
Multi Tree Operators for Genetic Programming to Identify
Optimal Energy Flow Controllers

Kathrin Kefer
Fronius International GmbH

Thalheim, Austria
kefer.kathrin-maria@fronius.com

Roland Hanghofer∗
Research & Develoment FH OÖ

Forschungs und Entwicklungs GmbH,
Research Group Heuristic and

Evolutionary Algorithms Laboratory
Hagenberg, Austria

Roland.Hanghofer@dynatrace.com

Patrick Kefer
Research & Develoment FH OÖ

Forschungs und Entwicklungs GmbH,
Research Group ASIC

Wels, Austria
patrick.kefer@fh-wels.at

Markus Stöger
Bernd Hofer

stoeger.markus@fronius.com
hofer.bernd@fronius.com

Fronius International GmbH
Thalheim, Austria

Michael Affenzeller
Stephan Winkler

michael.affenzeller@fh-hagenberg.at
stephan.winkler@fh-hagenberg.at
Research & Develoment FH OÖ

Forschungs und Entwicklungs GmbH,
Research Group Heuristic and

Evolutionary Algorithms Laboratory
Hagenberg, Austria

ABSTRACT
Genetic programming is known to be able to find nearly optimal
solutions for quite complex problems. So far, the focus was more on
solution candidates that hold just one symbolic regression tree. For
complex problems like controlling the energy flows of a building in
order to minimize its energy costs, this is often not sufficient. This
is why this work presents a solution candidate implementation in
HeuristicLab where they hold multiple symbolic regression trees.
Additionally, also new crossover and mutation operators were im-
plemented as the existing ones cannot handle multiple trees in one
solution candidate. The first type of operators applies them on all
trees in the solution candidate, whereas the second one only applies
them to one of the trees. It is found that applying the mutator to
only one of the trees significantly reduces the training duration.
Applying the crossover to one of the trees instead of all needs longer
training times but can also achieve better results.

CCS CONCEPTS
• Computing methodologies→ Optimization algorithms; Ge-
netic programming; Genetic algorithms; • Mathematics of com-
puting → Genetic programming.

∗Now working at Dynatrace Austria GmbH, but was with the stated instititution at
the time of this work’s development.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463181

KEYWORDS
Genetic Programming Operators; Symbolic Regression
ACM Reference Format:
Kathrin Kefer, RolandHanghofer, Patrick Kefer, Markus Stöger, BerndHofer,
Michael Affenzeller, and Stephan Winkler. 2021. Multi Tree Operators for
Genetic Programming to Identify Optimal Energy Flow Controllers. In
2021 Genetic and Evolutionary Computation Conference Companion (GECCO
’21 Companion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3449726.3463181

1 INTRODUCTION
Genetic programming is nowadays well known to be able to find
nearly optimal solutions for quite complex problems. One example
for such complex problems is controlling the energy flows of a
building in order to minimize its energy costs using energy man-
agement systems. As more and more renewable energy sources are
built in order to drive forward the energy transition and slow down
the global warming, such systems have become increasingly impor-
tant during the last years. However, renewable energy sources are
subject to constantly changing environmental conditions which
cause their energy production to fluctuate a lot. Therefore, energy
management systems which use, store and distribute this produced
energy as intelligent and efficient as possible become more impor-
tant. In recent years there has been an increasing tendency to use
meta-heuristic algorithms for that instead of common control al-
gorithms like rule based optimizers (e.g. [6, 23]), model predictive
controls (e.g. [3, 14]) or linear programming algorithms (e.g. [4, 5]).
So far, the focus has mainly been on swarm-based algorithms, i.e.
the Particle SwarmOptimization (PSO). One example was published
by Pedrasa et al. in 2010, who use an improved PSO algorithm to op-
timize the schedule of energy services for net benefits [20]. In 2016,
Eseye et al. published their work on optimizing the energy man-
agement system for an isolated industrial microgrid for minimal

1579

https://doi.org/10.1145/3449726.3463181
https://doi.org/10.1145/3449726.3463181

GECCO ’21 Companion, July 10–14, 2021, Lille, France Kefer et al.

energy costs and maximum economical benefit using a modified
Particle Swarm Optimization algorithm [9]. Despite the PSO algo-
rithms, also genetic algorithms were used to optimize or manage
energy sources and loads. Two examples for that were presented
by Morganti et al. in 2009 [19] and by Soares et al. in 2017 [26].
However, none of them used genetic programming to optimize such
a system. Due to that, also the appropriate genetic programming
methods were not available so far.

In genetic programming, new solution candidates are generated
using operators like crossover and mutation, where especially the
crossover operator is known to have a big influence on the optimiza-
tion ability [18, 27, 32]. This means that the better the operators
work, also the better the found solution candidates will be. So far,
the focus in genetic programming was mainly on solution candi-
dates, that hold just one symbolic regression tree. For that case,
various different crossover strategies were already implemented.
The first one, the standard crossover developed by John Koza in
1992 [16], selects two parent solution candidates and for each par-
ent and randomly chooses a cut off point at the included tree. The
branch cut off from the first parent is then attached to the cut off
point of the branch of the second parent and vice versa. In that
way, two new children solution candidates are produced, which
are then, together with all the other generated children solution
candidates, evaluated for their fitness and become part of the new
parent population if they are good enough [16]. Besides this stan-
dard crossover, multiple other crossover were developed, e.g. the
single point crossover by Poli and Langdon [22], where the cut off
point for the branches of the two parents is only chosen once and
then used for both parents, or the semantic crossover from Ngyen
et al. [29]. A size fair crossover, where the cut off branches have
the same size, and a homologous crossover based on this size fair
crossover were developed by Langdon in 2000 [17]. However, these
existing techniques are not sufficient for the described energy flow
optimization problem as the solution candidates only contain one
symbolic regression tree while the problem proposed in this work
requires multiple trees per solution candidate.

