1

11

5

3

7
1

7

eoPlusReplacementeoCommaReplacement

eoSSGAWorseReplacement

eoSSGAStochTournamentReplacement
+tour_rate = [0.51,0.71,0.91]

eoSSGADetTournamentReplacement
+tour_rate = [2,4,…11[

3

11

5

Figure 4: Example of relationships between an algorithm template (eoFastGA) and its related operators. Each package box groups
alternative operators which may be used for the corresponding step of the algorithm.

Paradiseo implementation14 used the independent implementation
of BBOB available on the IOHexperimenter15 platform [13]. Both
benchmarks are implemented in C/C++. Running algorithms on
the whole benchmark, on a single Intel Core i5-7300HQ at 2.50GHz
with a Crucial P1 solid-state disk, takes approximately 10 minutes
with pycma/COCO, and only 1 minute with the Paradiseo/IOH
implementation.

In addition, the Symmetric Multiprocessing module (SMP) al-
lows to wrap any operator called within a loop transparently to
fully make use of CPU cores. The master-worker model has been
shown to scale (near) linearly with the number of cores, while
having a low communication overhead. SMP also provides a paral-
lel island model [34] that speeds up algorithm convergence while
maintaining diversity.

At last, we argue that fast computations of the algorithm and
objective function are necessary features to facilitate automated
algorithm design, where an algorithm is itself in charge of finding
the most appropriate variant of an algorithm [22], learn what is the
best algorithm for a given benchmark [20], or even a given problem
fitness landscape [3, 11, 23]. In that case, running an assembled
algorithm on a benchmark is the objective function of the design
problem, and its computation time determines the scale at which
the experiment can be conducted. This feature is discussed in more
detail below.

4.3 Automated Algorithm Design
Automated algorithm design features are recent additions to Par-
adiseo. They target the ability to assemble algorithms at runtime
without loss of performance, and easy bindings with benchmarking

14Version 640fa31 of https://github.com/nojhan/paradiseo
15Version 2395af4 of https://github.com/nojhan/IOHexperimenter

and algorithm selection tools. Figure 5 shows the global setting,
which is detailed in this section.

On-the-fly Operator Instantiation with Foundries. Foundries are
“Factory” classes which allow to instantiate a parameterized oper-
ator, chosen among a set of operators having the same interface.
The user can indicate which classes and parameters should be man-
aged and a foundry is responsible for instantiating when it is called
with the index of the operator to be instantiated. This allows for
simple numerical interfaces with algorithm selection solvers (i.e.
generic hyper-parameters tuning). An algorithm foundry is thus a
generic meta-algorithm, which can instantiate and call an actual
algorithm class. It follows the same interface as an algorithm, but
models the operators of this algorithm as operator foundries rather
than references to operator instances. Those operator foundries
are responsible for instantiating the operator when asked to do so.
Figure 6 shows the classes involved.

An end-user willing to find the best algorithm variant for her
needs would need to select a subset of parameterized operators of
interest and add them to the foundry. Then, it is sufficient to indicate
(potentially at runtime) which algorithm should be instantiated and
run. Let us illustrate this with an example in Listing 1.

1 / / Cons i d e r i ng the FastGA modular a lgo r i thm ,
2 / / s o l v i n g a problem with f i x e d i n i t i a l i z a t i o n .
3 auto& foundry = store.pack < eoAlgoFoundryFastGA <Bits >

>(

4 init , problem , max_eval_nb , / ∗ max_ r e s t a r t s = ∗ / 1);
5 / / Cons ide r d i f f e r e n t c r o s s o v e r o p e r a t o r s .
6 for(double i=0.1; i<1.0; i+=0.2) {

7 foundry.crossovers.add < eoUBitXover <Bits > >(i);

8 foundry.crossovers.add < eoNPtsBitXover <Bits > >(i*10);

9 }

10 / / And d i f f e r e n t v a r i a t i o n r a t e s .
11 for(double i=0.0; i<1.0; i+=0.2) {

1527

https://github.com/nojhan/paradiseo/commit/640fa31fb510d620cc0aef069dce2c615aee2a80
https://github.com/nojhan/paradiseo
https://github.com/nojhan/IOHexperimenter/commit/2395af46ca23273b800978c41dde0196039fe16e
https://github.com/nojhan/IOHexperimenter


Paradiseo: From Modular Framework to Automated Design GECCO ’21 Companion, July 10–14, 2021, Lille, France

