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ABSTRACT
In this work, we propose a novel approach for reinforcement learn-
ing driven by evolutionary computation. Our algorithm, dubbed as
Evolutionary-Driven Reinforcement Learning (Evo-RL), embeds the
reinforcement learning algorithm in an evolutionary cycle, where
we distinctly differentiate between purely evolvable (instinctive)
behaviour versus purely learnable behaviour. Furthermore, we pro-
pose that this distinction is decided by the evolutionary process,
thus allowing Evo-RL to be adaptive to different environments. In
addition, Evo-RL facilitates learning on environments with reward-
less states, which makes it more suited for real-world problems
with incomplete information. To show that Evo-RL leads to state-
of-the-art performance, we present the performance of different
state-of-the-art reinforcement learning algorithms when operat-
ing within Evo-RL and compare it with the case when these same
algorithms are executed independently. Results show that reinforce-
ment learning algorithms embedded within our Evo-RL approach
significantly outperform the stand-alone versions of the same RL al-
gorithms on OpenAI Gym control problems with rewardless states
constrained by the same computational budget.
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Figure 1: The Evo-RL scheme showing the agent life-cycle,
highlighting its different phases and states.
Evo-RL: Evolutionary-Driven Reinforcement Learning. In 2021 Genetic and
Evolutionary Computation Conference Companion (GECCO ’21 Companion),
July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3449726.3459475

Proposed Model: We identify two types of behaviors: a purely
evolved behavior, and a learnable behavior, which is driven by the
agent’s experience in its lifetime. The first one is dubbed as in-
stinctive behavior. We formally define an instinctive behaviour as
the evolved part of the agent’s behaviour that is inherited from
its ancestors and cannot be changed during the learning process
within the lifetime of the agent. As for the second behavior, the
learned behavior, we picture it as an extension to the evolved in-
stinctive behavior. We define a learnable behaviour as the behaviour
learned by the agent during its lifetime, as a result of its exposure
to the environment. It should be noted that the learned behaviour
cannot alter the instinctive behaviour. Finally, we define the overall
behaviour as the combination of the agent’s instinctive and learned
behaviour, integrated together during the agent’s lifetime. Further-
more, inspired by [1], we identify three states for the agent: the
born state, which means that an agent has already an instinctive be-
haviour, but no learned behaviour. Note that the agent in this state
is not exposed to the environment yet. The second state, dubbed
as mature, means that the agent is already trained on the environ-
ment and has now an instinctive and a learned behaviour. Finally,
the fertile state, means that the agent overall behaviour is already
evaluated, therefore, a score reflecting its performance relative to a
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Table 1: Final rewards after 60,000 evaluations (mean and standard error over 10 trials).

Environment EA-Only PPO ePPO (ours) DQN eDQN (ours)
CartPole 0% 140.9 ±20.2 195.2 ±0.0@ 4,370 196.9 ±0.3@ 14,400 195.5 ±0.1@ 160 198.8 ±0.6@ 1200

10% 115.1 ±19.8 151.9 ±20.9 197.0 ±0.5@ 56,100 195.5 ±0.1@ 880 199.5 ±0.4@ 900
20% 115.1 ±19.8 125.6 ±18.9 196.8 ±0.5@ 51,900 195.6 ±0.1@ 3680 199.5 ±0.2@ 900
30% 155.1 ±17.1 114.6 ±18.8 196.1 ±0.2@ 51,600 142.9 ±25.4 199.2 ±0.5@ 2100
40% N.A. 112.6 ±16.5 198.0 ±0.5@ 47,100 139.6 ±26.9 198.1 ±0.6@ 32100
50% N.A. 81.0 ±20.5 196.9 ±0.3@ 31,500 121.0 ±28.8 198.5 ±0.6@ 45600

Acrobot 0% -109.5 ±6.5 -99.0 ±0.2@ 12,300 -99.0 ±0.2@ 12,300 -99.7 ±0.1@ 1,270 -95.8 ±0.8@ 1,500
10% -106.5 ±5.9 -179.1 ±50.7 -97.3 ±1.0@ 47,100 -118.0 ±17.7 -94.1 ±1.3@ 2,400
20% -108.2 ±5.3 -259.3 ±61.9 -97.2 ±0.9@ 5,700 -99.8 ±0.1@ 13,120 -96.3 ±0.9@ 1,500
30% -99.1 ±5.8@ 10,860 -299.7 ±63.3 -98.3 ±0.4@ 15,000 -99.7 ±0.1@ 19,340 -90.3 ±2.1@ 7,800
40% N.A. -353.6 ±52.4 -97.3 ±0.7@ 50,400 -139.5 ±38.0 -93.1 ±1.3@ 6,300
50% N.A. -427.5 ±46.2 -101.2 ±5.5 -175.6 ±45.9 -90.8 ±1.5@ 6,600