One further development of the original genetic programming
that uses multiple trees in one solution candidate is the so-called
multigene symbolic regression. There, the multiple trees contained
in one solution candidate are each referred to as one gene. The
overall result of the symbolic regression model is then calculated
using a weighted linear combination of the outputs from these trees.
The linear coefficients are therefore estimated using ordinary least
squares techniques on the training data [24]. Sheta et al. used exactly
this technique for stock market predictions in their work from
2015 [25]. This multigene symbolic regression is very similar to the
approach developed for this work, however, here no weighted linear
combination of the trees could be used due to the trees representing
some specific system parameters that should be optimized.

This is why this work focuses on the extension and further devel-
opment of these existing techniques in order to be able to optimize
the energy flows of a building and minimize its energy costs. For
that, the existing solution candidate representation is extended to
be able to hold not only one but multiple symbolic regression trees,
where each tree models the behaviour of one parameter of the sys-
tem that should be optimized. In order to use genetic programming
to solve this energy flow optimization problem, also two new types

of crossover and mutation operators, which are able to handle the
multiple trees contained in one solution candidate, were developed
and implemented in the optimization framework HeuristicLab [31].
The first type of genetic operators applies the crossover andmutator
on all symbolic regression trees in the solution candidate, whereas
the second one only applies them to one of the trees. As the changes
from generation to generation using the first operator type are quite
big, it is expected that the optimization will converge faster than
with the second type of operators. But as the second operator type
allows a more fine-grained optimization of the system, it should
find the overall better solutions for the problem.

The remaining work is structured as follows: chapter 2 describes
the developed approach together with the crossover and mutation
operators needed to perform the genetic programming, followed
by their evaluation in chapter 3. The last two chapters 4 and 5 show
the results of the evaluation and the conclusions drawn from them.

2 APPROACH
As mentioned in the introduction, for this approach the number
of trees in one solution candidate was increased. For that, the data
structure holding the one symbolic regression tree was adapted to
be encapsulated in a list, so that any number of trees can be added
to one solution candidate. In the course of this development, also
the two main operators for genetic programming, the crossover and
mutation operators needed to be adapted. The first implemented
type of the operators applies the crossover and mutation on all trees
in the solution candidate, whereas the second operator type allows
a more fine-grained optimization due to only applying them on one
of the trees. All operators are explained in more detail below.

2.1 All Trees Operators
TheAll Trees operators are based on the subtree swapping crossover
and the following four different mutators, which are applied ran-
domly at the specified mutation rate:

• Change node type mutator: mutates one of the symbols in
the symbolic regression tree

• Replace branch mutator: removes a branch of the tree and
replaces it with a randomly initialized one

• One-point shaker: changes one of the parameters in the
symbolic regression tree

• Full-tree shaker: applies a uniform mutation on the parame-
ters of the symbolic regression tree

The All Trees operators apply the crossover and chosen mutator on
all trees contained in the solution candidates by leaving the actual
operator implementation as it is and just looping over all trees
contained in the solution candidates and applying the operators.

2.2 Single Tree Operators
For the Single Tree operators, the algorithm first decides on which
of the symbolic regression trees contained in the solution candi-
date the crossover and mutator should be applied. This is done by
randomly choosing the one tree to which the operators should be
applied and writing its name into a list holding all tree names to
which the operators should be applied. All other trees from the
solution candidate are then marked to be ignored by writing their

1580

Multi Tree Operators for Genetic Programming to Identify Optimal Energy Flow Controllers GECCO ’21 Companion, July 10–14, 2021, Lille, France

names into an ignore list. These lists are then used as decision ba-
sis during the actual application of the operators by applying the
subtree swapping crossover as well as the four mutators described
before on only the tree specified in the apply list. For the remaining
trees included in the ignore list the algorithm decides based on its
settings which tree to use for the child solution candidate. There,
three different settings options are available: always using the trees
from the first parent, always using the trees from the second parent
or using the trees from a randomly chosen parent solution candi-
date. This makes sure that the child solution candidate contains all
necessary symbolic regression trees and that the change from the
parents to the children is not as big as when applying the operators
to all trees contained in the solution candidates.

3 EVALUATION
The newly implemented operators are evaluated using a further
development [13] of the model-based energy flow optimization
approach developed by Kefer et al. [12]. There, three parameters of
a simulation model of a real-world building, which is explained to-
gether with these parameters in detail in chapter 3.1, are optimized
to minimize the system’s energy costs as shown in equation 1 with
the help of a close cooperation between the optimization framework
Heuristiclab [31] and MATLAB Simulink [28].

min. 𝑓 (𝑥) where 𝑥 = 𝑐𝑜𝑠𝑡𝑠𝑡𝑜𝑡𝑎𝑙 (1)

For that, HeuristicLab initiates the C-code generation from a
Simulink model, extends the generated code with additional func-
tionality and then generates a DLL from that. This DLL is then
used during the training process to evaluate the solution candi-
dates by forwarding the solution candidate symbolic regression
trees exported as formulas together with the input values to the
DLL, running the DLL to simulate the model and then reading the
quality of the solution candidate in form of the energy costs of the
system back to HeuristicLab. Based on that quality value, the next
generation’s solution candidates are selected [13].