IOHexperimenter

ParadisEO

<<Bits>>

eoAlgoFoundryFastGA
+crossover_rates: {double}
+crossover_selectors: {eoSelectOne}
+crossovers: {eoQuadOp}
+aftercross_selector: eoSelectOne
+mutation_rates: {double}
+mutation_selectors: {eoSelectOne}
+mutations: {eoMonOp}
+replacements: {eoReplacement}
+offspring_sizes: {size_t}
+eval: eoEvalFunc<Bits>

+select(encoded_algo:vector<int>)
+operator()(pop:eoPop<Bits>)

IOH_ecdf_logger
+target_range: RangeLinear
+budget_range: RangeLinear

+data(): IOH_AttainSuite

IOH_csv_logger

IOH_observer_combine
+vector<IOH_logger>

IOH_logger

+do_log(problem_info)

<<Bits>>

eoEvalIOHproblem
+pb: IOH_problem
+log: IOH_observer

+operator()(sol:Bits)

<<Bits>>

IOH_problem

W_Model_OneMax
+epistasis: int
+neutrality: int
+ruggedness: int
+max_target: int
+dimension: int

+operator()(sol:Bits): double

IOH_ecdf_sum

+operator()(ecdf:IOH_AttainSuite): double

After   run

<<Bits>>

eoEvalFunc

fastga

+run(--problem:int,
     --pop-size:size_t,
     --crossover-rate:int,
     --cross-selector:int,
     --crossover:int,
     --aftercross-selector:int,
     --mutation-rate:int,
     --mut-selector:int,
     --mutation:int,
     --replacement:int,
     --offspring-size:size_t)

Select, Run

irace

+run()

Figure 5: Flow of information involved in automated algorithm design, starting with irace calling an executable interface
(white box), to instantiate and run a Paradiseo algorithm (red boxes), which will call an IOHexperimenter problem (blue boxes)
while being observed by a logger (green boxes). The final performance is computed (cyan box) and returned to irace.

eoAlgoFoundry
+select(algo_encoding:vector<int>)

:EOT

eoMyFoundry
+selectors: eoOperatorFoundry<eoselectOne<EOT>>
(at 0th index, no_cache)

+operator()(eoPop<EOT>&)
{Instanciate and run an eoMyAlgo}

:EOT

eoAlgo
+operator()(eoPop<EOT>&)

:EOT

eoOperatorFoundry
+_index: int

:EOT

eoForgeVector
+_no_cache: bool

+<<Op…, Args…>> add(args:Args…)
{Store a parametrized
eoForgeOperator<Itf,Op,Args…>.}

interface:Itf

vector
:eoForgeInterface<Itf>

eoForgeOperator
+parameters: tuple<Args…>
+instantiated: Itf*

+instantiate(no_cache:bool): Itf&

interface:Itf
operator:Op
parameters:Args…

eoForgeInterface
+instantiate(no_cache:bool): Itf&

interface:Itf

Figure 6: Classes involved in ameta-algorithm instantiation.
The eoMyFoundry class is to be designed by the practitioner,
who has to know the interfaces presented with a white back-
ground. Classes with a grey background are the underlying
framework machinery.

12 foundry.crossover_rates.add <double >(i);

13 foundry.mutation_rates.add <double >(i);

14 }

15 / / e t c .
16 / / Dec ide which o p e r a t o r s to use .
17 Ints encoded_algo(foundry.size());

18 encoded_algo[foundry.crossovers .index()] = 2;

19 encoded_algo[foundry.crossover_rates.index()] = 1;

20 encoded_algo[foundry.mutation_rates .index()] = 3;

21 / / e t c .
22 / / I n s t a n t i a t e the ope r a t o r s , or use cached o b j e c t s .

23 foundry.select(encoded_algo);

24 / / Run the s e l e c t e d a l go r i t hm .
25 eoPop <Bits > pop; / / [ . . . ]
26 foundry(pop);

Listing 1: Excerpt of the use of an algorithm foundry.

Binding with IOH for Fast Benchmarking. One of the key fea-
tures when doing automated algorithm design is the ability to
run the assembled algorithm against a whole benchmark, and
to measure performance on this experiment. Paradiseo is not in-
tended to host benchmarks, apart for a few examples, but pro-
vides an interface to the IOHexperimenter benchmarking platforms.
IOHexperimenter provides a set of benchmarks, along with a stan-
dardized logging system, which can log both calls to the objective
function and parameters status. Paradiseo provides several entry
points to IOHexperimenter problems, in the form of sub-classes of
the eoEvalFunc interface, which can be plugged into any Paradiseo
algorithm. IOHexperimenter also provides a way to extract per-
formance measures from the runs’ logging outputs, with statistics
computed on aggregated in-memory discrete empirical cumula-
tive density functions. Those distributions are defined on both the
computation time and the quality of solutions axes and can thus
produce many different performance metrics. This allows for a fast
logging and performance assessment system, which is ideal for
automated algorithm design. Listing 2 shows an example of use of
the Paradiseo/IOH binding when solving a particular problem.