pre-defined objective can be computed. The outer loop of Evo-RL is
an evolutionary algorithm. Similar to any EA, Evo-RL starts by ini-
tializing a set of individuals (agents), thus, producing a population
of agents. In the first iteration, each agent has a randomly initial-
ized behaviour. For example, the phenotype can be an Artificial
Neural Network (ANN) representing the agent behaviour, while
the genotype can be a set of binary numbers that when decoded
produce the ANN of that agent’s behaviour. After this initialization,
each agent in the population is considered in the born state, and
has an instinctive behaviour. As shown in Figure 1, after birth, the
agent starts to be exposed to the environment. In this infancy phase,
reinforcement learning is executed. However, the agent cannot
overwrite its instinctive behaviour, thus, if the agent is in a state
where the instinctive behaviour has already defined an action to
execute, the agent executes this action and no learning is done with
respect to this state. On the other hand, if the agent is in a state
where the instinctive behaviour does not define what should be
done, then the agent proceeds with its learning algorithm normally.
After the infancy phase ends, due to resource or time constraints
for example, the agent reaches the mature stage and is now ready
to be evaluated. In the maturity phase, the agent overall behaviour
is evaluated with respect to pre-set objectives. A score that mea-
sures its performance is then calculated. To summarize, the overall
approach is an evolutionary computation approach. However, the
novelty can be highlighted in the following design axioms: (1) The
choice of which part of the overall behaviour is instinctive, and
which is not, is decided by the evolutionary process. In other words,
the line between what is instinctive (fully evolvable) and learnable,
is evolved. This is achieved by not allowing the learning process
to overwrite the instinctive behaviour. Evolution dictates which
region of states it operates on. (2) The overall fitness of an agent
considers both behaviors, i.e., instinctive plus learnable. This is
facilitated by conducting the evaluation of the behaviour after the
learning process is conducted. (3) In the conception phase, only the
instinctive behaviour is evolved, but the learned behaviour is trans-
ferred to the offspring to allow plasticity in the learned behaviour
as long as the instinctive behaviour allows it. In case of conflict, the
instinctive behaviour overwrites any learnable behaviour. For eval-
uation purposes, we have implemented the algorithm as follows.
Firstly, we used the EA in the form of Genetic Programming (GP).
However, as for what concerns the representation of the instinctive

(evolved) behaviour, we adopted behaviour trees (BTs). These fit
well with GP and, unlike ANN, are much easier to interpret. As for
the learned behaviour, we adopted two possibilities, one tabular
representation used when testing our approach with Q-learning,
and another ANN representation when testing our approach with
Proximal Policy Optimization (PPO) and Deep Q-Network (DQN).

Experimental Results: We designed our experimental evalua-
tion to test the three following hypotheses: (1) The performance of
reinforcement learning algorithms is enhanced when embedded in
the Evo-RL approach for environments with rewardless states, with
the same fixed computational budget. (2) The performance of Evo-
RL is better than the evolutionary algorithm part alone (i.e., Evo-RL
without the reinforcement learning). In other words, we want to
show that instinctive behaviour plus learnable behaviour (Evo-RL)
outperforms adopting only instinctive behaviour (EA-only) or only
learnable behaviour (RL-only). (3) As the rewardless states increase
in an environment, the ratio of instinctive behaviour executed, com-
pared to the learnable one, increases as well. This shows that the
instinctive behaviour is necessary to handle more efficiently the
rewardless states. In order to facilitate testing on environments
with a rewardless state, we modified three OpenAI gym control
problems to obtain rewardless state problems: Cartpole, Acrobot
and MountainCar. The modifications can be summarized as follows.
The state space of each problem is discretized into bins. Whenever
a problem is initialized, a predefined percentage of these bins is
marked as rewardless states. If, while learning, an agent reaches
one of those states, no feedback from the environment is given
back to the agent. More precisely, the reward of rewardless states
is not zero, it is just a state with no reward signal, i.e. no new in-
formation given from the environment to the learning process at
this state. In our experiments, we tried setting the percentage of
rewardless states to 0%, 10%, 20%, 30%, 40% and 50%. Table 1 sum-
marize the final rewards after the last evaluation for all problems
and algorithms. The number after the “@” denotes the number of
evaluations needed for solving the problem. Blue indicates that the
problem is solved, while red indicates that it was not solved.
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