For the evaluation, in total 40 controllers are trained using the
first day of the artificially generated data basis explained in chap-
ter 3.2, two different genetic algorithms and four operator config-
urations (table 1). The first algorithm is the Offspring Selection
Genetic Algorithm (OSGA) implemented by Affenzeller et al. [1]. It
is a single-objective optimization algorithm that just aims at mini-
mizing the energy costs of the simulated building. This algorithm
was configured to use a mutation probability of 30%, maximum 100
generations and 250 000 evaluated solutions, a maximum selection
pressure of 100 which serves also as the training termination cri-
terion, a population size of 500 with 1000 selected parents and as
selector the GenderSpecific Selector [30] with a ProportionalSelector
as female and a RandomSelector as male selector.

The second algorithm used is the further development of Kom-
menda et al. [15] of the well-known Non-Dominated Sorting Ge-
netic Algorithm II (NSGA-II) originally developed by Deb et al. [8].
This algorithm tries not only to minimize the energy costs but
contemporaneously also the complexity of the model, i.e. the sym-
bolic regression trees contained in the solution candidates [15]. The
NSGA-II was configured to use a population of 500 solution candi-
dates with 1000 selected parents, a maximum of 100 generations
which serves also as termination criterion, a crossover probability

Configuration Crossover Mutator

#1 All Trees All Trees
#2 All Trees Single Tree
#3 Single Tree All Trees
#4 Single Tree Single Tree

Table 1: The operator configurations used to conduct the
experiments and evaluations.

of 100% and a mutation probability of 30%. As selector, a Crowded-
TournamentSelector [7] with a group size of six was used. These two
genetic algorithms were chosen because of the OSGA being a fur-
ther development of the normal genetic algorithm, which promises
to find better solutions for the given problem due to its self-adaptive
offspring selection scheme. However, as this algorithm is a single-
objective one, the NSGA-II was chosen as second genetic algorithm
to be used to also evaluate the influence of the new operators on a
multi-objective optimization and the complexity of the controllers.

As maximum symbolic regression tree depth 50 and as maximum
tree length 100 was chosen and it was specified that when using the
Single Tree operators the not-changed syntax trees should always
be taken from the first parent solution candidate in order to ensure
a good comparability of the four operator configurations. Besides
that, the following mathematical operators were used as grammar
for the symbolic regression: the four arithmetic functions addition,
subtraction, multiplication and division, the trigonometric func-
tions sine, cosine and tangent, exponential and logarithm operators
and the power functions square, power, square root and root. The
newly implemented crossover and mutation operator implemen-
tations, the All Trees operators and the Single Tree operators, are
compared with each other using the four experiment configurations
shown in table 1.

The 40 trained heuristic controllers are evaluated towards their
ability to optimize the system proposed in section 3.1 by taking a
closer look on their training performance including the best training
result, the number of evaluated solutions and needed generations
as well as the symbolic regression tree depth and length and also
testing them for their achieved energy costs in simulation using
the same simulation model that was also used for training.

3.1 Evaluation Model
The evaluation model was built in MATLAB Simulink and models
the electrical (Fig. 1) and thermal (Fig. 2) energy flows of a real-
world building in which currently a school is located. The electrical
parts of the system include a hydroelectric power plant, whose
energy production is abstracted in the model by just adding it to
the household load, a 1.5 kWp photovoltaic (PV) system, a 12kWh
battery storage and an Ohmpilot device[10], which turns electric
power into hot water using four 9 kW heating rods.

The thermal part of the system models the building itself in form
of a one-node simulation model together with its space heating,
the hot water boiler which can be heated up using the heating rods
controlled by the Ohmpilot or the oil heating, and the respective oil
heating using the Carnot 2016b blockset [11]. As input values for
the model the energy consumption and feed-in tariff, the household

1581

GECCO ’21 Companion, July 10–14, 2021, Lille, France Kefer et al.

Figure 1: The electrical part of the simulation model with the inverter, the battery and the Ohmpilot. The Inverter Controller
gets the energy tariffs, the household load, the production from the PV system and the state of charge of the battery as inputs
to calculate the respective set point. For calculating the Ohmpilot set point, the Ohmpilot Controller uses the currently available
power from the inverter and the energy consumed or fed into the grid at the previous time step. Using the Ohmpilot, the
heating rods then heat up the hot water boiler of the system as shown in the thermal part of the system in Figure 2.

Figure 2: The thermal part of the simulation model gets the power for the heating rods from the Ohmpilot as shown in Figure 1
and heat up the hot water boiler according to that. Despite that, also the oil heating is started by its control if the boiler
temperature drops below a certain threshold. The water from the hot water boiler is then used for the hot water supply in the
building and by the space heating control, which decides whether the building needs to and can be heated up or not based on
the room temperatures, the boiler temperatures and the outside temperature. For simplicity reasons, this graphic of the model
was slightly adapted from the original one, but the blocks and the connections between them were kept the same.

load including the hydroelectric power plant production, the energy
production of the PV system, the voltage of the PV system as well as
the weather data is needed. The three parameters of the system that
are optimized by the trained controllers are the grid feed-in set point
of the inverter using the Inverter Controller block, the Ohmpilot
Controller, which calculates the energy available for heating up the
hot water boiler using the heating rods (Fig. 1) and the Return Flow
Mixer Controller, which enables or disables the return flow of the
hot water boiler (Fig. 2).