1 / / In −memory l o gg e r .
2 IOHprofiler_RangeLinear <size_t >

3 target_range (0, max_target , buckets),

4 budget_range (0, max_evals , buckets);

1528



GECCO ’21 Companion, July 10–14, 2021, Lille, France Dreo, et al.

5 IOHprofiler_ecdf_logger <int ,int ,int > ecdf_logger(

6 target_range , budget_range);

7 / / Benchmark problem .
8 W_Model_OneMax w_model_om;

9 ecdf_logger.track_problem(w_model_om);

10 / / The a c t u a l P a r a d i s e o / IOH i n t e r f a c e :
11 eoEvalIOHproblem <Bits > pb(w_model_om , ecdf_logger);

12 / / [`pb` i s p lugged i n t o an a l go r i t hm and ran . . . ]
13 / / The per formance o f the run i s r e cove r ed :
14 IOHprofiler_ecdf_sum ecdf_sum;

15 long perf = ecdf_sum(ecdf_logger.data());

Listing 2: Excerpt of the use of the IOH binding.

It is worth noting that the same approach can be used with the
IOH’s file logger, which allows for a fine-grained analysis of the
algorithm behavior within the IOHanalyzer graphical user inter-
face. Although the runtime is longer because of the involved I/O
accesses, this can be useful for the post-validation of the algorithm
instance showing the best performance, without having to change
the code.

Interface with irace for Automated Algorithm Configuration. With
the approach described previously, the performance of an algorithm
instance can be computed on a given benchmark with the use
of a single binary, without much computation time or memory
overhead. Thanks to the utility features provided by Paradiseo, it
is straightforward to expose the meta-algorithm and the problem
interfaces as parameters to the executable (either as parameter files
or as command line arguments). This allows for an easy binding
with most automated algorithm configuration tools.

Several automated algorithm configuration tools have been de-
veloped in the last decade, among which one of the most used is
irace [25]. Paradiseo provides a way to easily expose a foundry
interface as an irace configuration file, as shown in Listing 3.
1 / / Using P a r a d i s e o pa rame t e r s :
2 eoParser parser(argc , argv , "interface for irace");

3 auto crossover_p = parser.getORcreateParam <size_t >(

4 / ∗ d e f a u l t = ∗ / 0, "crossover",

5 / ∗ he lp = ∗ / "The crossover operator", / ∗ f l a g = ∗ / 'c',
6 / ∗ he lp s e c t i o n = ∗ / "Operator Choice", / ∗ r e q u i r e d = ∗ / true

);

7 / / [ . . . ] a s semb le a foundry [ . . . ]
8 / / P r i n t the i r a c e ' s c o n f i g u r a t i o n f i l e f o r t h i s b i n a ry

:
9 std::cout << "# name\t switch\t type\t range\n";

10 / / We only need the paramete r ( s ) and the foundry i t s e l f
:

11 print_irace(mutation_rate_p , foundry.mutation_rates ,

12 std::cout);

13 print_irace( crossover_p , foundry.crossovers ,

14 std::cout);

15 / / Any o the r op e r a t o r w i th in the foundry [ . . . ]
16 / ∗ Th i s w i l l ou tpu t something l i k e :
17 # name swi t ch type range
18 mut a t i o n r a t e "−−mutat ion − r a t e =" i ( 0 , 4 )
19 c r o s s o v e r "−− c r o s s o v e r =" c ( 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 )
20 [ e t c . ] ∗ /

Listing 3: Excerpt of code for exposing a Paradiseo interface
to irace.

With this setting, it has been possible to conduct a large scale al-
gorithm design study [2] , involving irace configuring a FastGA
algorithm family (cf. Figure 4) solving a W-model problem, using

a budget of approximately 1 billion function evaluations, in ap-
proximately 3 hours on a single core of a laptop (same setup than
Sec. 4.2).

