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ABSTRACT
Training neural networks with faster gradient methods brings them

to the edge of stability, proximity to which improves their general-

ization capability. However, it is not clear how to stably approach

the edge. We propose a new activation function to model inner

processes inside neurons with single-species population dynamics.

The function induces essential dynamics in neural networks with a

growth and harvest rate to improve their generalization capability.

CCS CONCEPTS
• Computing methodologies → Machine learning; Bio-inspired
approaches;

KEYWORDS
neural networks, generalization, stability, population dynamics

ACM Reference Format:
Ilona Kulikovskikh and Tarzan Legović. 2021. Growth and harvest induce

essential dynamics in neural networks. In 2021 Genetic and Evolutionary
Computation Conference Companion (GECCO ’21 Companion), July 10–14,
2021, Lille, France. ACM, New York, NY, USA, 2 pages. https://doi.org/10.

1145/3449726.3459421

1 INTRODUCTION
When trained with gradient-based methods, a neural network is

expected to meet two criteria: converge faster and generalize better

[1, 5]. While accelerating convergence involves reducing the model

errors on a training dataset, good generalization capability requires

minimizing the difference between the network errors on a training

and a testing dataset, which plays a crucial role.

Addressing the generalization issue, Trask et al.[11] pointed to

the importance of a network ability to extrapolate to the range of

values unseen during training. Wang et al. [13] showed that deep

sequence learning models fail to generalize on testing data due to

distribution shifts from dynamic system chaotic behavior. Looking

at the problem from the perspective of adaptive optimization, re-

cent studies [3, 4, 9] revealed that a step size, maximizing the test

accuracy, is usually larger than a step size minimizing the training
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loss. The chaotic nature of faster gradient methods demystifies this

phenomenon [12]. A larger step size brings the optimizer to the

edge of stability [3, 4], training sufficiently close to which, accord-

ing to the concept of chaos [10], increases generalization capability.

But, how to choose a step size to reach this edge remains unclear.

We refer to single-species population dynamics [7, 8] to regulate

this process explicitly and to induce essential dynamics in neural

networks. A new non-monotonic activation function is built on

an original s-shaped monotonic function (sigmoid) but exhibits

more complex behavior. It is equiped with the growth and harvest-

ing rates to self-stabilize the model dynamics close to the edge of

stability and, thus, to increase its generalization capability.

2 NETWORK GROWTH AND HARVEST
We introduce a new activation function - LIGHT (LogIstic Growth
with HarvesTing) - to model inner processes inside neurons. It

enriches the state-of-the-art perspective of how neurons receive

electrical impulses from other cells, accumulate them, and generate

an action potential spike if a threshold value is exceeded. The

population of impulses starts growing with the rate r by the logistic
law. After time T , it is harvested with the rate E. The sizes of

population at t = 0 and t = T are specified.

Definition. For any time t ∈ R, harvest time instant T >
0, per capita growth rate r > 0 and per capita harvesting rate
E ≥ 0, a population of impulses inside a neuron ℓ r,E (t), such that
limt→−∞ ℓ

r,E (t) = 0, limt→∞ ℓ
r,E (t) = ε, where ε is the extent

to which r is impacted by E, develops according to:

ℓ r,E (t) = εe

(
lnq NT +1T (t ) Er

)
e
−r (t−T )

(1)

where a population size at T is NT = ℓ r,E (T ) and lnq(x) is the
q-logarithm, where q is the rate with which population grows when
smaller.

The parameter q generalizes the Verhulst (q = 1) and Gompertz

(q → 0) laws of population dynamics. If q = 1, T = 0, N0 = 0.5,

r = 1, and E = 0, the function reduces to the sigmoid.

We adopt this function to minimize an empirical loss function

for any dataset {xi ,yi }
m
i=1 with xi ∈ R

n
, yi ∈ {−1, 1}, for each

mini-batch subset B(t) ⊆ {1, . . . ,m} with a weight vector θ ∈ R
n
:

L r,E (Θ) =
∑

i ∈B(t )
ℓ r,E (yi ⟨Π(Θ), xi ⟩), (2)

where ℓ r,E measures the discrepancy between the output y and

the model prediction, Π(Θ) = θ1 × θ2 × · · · × θL , Θ = {θl ∈

R
dl−1×dl : l = 1, 2, . . . ,L}, L is the number of layers, dl is the num-

ber of nodes in the layer l . While solving (2) with a non-adaptive
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SGD optimizer, the function (1) stably increases a fixed step size η
with regard to a growth rate r and a harvesting rate E.