From the input data, the energy tariffs, the household load, the
PV system production and, in addition to that, the current state

of charge of the battery are used to calculate the optimal grid
feed-in set point for the inverter in the Inverter Controller block as
shown in Fig. 1. The Ohmpilot Controller uses the energy provided
by the inverter together with the energy fed into the grid at the
previous simulation step to calculate the current power available
for the heating rods and the Return Flow Mixer Controller enables
or disables the mixer based on the current storage temperatures.
As simulation result, the energy costs caused by the system are
calculated by multiplying the power consumed from and fed into
the grid from the Power_to_grid signal in Fig. 1 with the respective
energy tariffs and summing them up together with the energy costs

1582

Multi Tree Operators for Genetic Programming to Identify Optimal Energy Flow Controllers GECCO ’21 Companion, July 10–14, 2021, Lille, France

caused by the oil heating using the MoneyFlowOilHeating signal
in Fig. 2 as shown in equation 2. There, 𝑁 denotes the number of
total simulation steps while 𝑡 is the current step.

𝑐𝑜𝑠𝑡𝑠𝑡𝑜𝑡𝑎𝑙 =

𝑁∑︁
𝑡=1

𝑃𝑓 𝑟𝑜𝑚𝐺𝑟𝑖𝑑 (𝑡) × 𝑐𝑜𝑠𝑡𝑠𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑡)−

𝑃𝑡𝑜𝐺𝑟𝑖𝑑 (𝑡) × 𝑐𝑜𝑠𝑡𝑠𝑓 𝑒𝑒𝑑𝑖𝑛 (𝑡) + 𝑐𝑜𝑠𝑡𝑠𝑜𝑖𝑙𝐻𝑒𝑎𝑡𝑖𝑛𝑔 (𝑡)
(2)

3.2 Data Basis
As data basis for the training and evaluation, artificially generated
data for one year was used. This data is based on real world data and
covers all input values needed to simulate the previously explained
evaluation model, including the PV system production and voltage,
the household load, the production of the hydroelectric power
plant, the variable energy tariffs for consumption and feed-in and
the respective weather data. The methods with which this data is
generated is explained in more detail below.

3.2.1 PV production and Voltage data. The generation of the PV
production and voltage data is based on recorded weather data
from 2018 and a MATLAB Simulink simulation model parametrized
with the exact PV parameters from the real world building. The
weather data was recorded by the company Meteonorm for the
year 2018 in ten different locations in the vicinity of the real world
building. For the data generation, two weather datasets are ran-
domly selected from this available ones and are averaged. If the
data to be generated should have a length of up to one year, the
averaged weather data is shortened to the desired length. If the data
should be longer than 365 days, the selection and averaging of the
weather datasets a is repeated until the desired length is reached.
This artificially generated weather data file is then used as input
for the PV simulation model. The simulation of this model then
generates the desired PV production and voltage data.

3.2.2 Hydroelectric Power Plant Production. To generate the ar-
tificial hydroelectric power plant production data measured pro-
duction and loss data of another real-world hydroelectric power
plant just a few kilometres upstream from the original site from
2010 until 2015 are used. They are split up into single days and
grouped by their month of measurement. Starting with the month
in which the newly generated data should start, the days to be used
are selected randomly from the pool of data. The loss data gets
subtracted from the respective production data, which results in
the net production which gets then appended to its predecessor
until the desired length of the new dataset is reached.

3.2.3 Household load. For the household load data generation, the
program LoadProfileGenerator [21] (LPG) is used. There, the system
to be optimized was modelled as precisely as possible and adjusted
to the approximately same annual energy consumption. In addition,
input data such as production of the hydroelectric power plant and
weather data was added. Subsequently, a realistic load curve for
the specific real world building can be generated with the LPG for
different years and times.

3.2.4 Variable Energy Tariffs. For the generation of a new energy
tariffs dataset, aWATTar [2] data from the years 2015 to 2018 are
split up month-wise. From this data pools, one set is randomly

selected from each of the different months and appended to the
previous ones until the desired data set length is reached. This is
done for the energy consumption costs and the feed-in tariffs.

4 RESULTS
This chapter presents the results of the evaluation of the four differ-
ent crossover and mutator configurations as explained in chapter 3
and shown in table 1. First, the training metrics are presented in sec-
tion 4.1, followed by the results for evaluation of the optimization
ability in section 4.2.

4.1 Training Metrics
Taking a closer look on the training metrics achieved by the con-
trollers trained with the OSGA and which are shown in table 2, it
can be found that the Single Tree mutator reduces the number of
generations and therefore also of the evaluated solutions. Using the
All Trees crossover together with the Single Tree mutator instead of
the All Trees mutator reduces the evaluated solutions on average
from 261 300 to 70 100 and the needed generations from 25.8 to
3.4. Using the Single Tree mutator together with the Single Tree
crossover instead of the All Trees crossover reduces the evaluated
solutions on average from 260 500 to 77 300 and the generations
from 25 to 3.4.