5 CONCLUSIONS
This article provides a high-level overview of the Paradiseo frame-
work, a C++ free software which targets the development of modu-
lar metaheuristics. The main feature of Paradiseo is its ability to
help practitioners to focus on creating solvers while thinking at a
higher level of abstraction, thanks to:

Utility features: Paradiseo provides a large set of engineering
features, which very often lack in proof-of-concept frameworks:
several fine-grained parallelization options, convenient interface
features (command line argument parsing, state management, use-
ful logs, etc.). Having robust implementation of such features is
often overlooked by users focusing on the algorithmic part.

Component-based architecture: The concept of operator is at
the core of the design of Paradiseo. It allows for the composition of
algorithms, without the overhead of a dynamically loading plugins
or the rigidity of a monolithic structure. Solvers being assembled as
a selection of components are also lightweight, as it is not necessary
to build and carry all the framework’s code within the binaries.

Modular algorithm models: Paradiseo provides several mod-
ules targeting different algorithm paradigms —probably one of the
largest footprints among active frameworks. Practitioners can easily
design new algorithms which differ in some operators, hybridize
algorithms, or even add new algorithm templates using existing
operators.

Algorithm design:Paradiseo focuses on providing a very large
design space to the practitioner. Thanks to its fast computations,
large-scale design experiments can be addressed. Combined with
its features dedicated to automation, Paradiseo algorithm designers
who want to test a new operator can easily focus on small code
changes and rapidly check their efficiency and how they interact
with other operators in a given paradigm. Problem solvers can sort
out algorithm instances that work best.

As future works, we plan to improve the algorithm design au-
tomation features, merge more state-of-the-art modular designs,
and enhance the overall user experience.

One of the main impediments to a more widespread use of the
framework is that the learning curve for getting started is too
steep. Solving this problem is the main objective of PyParadiseo, a
module currently under development, that will expose interfaces to
Paradiseo in Python, to facilitate the interoperability with external
solvers, statistics program or machine learning frameworks.

ACKNOWLEDGMENTS
During 22 years,Paradiseo has been developed bymore than 50 peo-
ple, with the support of the following institutions: Inria, University
of Lille, University of the Littoral Opal Coast, Thales, École Poly-
technique, University of Granada, Vrije Universiteit Amsterdam,
Leiden University, French National Centre for Scientific Research
(CNRS), French National Agency for Research (ANR), Fritz Haber
Institute of the Max Planck Society, Center for Free-Electron Laser
Science, University of Angers, French National Institute of Applied
Sciences, Free University of Brussels, Pasteur Institute.

1529



Paradiseo: From Modular Framework to Automated Design GECCO ’21 Companion, July 10–14, 2021, Lille, France

REFERENCES
[1] Maribel García Arenas, Brad Dolin, Juan Julián Merelo Guervós, Pedro Án-

gel Castillo Valdivieso, Ignacio Fernández De Viana, and Marc Schoenauer. 2002.
JEO: Java Evolving Objects.. In GECCO, Vol. 2. 991–994.

[2] Amine Aziz-Alaoui, Carola Doerr, and Johann Dreo. 2021. Towards Large Scale
Automated Algorithm Design by Integrating Modular Benchmarking Frame-
works. In Proceedings Companion of the Annual Conference on Genetic and Evolu-
tionary Computation (Lille, France) (GECCO’21). to appear.

[3] Nacim Belkhir, Johann Dreo, Pierre Savéant, and Marc Schoenauer. 2017. Per
instance algorithm configuration of CMA-ES with limited budget. In Proceedings
of the Genetic and Evolutionary Computation Conference. 681–688.

[4] Sébastien Cahon, Nordine Melab, and E.-G. Talbi. 2004. Building with paradisEO
reusable parallel and distributed evolutionary algorithms. Parallel Comput. 30,
5–6 (2004), 677–697. https://doi.org/10.1016/j.parco.2003.12.010

[5] Sébastien Cahon, Nordine Melab, and E-G Talbi. 2004. Paradiseo: A framework
for the reusable design of parallel and distributed metaheuristics. Journal of
heuristics 10, 3 (2004), 357–380.

[6] Sébastien Cahon, Nordine Melab, E-G Talbi, and Marc Schoenauer. 2003.
ParaDisEO-based design of parallel and distributed evolutionary algorithms.
In International Conference on Artificial Evolution (Evolution Artificielle). Springer,
216–228.

[7] Sébastien Cahon, E-G Talbi, and Nordine Melab. 2003. PARADISEO: a frame-
work for parallel and distributed biologically inspired heuristics. In Proceedings
International Parallel and Distributed Processing Symposium. IEEE, 9–pp.

[8] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. 2007. Evolutionary
Algorithms for Solving Multi-Objective Problems (second ed.). Springer, New York,
USA.