3 RESULTS
To examine the impact of inducing growth and harvest, we imple-

mented a neural network with a hidden layer L = 1 of the ReLU

neurons dl = 5, where the proposed function is applied only to

the output. We generated a set of synthetic datasets (m = 1000,

n = 2), which were randomly split into training (80%) and test-

ing (20%) subsets. The samples were equally divided between the

classes. We compared non-adaptive methods - SGD with the sig-

moid (s-sgd) and SGD with the proposed function (light-sgd - to

two popular adaptive methods with the sigmoid - Adam (s-adam)

and AdaGrad (s-adagrad). For all the optimizers, we used the de-

fault parameters and batch size |B(t)| = 75. The proposed function

was implemented as a custom output activation layer with Keras

class LIGHT(Layer).
Table 1 shows that the optimizer with induced growth and har-

vesting rates significantly outperforms the other methods. The best

values of the test accuracy (mean± std) averaged overnrun = 10 and

n
epoch

= 1500 are highlighted in bold. The best balance between

train and test accuracy over epochs can be seen in Figure 1, upper

triangle of the plots).

Table 1: Test accuracy on synthetic datasets (mean± std, %)

dataset s-adam s-adagrad s-sgd light-sgd

Fig. 1 (a) 99.64±0.36 99.54±0.5 99.68±0.36 99.98±0.021
Fig. 1 (b) 96.63±0.52 96.44±0.94 96.67±0.52 96.62±0.5
Fig. 1 (c) 98.21±1.16 99.24±0.76 95.38±9.43 99.63±0.34
Fig. 1 (d) 88.14±6.6 87.2±8.47 89.98±1.62 91.7±1.16
Fig. 1 (e) 97.12±1.8 91.2±16.76 95.93±5.54 99.86±0.2
Fig. 1 (f) 84.98±2.47 85.28±2.6 83.45±6.49 86.74±1.28
Fig. 1 (g) 90.61±2.62 94.28±4.42 89.37±2.22 98.48±2.9
Fig. 1 (h) 87.2±2.02 89.92±3.42 86.25±1.62 93.96±0.76
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Figure 1: Test/train accuracy curves over epochs

The success of light-sgd can be attributed to the self-stabilization
of the model dynamics: while an increase in r pushes the system to-

wards not clearly defined edge of stability, a simultaneous increase

in E fixes this edge resulting in higher generalization capability. As

we can see, this effect becomes less apparent with iterations and,

thus, requires building the communities of the LIGHT neurons to

enhance the revealed dynamics.

We applied the Wilcoxon signed-rank test to the mean and std

of accuracy curves, averaged over nrun = 10, to evaluate the differ-

ences in performance between the methods. Since p-values turned

out to be less than the 0.01 significance level, we rejected the null

hypothesis and concluded that the presented results are statistically

significant. The proposed function was also validated on MNIST,

Fashion MNIST, and CIFAR10 datasets (see Table 2). The labels of

the image classification datasets were binarized with the target class

{5}. The samples were randomly extracted (m = 1000) from each

of them and split into training (80%) and testing (20%) subsets. To

classify the images, we used the pre-defined growth and harvesting

rate: r = 4.08, E = 6.4.

Table 2: Test accuracy on image datasets (mean± std, %)

dataset s-adam s-adagrad s-sgd light-sgd

MNIST 96.43±1.06 96.71±0.84 96.72±0.84 96.83±0.54
F. MNIST 96.99±1.29 97.14±0.89 97.15±1.02 97.24±0.75
CIFAR10 87.25±2.27 84.08±2.28 87.44±2.51 89.6±1.5

4 CONCLUSION AND DISCUSSION
We proposed a new activation function to model inner processes

inside neurons with single-species population dynamics and de-

mostrated that growth and harvesting rates induce essential dy-

namics in neural networks and, thus, improve their generalization

capability. The study supports the idea of De Felice et al. [6] that

the biological activation function has a more complicated behavior

which reduces to the step or sigmoid function for some hyperpa-

rameters describing its shape. Also, shapes of the proposed function

share similarities with evolving activations discussed in [2].
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