Configuration Controller Generations Evaluated
Solutions

All Trees
crossover,
All Trees
mutator

1 27 275000
2 28 262500
3 24 263000
4 23 253000
5 27 253000

All Trees
crossover,
Single Tree
mutator

1 3 61000
2 3 64500
3 3 66000
4 4 74000
5 4 85000

Single Tree
crossover,
All Trees
mutator

1 29 265500
2 26 263000
3 23 254000
4 23 267000
5 24 253000

Single Tree
crossover,
Single Tree
mutator

1 3 62000
2 4 80000
3 4 96000
4 3 82000
5 3 66500

Table 2: The training metrics for the five controllers trained
with the OSGA for each configuration including the number
of evaluated solutions and needed generations.

As shown in table 3, the best results, i.e. the minimum energy
costs, during the training are achieved with both algorithms with
the All Trees crossover. There, the average energy costs are around

1583

GECCO ’21 Companion, July 10–14, 2021, Lille, France Kefer et al.

2.68€ when trained together with the All Trees mutator and both
training algorithms or the NSGA-II and the Single Tree mutator.
The controllers trained with the All Trees crossover, the Single Tree
mutator and the OSGA, however, perform only slightly worse with
average energy costs of 3.03€ for the one training day. For these
configurations, also the respective standard deviations are with a
maximum of 0.0386€ very low, which indicates that the training
process is very stable and that all trained controllers work equally
well. However, taking a closer look on the training results for config-
urations #3 and #4 where the Single Tree crossover is used together
with the two different mutators, it can be found that, except for
the controllers trained with the All Trees mutator and the OSGA,
which work equally good as the controllers trained with the All
Trees crossover and the All Trees mutator (configuration #1), the
average energy costs are worse and the respective standard de-
viations are also much higher. The average energy costs for the
controllers trained with the Single Tree crossover and the NSGA-II
rise to 7.64€ with a standard deviation of 7.15€ when using the All
Trees mutator (configuration #3) and to 6.67€ with a standard devia-
tion of 7.34€ when using the Single Tree mutator (configuration #4),
whereas the controllers trained with the OSGA and configuration
#4 even have average training energy costs of 8.27€ with a standard
deviation of 3.75€.

Configu-
ration

Training
Algorithm

Best
Result

Average
Result

Standard
Deviation

All Trees
crossover, NSGA-II 2.6808 2.6834 0.0024

All Trees
mutator OSGA 2.6826 2.6838 0.0011

All Trees
crossover, NSGA-II 2.6840 2.6857 0.0022

Single Tree
mutator OSGA 2.9552 3.0299 0.0386

Single Tree
crossover, NSGA-II 2.7665 7.6417 7.1511

All Trees
mutator OSGA 2.6813 2.6820 0.0005

Single Tree
crossover, NSGA-II 2.8939 6.6660 7.3411

Single Tree
mutator OSGA 3.0551 8.2697 3.7471

Table 3: The best and average energy costs of the trainings
with their respective standard deviations in € for the five
controllers trained with the two genetic algorithms and the
different operator configurations.

For the evaluation of the symbolic regression tree depths and
lengths, the depth is calculated by running from the top most node
that holds a mathematical symbol straight down to the bottommost
leaf node and counting each of them except for the StartSymbol
node added by HeursticLab. The length of the symbolic regression
tree is calculated by counting every single node contained in the

tree including the leaf nodes but also except for the StartSymbol. As
shown in table 4, in general the trees for the Inverter and Ohmpilot
Contorllers are less deep and also shorter than the tree for the
Return Valve Controller, while a difference between the Inverter and
Ohmpilot Controller cannot be explicitly determined. This might be
caused by the different number of input values that are used for the
controllers, e.g. five by the Inverter Controller, two by the Ohmpilot
Controller and only one by the Return Valve Controller.

Comparing the average tree depths and lengths of the trainings
done with the All Trees crossover (configurations #1 and #2), it
is found that when using the NSGA-II algorithm and the Single
Tree mutator instead of the All Trees mutator together with the All
Trees crossover, the depths and lengths are decreased for all three
trees contained in the solution candidate. However, when using the
OSGA as training algorithm, the average depth and length of the
Inverter Controller tree is increased, while there are still reductions
for the Ohmpilot and Return Valve Controller trees. Using the Single
Tree crossover instead of the All Trees crossover together with the
All Trees mutator (configuration #3), does not have an effect on
the trees that are trained with the NSGA-II. There, the depth is
increased for the Inverter Controller and Return Valve Controller
trees, while it is reduced for the Ohmpilot Controller tree. The tree
lengths, however, are reduced for the Inverter Controller and Ohmpi-
lot Controller trees, while they are increased for the Return Valve
Controller tree. In contrast to that, the depths and lengths of the
trees trained with the OSGA are similar (Inverter Controllers tree) or
even reduced (Ohmpilot and Return Valve Controllers trees). Com-
paring the results for configurations #1 (both All Trees operators)
and #4 (both Single Tree operators), similar results for the NSGA-II
trained controllers can be found: for the Inverter and Return Valve
Controller trees, the depth is increased and the length is decreased,
while both, the average depth and the length are decreased for
the Ohmpilot Controller tree. The average depth and length of the
Inverter Controller trees trained with the OSGA and both Single Tree
operators is bigger while they are reduced for the Ohmpilot and
Return Valve Controller trees.