[9] Pierre Collet, Evelyne Lutton, Marc Schoenauer, and Jean Louchet. [n.d.]. Take
It EASEA. In Parallel Problem Solving from Nature PPSN VI (Berlin, Heidelberg,
2000) (Lecture Notes in Computer Science), Marc Schoenauer, Kalyanmoy Deb,
Günther Rudolph, Xin Yao, Evelyne Lutton, Juan Julian Merelo, and Hans-Paul
Schwefel (Eds.). Springer, 891–901. https://doi.org/10.1007/3-540-45356-3_87

[10] Pierre Collet andMarc Schoenauer. [n.d.]. GUIDE: Unifying Evolutionary Engines
through a Graphical User Interface. In Artificial Evolution (Berlin, Heidelberg,
2004) (Lecture Notes in Computer Science), Pierre Liardet, Pierre Collet, Cyril
Fonlupt, Evelyne Lutton, and Marc Schoenauer (Eds.). Springer, 203–215. https:
//doi.org/10.1007/978-3-540-24621-3_17

[11] Bilel Derbel and Sébastien Verel. 2020. Fitness landscape analysis to understand
and predict algorithm performance for single- and multi-objective optimization.
In GECCO ’20: Genetic and Evolutionary Computation Conference, Companion
Volume, Cancún, Mexico, July 8-12, 2020, Carlos Artemio Coello Coello (Ed.). ACM,
993–1042. https://doi.org/10.1145/3377929.3389893

[12] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2013. Lessons from the black-
box: Fast crossover-based genetic algorithms. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation. 781–788.

[13] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. [n.d.].
IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization
Heuristics. ([n. d.]). http://arxiv.org/abs/1810.05281 arXiv: 1810.05281.

[14] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. 1995. Design
patterns: elements of reusable object-oriented software. Addison-Wesley.

[15] Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Pošík.
2010. Comparing Results of 31 Algorithms from the Black-Box Optimization
Benchmarking BBOB-2009. In Proceedings of the 12th Annual Conference Compan-
ion on Genetic and Evolutionary Computation (Portland, Oregon, USA) (GECCO
’10). Association for Computing Machinery, New York, NY, USA, 1689–1696.
https://doi.org/10.1145/1830761.1830790

[16] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and
Dimo Brockhoff. [n.d.]. COCO: a platform for comparing continuous optimizers
in a black-box setting. 36, 1 ([n. d.]), 114–144. https://doi.org/10.1080/10556788.
2020.1808977

[17] H. Hoos and T. Stützle. 2004. Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco, CA, USA.

[18] Jérémie Humeau, Arnaud Liefooghe, E-G Talbi, and Sébastien Verel. 2013.
ParadisEO-MO: From fitness landscape analysis to efficient local search algo-
rithms. Journal of Heuristics 19, 6 (2013), 881–915.

[19] Robert Hundt. [n.d.]. Loop Recognition in C++/Java/Go/Scala. In Proceedings of
Scala Days 2011 (2011). https://days2011.scala-lang.org/sites/days2011/files/ws3-
1-Hundt.pdf

[20] Frank Hutter, Youssef Hamadi, Holger H. Hoos, and Kevin Leyton-Brown. [n.d.].
Performance Prediction and Automated Tuning of Randomized and Parametric
Algorithms. In Principles and Practice of Constraint Programming - CP 2006 (Berlin,
Heidelberg, 2006) (Lecture Notes in Computer Science), Frédéric Benhamou (Ed.).
Springer, 213–228. https://doi.org/10.1007/11889205_17

[21] Maarten Keijzer, Juan J Merelo, Gustavo Romero, and Marc Schoenauer. 2001.
Evolving objects: A general purpose evolutionary computation library. In In-
ternational Conference on Artificial Evolution (Evolution Artificielle). Springer,
231–242.

[22] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. [n.d.].
Automated Algorithm Selection: Survey and Perspectives. 27, 1 ([n. d.]), 3–45.
https://doi.org/10.1162/evco_a_00242

[23] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. [n.d.]. Learning
the Empirical Hardness of Optimization Problems: The Case of Combinatorial
Auctions. In Principles and Practice of Constraint Programming - CP 2002 (Berlin,
Heidelberg, 2002) (Lecture Notes in Computer Science), Pascal Van Hentenryck
(Ed.). Springer, 556–572. https://doi.org/10.1007/3-540-46135-3_37

[24] Arnaud Liefooghe, Laetitia Jourdan, and El-Ghazali Talbi. 2011. A software
framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research 209, 2
(2011), 104–112.