To sum up, using the Single Tree mutator shortens the training
duration for the OSGA trained controllers by reducing the number
of evaluated solutions and needed generations remarkably without
having much influence on the training results. Using the Single
Tree crossover, however, has a much bigger influence on the results.
Due to the more fine-grained training that the Single Tree crossover
performs, of course more generations and evaluated solutions are
necessary to find near-optimal solutions. This is why when using
this crossover in combination with the Single Tree mutator as done
in configuration #4, the training results become worse. Despite
that, when evaluating the controller depths and lengths no clear
tendency for their reduction or increase could be found for the
different operator configurations and algorithms.

4.2 Test Results Energy Cost Optimization
For the evaluation of the cost optimization abilities of the trained
controllers, the energy costs for the system are calculated for dif-
ferent lengths by running the simulation with each controller for
30, 60, 180 and 364 days, starting at the day after the training (2nd

1584

Multi Tree Operators for Genetic Programming to Identify Optimal Energy Flow Controllers GECCO ’21 Companion, July 10–14, 2021, Lille, France

Inverter Controller Ohmpilot Controller Return Valve Controller

Configuration Training
Algorithm Depth Length Depth Length Depth Length

All Trees crossover, NSGA-II 10.40 (6.25) 47.20 (35.26) 21.20 (2.48) 91.00 (8.00) 19.40 (2.15) 75.00 (20.52)
All Trees mutator OSGA 6.40 (4.59) 14.20 (12.32) 17.60 (4.72) 70.00 (24.84) 23.20 (6.91) 64.80 (21.45)

All Trees crossover, NSGA-II 5.80 (4.07) 17.60 (19.63) 15.40 (3.72) 64.80 (25.84) 18.20 (2.93) 73.40 (22.04)
Single Tree mutator OSGA 9.00 (4.38) 27.20 (26.78) 6.60 (2.42) 16.00 (11.37) 17.00 (8.32) 41.40 (18.60)

Single Tree crossover, NSGA-II 12.60 (8.50) 32.80 (31.76) 5.60 (3.83) 9.20 (8.57) 24.20 (10.19) 78.60 (19.02)
All Trees mutator OSGA 6.40 (4.22) 16.20 (14.02) 14.20 (2.56) 43.00 (8.63) 22.40 (6.15) 58.00 (20.12)

Single Tree crossover, NSGA-II 12.20 (9.36) 26.00 (25.24) 6.80 (3.19) 12.80 (7.57) 21.80 (7.30) 56.80 (22.61)
Single Tree mutator OSGA 13.80 (8.23) 39.00 (29.48) 7.60 (3.32) 12.80 (8.03) 21.80 (12.02) 48.80 (22.09)

Table 4: The average tree depth and length together with the respective standard deviations in the brackets beside for the five
controllers trained with each of the two different genetic algorithms and four operator configurations.

of January). It was expected that the controllers trained with con-
figuration #4 (both Single Tree operators) will perform worst due to
also having achieved the worst training results. However, the re-
sults presented in table 5 show that all controllers on average work
pretty similar and nearly equally good, especially when running
them for the longer evaluation periods like half a year or nearly
a year. There, the controllers trained with the OSGA and the two
Single Tree operators even achieve the overall best average energy
costs of 10984.48€. However, these controllers are among the worst
ones for the shorter training times up to 180 days, which indicates
that there is a turnover point somewhere between 180 and 364 days.
For the shorter training times, the controllers trained with config-
uration #3 (Single Tree crossover and All Trees mutator) and the
NSGA-II perform best by achieving the overall best average energy
costs of 1072.64€ for 30 days, 3062.71€ for 60 days and 5226.74€ for
180 days. Despite that, it is also found that the standard deviations
for the energy costs achieved by the controllers trained with the
All Trees crossover together with the Single Tree mutator and vice
versa are much smaller than the ones achieved by the controllers
trained with both All Trees operators or both Single Tree operators.
Nevertheless, these results indicate that the Single Tree operators
can achieve better results than the All Trees operators.

5 CONCLUSIONS
This work presents new operators for genetic programming to
identify optimal energy flow controllers where the solution candi-
dates contain multiple symbolic regression trees. The two different
types of operators proposed are the All Trees operators, where the
crossover and mutator is applied to every tree in the solution candi-
date, and the Single Tree operators, where the crossover andmutator
is only applied to one randomly chosen tree while the others are
either taken from one specified parent or randomly from both. As
the Single Tree operators allow a more fine-grained optimization, it
is expected that the results are better but the training might take
longer. For the evaluation of the proposed operators, four differ-
ent configurations were used, being bot All Trees operators, the All
Trees crossover together with the Single Treemutator, the Single Tree
crossover together with the All Trees mutator and both Single Tree

operators. They were each evaluated using two different genetic
algorithms with which five controllers were trained to optimize the
energy flows of a complex thermal-electrically coupled system in
order to minimize the system’s energy costs. The simulation-based
evaluation shows that the Single Treemutator is able to significantly
reduce the training length by reducing the number of evaluated
solutions and generations. Despite that, it is shown that the Single
Tree crossover is able to achieve better optimization results than
the All Trees crossover but needs longer training times for that.

Despite these promising results, the topic needs further investi-
gations. First, a detailed evaluation of the influence of the parent
from which the remaining trees are taken during the use of the
Single Tree operators would be beneficial as in this work it was spec-
ified to always use the trees from the first parent solution candidate.
Additionally, it would be interesting to implement a selection for
the “better parent”, where the remaining trees are not taken from
either the first, the second a randomly chosen parent, but always
from the better one. Another further development especially for
this application area would be to implement a grouping possibility
for the symbolic regression trees, e.g. into thermal and electrical,
and then not just select one of the symbolic regression trees but all
trees from a specific group for applying the operators.

ACKNOWLEDGMENTS
This project was financed by the European Regional Development
Fund and the Province of Upper Austria. It was carried out by
Fronius International GmbH and partners from the University of
Applied Sciences Upper Austria.

REFERENCES
[1] Michael Affenzeller and Stefan Wagner. 2005. Offspring selection: A new self-

adaptive selection scheme for genetic algorithms. In Adaptive and natural com-
puting algorithms. Springer, 218–221.

[2] aWATTar. 2021. aWATTar. Retrieved April 27, 2021 from https://www.awattar.
com/

1585

https://www.awattar.com/
https://www.awattar.com/

GECCO ’21 Companion, July 10–14, 2021, Lille, France Kefer et al.

Simulation Days

Configuration Training
Algorithm 30 60 180 364

All Trees crossover, NSGA-II 1525.86 (84.03) 3154.46 (100.42) 5407.43 (269.37) 10911.80 (323.29)
All Trees mutator OSGA 1491.72 (21.18) 3109.93 (46.05) 5308.59 (80.56) 11143.28 (147.77)

All Trees crossover, NSGA-II 1483.96 (13.24) 3091.25 (30.76) 5275.51 (51.61) 11029.46 (98.13)
Single Tree mutator OSGA 1532.85 (121.51) 3146.80 (171.50) 5405.67 (381.60) 10991.21 (54.37)

Single Tree crossover, NSGA-II 1472.64 (6.71) 3062.71 (10.70) 5226.74 (12.30) 11003.33 (32.56)
All Trees mutator OSGA 1478.90 (11.06) 3081.33 (25.48) 5254.44 (44.21) 11072.56 (92.48)

Single Tree crossover, NSGA-II 1603.20 (143.69) 3250.44 (200.83) 5626.26 (442.86) 11028.47 (49.46)
Single Tree mutator OSGA 1602.28 (134.07) 3251.59 (188.09) 5664.00 (436.55) 10984.48 (177.71)

Table 5: The average energy costs together with their standard deviations in the brackets beside in € for 30, 60, 180 and 364 days
of simulation for the five controllers trained with each of the genetic algorithms and operator configurations.

[3] Chen Chen, JianhuiWang, Yeonsook Heo, and Shalinee Kishore. 2013. MPC-based
appliance scheduling for residential building energy management controller. IEEE
Transactions on Smart Grid 4, 3 (2013), 1401–1410.

[4] Zhi Chen, Lei Wu, and Yong Fu. 2012. Real-time price-based demand response
management for residential appliances via stochastic optimization and robust
optimization. IEEE Transactions on Smart Grid 3, 4 (2012), 1822–1831.

[5] Francesco De Angelis, Matteo Boaro, Danilo Fuselli, Stefano Squartini, Francesco
Piazza, and Qinglai Wei. 2012. Optimal home energy management under dynamic
electrical and thermal constraints. IEEE Transactions on Industrial Informatics 9,
3 (2012), 1518–1527.

[6] Roel De Coninck, Ruben Baetens, Dirk Saelens, Achim Woyte, and Lieve Helsen.
2014. Rule-based demand-side management of domestic hot water production
with heat pumps in zero energy neighbourhoods. Journal of Building Performance
Simulation 7, 4 (2014), 271–288.

[7] Deb. 2001. Multi-objective optimisation using evolutionary algorithms. Vol. 16.
John Wiley & Sons, 247.

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[9] A. T. Eseye, D. Zheng, J. Zhang, and D. Wei. 2016. Optimal energy management
strategy for an isolated industrial microgrid using a Modified Particle Swarm
Optimization. In 2016 IEEE International Conference on Power and Renewable
Energy (ICPRE). 494–498. https://doi.org/10.1109/ICPRE.2016.7871126

[10] Fronius International GmbH. 2021. Fronius Ohmpilot. Retrieved April 27, 2021
from https://www.fronius.com/en/solar-energy/installers-partners/technical-
data/all-products/solutions/fronius-solution-for-heat-generation/fronius-
ohmpilot/fronius-ohmpilot

[11] Solar-Institut Juelich. 2018. CARNOT Toolbox Ver. 6.2 2016b.
[12] Kathrin Kefer, Roland Hanghofer, Patrick Kefer, Markus Stöger, Michael Affen-

zeller, Stephan Winkler, Stefan Wagner, and Bernd Hofer. 2019. A Model-Based
Learning Approach for Controlling the Energy Flows of a Residential Household
Using Genetic Programming to Perform Symbolic Regression. In International
Conference on Computer Aided Systems Theory. Springer, 405–412.

[13] Kathrin Kefer, Roland Hanghofer, Patrick Kefer, Markus Stöger, Bernd Hofer,
Michael Affenzeller, and Stephan Winkler. [n.d.]. Simulation-Based Optimization
of Residential Energy Flows Using Genetic Programming to Solve a Symbolic
Regression Problem. ([n. d.]). in preparation for submission to the Journal of
Energy and Buildings.

[14] Fabian Kennel, Daniel Görges, and Steven Liu. 2012. Energy management for
smart grids with electric vehicles based on hierarchical MPC. IEEE Transactions
on industrial informatics 9, 3 (2012), 1528–1537.