[25] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Bi-
rattari, and Thomas Stützle. 2016. The irace package: Iterated racing for auto-
matic algorithm configuration. Operations Research Perspectives 3 (2016), 43–58.
https://doi.org/10.1016/j.orp.2016.09.002

[26] Ogier Maitre, Frédéric Krüger, Stéphane Querry, Nicolas Lachiche, and Pierre
Collet. [n.d.]. EASEA: specification and execution of evolutionary algorithms on
GPGPU. 16, 2 ([n. d.]), 261–279. https://doi.org/10.1007/s00500-011-0718-z

[27] Nouredine Melab, Thé Van Luong, Karima Boufaras, and El-Ghazali Talbi. 2013.
ParadisEO-MO-GPU: a framework for parallel GPU-based local search meta-
heuristics. In Proceedings of the 15th annual conference on Genetic and evolutionary
computation. 1189–1196.

[28] Juan-Julián Merelo-Guervós, Israel Blancas-Álvarez, Pedro A Castillo, Gustavo
Romero, Pablo García-Sánchez, Víctor M Rivas, Mario García-Valdez, Amaury
Hernández-Águila, andMario Román. 2017. Ranking Programming Languages for
Evolutionary Algorithm Operations. In European Conference on the Applications
of Evolutionary Computation. Springer, 689–704.

[29] Juan-Julián Merelo-Guervós, M. G. Arenas, J. Carpio, P. Castillo, V. M. Rivas, G.
Romero, and M. Schoenauer. 2000. Evolving objects. In Proc. JCIS 2000 (Joint
Conference on Information Sciences), P. P. Wang (Ed.), Vol. I. 1083–1086. ISBN:
0-9643456-9-2.

[30] Sergio Nesmachnow, Francisco Luna, and Enrique Alba. 2015. An empirical
time analysis of evolutionary algorithms as C programs. Software: Practice and
Experience 45, 1 (2015), 111–142.

[31] I. Rechenberg. [n.d.]. Cybernetic Solution Path of an Experimental Problem.
([n. d.]). https://ci.nii.ac.jp/naid/10000137330/

[32] David Vandevoorde and Nicolai M. Josuttis. [n.d.]. C++ template: the complete
guide. Addison-Wesley.

[33] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer, S.
Vonolfen, M. Kofler, S. Winkler, V. Dorfer, and M. Affenzeller. [n.d.]. Architecture
and Design of the HeuristicLab Optimization Environment. Springer Interna-
tional Publishing, 197–261. https://doi.org/10.1007/978-3-319-01436-4_10

[34] Darrell Whitley, Soraya Rana, and Robert B Heckendorn. 1999. The island model
genetic algorithm: On separability, population size and convergence. Journal of
computing and information technology 7, 1 (1999), 33–47.

[35] E. Zitzler, M. Laumanns, and S. Bleuler. [n.d.]. A Tutorial on Evolutionary
Multiobjective Optimization. Springer Science & Business Media, Chapter 1,
3–38.

1530

https://doi.org/10.1016/j.parco.2003.12.010
https://doi.org/10.1007/3-540-45356-3_87
https://doi.org/10.1007/978-3-540-24621-3_17
https://doi.org/10.1007/978-3-540-24621-3_17
https://doi.org/10.1145/3377929.3389893
http://arxiv.org/abs/1810.05281
https://doi.org/10.1145/1830761.1830790
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977
https://days2011.scala-lang.org/sites/days2011/files/ws3-1-Hundt.pdf
https://days2011.scala-lang.org/sites/days2011/files/ws3-1-Hundt.pdf
https://doi.org/10.1007/11889205_17
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1007/3-540-46135-3_37
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1007/s00500-011-0718-z
https://ci.nii.ac.jp/naid/10000137330/
https://doi.org/10.1007/978-3-319-01436-4_10

	Abstract
	1 Introduction
	1.1 History
	1.2 Related Frameworks

	2 Architecture
	2.1 Main Concepts
	2.2 Main Design Patterns

	3 Modules
	3.1 Evolutionary and Particle Swarm Algorithms — EO
	3.2 Local Search and Landscape Analysis — MO
	3.3 Multi-Objective Optimization — MOEO
	3.4 Estimation of Distribution — EDO

	4 Key Features
	4.1 Modular Algorithms
	4.2 Fast Computations
	4.3 Automated Algorithm Design

	5 Conclusions
	Acknowledgments
	References