[15] Michael Kommenda, Gabriel Kronberger, Michael Affenzeller, StephanMWinkler,
and Bogdan Burlacu. 2016. Evolving simple symbolic regression models by multi-
objective genetic programming. In Genetic Programming Theory and Practice XIII.
Springer, 1–19.

[16] John R Koza and John R Koza. 1992. Genetic programming: on the programming
of computers by means of natural selection. Vol. 1. MIT press.

[17] William B Langdon. 2000. Size fair and homologous tree genetic programming
crossovers. Genetic programming and evolvable machines 1, 1/2 (2000), 95–119.

[18] Sean Luke and Lee Spector. 1997. A comparison of crossover and mutation in
genetic programming. Genetic Programming 97 (1997), 240–248.

[19] G. Morganti, A. M. Perdon, G. Conte, D. Scaradozzi, and A. Brintrup. 2009. Opti-
mising Home Automation Systems: A comparative study on Tabu Search and

Evolutionary Algorithms. In 2009 17th Mediterranean Conference on Control and
Automation. 1044–1049. https://doi.org/10.1109/MED.2009.5164684

[20] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill. 2010. Coordinated Scheduling
of Residential Distributed Energy Resources to Optimize Smart Home Energy
Services. IEEE Transactions on Smart Grid 1, 2 (2010), 134–143. https://doi.org/
10.1109/TSG.2010.2053053

[21] Noah Pflugradt. 2016. Modellierung von Wasser und Energieverbräuchen in
Haushalten. Ph.D. Dissertation.

[22] Riccardo Poli and William B Langdon. 1998. Genetic programming with one-
point crossover. In Soft Computing in Engineering Design and Manufacturing.
Springer, 180–189.

[23] Jyri Salpakari and Peter Lund. 2016. Optimal and rule-based control strategies
for energy flexibility in buildings with PV. Applied Energy 161 (2016), 425–436.

[24] Dominic P Searson, David E Leahy, and Mark J Willis. 2010. GPTIPS: an open
source genetic programming toolbox for multigene symbolic regression. In Pro-
ceedings of the International multiconference of engineers and computer scientists,
Vol. 1. Citeseer, 77–80.

[25] Alaa F Sheta, Sara Elsir M Ahmed, and Hossam Faris. 2015. Evolving stock market
prediction models using multi-gene symbolic regression genetic programming.
Artificial Intelligence and Machine Learning 15, 1 (2015), 11–20.

[26] A. Soares, Á. Gomes, C. H. Antunes, and C. Oliveira. 2017. A Customized
Evolutionary Algorithm for Multiobjective Management of Residential Energy
Resources. IEEE Transactions on Industrial Informatics 13, 2 (2017), 492–501.
https://doi.org/10.1109/TII.2016.2628961

[27] William M Spears and Vic Anand. 1991. A study of crossover operators in genetic
programming. In International Symposium onMethodologies for Intelligent Systems.
Springer, 409–418.

[28] TheMathworks, Inc. 2020.MATLAB version 9.3.0.713579 (R2020b). TheMathworks,
Inc., Natick, Massachusetts.

[29] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and
Edgar Galván-López. 2011. Semantically-based crossover in genetic program-
ming: application to real-valued symbolic regression. Genetic Programming and
Evolvable Machines 12, 2 (2011), 91–119.

[30] S. Wagner. 2005. SexualGA: Gender-Specific Selection for Genetic Algorithms.
[31] Stefan Wagner, Andreas Beham, Gabriel Kronberger, Michael Kommenda, Erik

Pitzer, Monika Kofler, Stefan Vonolfen, Stephan Winkler, Viktoria Dorfer, and
Michael Affenzeller. 2010. HeuristicLab 3.3: A unified approach to metaheuristic
optimization. In Actas del séptimo congreso español sobre Metaheurísticas, Algorit-
mos Evolutivos y Bioinspirados (MAEB’2010). 8.

[32] David R White and Simon Poulding. 2009. A rigorous evaluation of crossover
and mutation in genetic programming. In European Conference on Genetic Pro-
gramming. Springer, 220–231.

1586

https://doi.org/10.1109/ICPRE.2016.7871126
https://www.fronius.com/en/solar-energy/installers-partners/technical-data/all-products/solutions/fronius-solution-for-heat-generation/fronius-ohmpilot/fronius-ohmpilot
https://www.fronius.com/en/solar-energy/installers-partners/technical-data/all-products/solutions/fronius-solution-for-heat-generation/fronius-ohmpilot/fronius-ohmpilot
https://www.fronius.com/en/solar-energy/installers-partners/technical-data/all-products/solutions/fronius-solution-for-heat-generation/fronius-ohmpilot/fronius-ohmpilot
https://doi.org/10.1109/MED.2009.5164684
https://doi.org/10.1109/TSG.2010.2053053
https://doi.org/10.1109/TSG.2010.2053053
https://doi.org/10.1109/TII.2016.2628961

	Abstract
	1 Introduction
	2 Approach
	2.1 All Trees Operators
	2.2 Single Tree Operators

	3 Evaluation
	3.1 Evaluation Model
	3.2 Data Basis

	4 Results
	4.1 Training Metrics
	4.2 Test Results Energy Cost Optimization

	5 Conclusions
	Acknowledgments
	References

