
Determining a consistent experimental setup for
benchmarking and optimizing databases

Moisés Silva-Muñoz
moises.silva.munoz@ulb.be

IRIDIA-CoDE, Université Libre de Bruxelles (ULB)
Brussels, Belgium

Gonzalo Calderon
gcalderon@cedint.upm.es

CeDInt-UPM, Universidad Politecnica de Madrid (UPM)
Madrid, Spain

Alberto Franzin
afranzin@ulb.ac.be

IRIDIA-CoDE, Université Libre de Bruxelles (ULB)
Brussels, Belgium

Hugues Bersini
bersini@ulb.ac.be

IRIDIA-CoDE, Université Libre de Bruxelles (ULB)
Brussels, Belgium

ABSTRACT
The evaluation of the performance of an IT system is a fundamental
operation in its benchmarking and optimization. However, despite
the general consensus on the importance of this task, little guidance
is usually provided to practitioners who need to benchmark their IT
system. In particular, many works in the area of database optimiza-
tion do not provide an adequate amount of information on the setup
used in their experiments and analyses. In this work we report an
experimental procedure that, through a sequence of experiments,
analyzes the impact of various choices in the design of a database
benchmark, leading to the individuation of an experimental setup
that balances the consistency of the results with the time needed
to obtain them. We show that the minimal experimental setup we
obtain is representative also of heavier scenarios, which make it
possible for the results of optimization tasks to scale.

CCS CONCEPTS
• Information systems→ Database performance evaluation;
• Software and its engineering→ Empirical software validation.

KEYWORDS
Databases, benchmarking, optimization, experimental setup, auto-
matic configuration

ACM Reference Format:
Moisés Silva-Muñoz, Gonzalo Calderon, Alberto Franzin, andHugues Bersini.
2021. Determining a consistent experimental setup for benchmarking and
optimizing databases. In 2021 Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3449726.3463180

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463180

1 INTRODUCTION
IT systems are at the heart of many industrial applications, and
their performance is a central element in the good operation of
a company. Benchmarking is therefore a key task to ensure the
functioning of the IT system. It is, however, a complex task where
several hardware and software factors come into play, and that
requires lengthy evaluations, performed either on the real system
or on its simulation, to account for the intrinsic stochasticity of each
operation. Databases are a perfect example, due to the ubiquitous
use of data in many real-world applications that has enabled new
computing paradigms and new possibilities in many sectors from
industry to transportation to medicine [10, 18, 21, 22, 26].

The performance of a database depends not only on its internal
mechanisms, but also on several factors such as the amount and
type of data stored and accessed, the amount and type of operations
performed, and the hardware infrastructure [4, 5, 8]. For example,
caching is used to speed up operations on frequently accessed
records, so an evaluation process that does not take this effect into
account is at risk of misrepresenting the actual performance. Several
other elements contribute to the performance of a database, such
as the optimization of its design, or of the queries to be executed
[24, 30, 46]. The parameter configuration is another important factor
in the performance of a database [7, 29]. For example, Internet
of Things applications continuously receive lots of data and thus
frequently perform write operations [17]; conversely, the database
underlying a web application performs a higher amount of read
operations. If the same database is employed, these two applications
will require a different configuration.

One common method to measure the performance of a database
is to run some benchmarking tool for an extended amount of time
or performing a high given number of operations, in order to factor
out the stochasticity in the evaluation and obtain reliable measure-
ments [11, 32, 44]. On the other hand, selecting the best database
configuration for a certain task requires hundreds or thousands
of evaluations, and therefore we strive for an evaluation to be as
fast as possible [25, 27]. These two goals are, of course, conflicting,
and a trade-off has to be found between speed of evaluation and
consistency of the measurement. As we will see in Section 4.1.6,
an improper experimental setup renders the optimization process
of a database extremely unreliable and, therefore, useless. Unfor-
tunately, despite a vast literature on database optimization (e.g.

1614

https://doi.org/10.1145/3449726.3463180
https://doi.org/10.1145/3449726.3463180

GECCO ’21 Companion, July 10–14, 2021, Lille, France Silva-Muñoz et al.

[31, 32, 41, 47], few works properly detail the experimental setup
used in their experiments. This makes therefore impossible not
only to properly reproduce the results, but also to evaluate the real
efficacy of the method proposed.

In this work we describe an empirical procedure to design an
experimental setup that balances speed and consistency of the eval-
uations. In particular, through a series of experiments we determine
the amount of data and operations necessary to optimize running
time and consistency, and evaluate the impact of the hardware
configuration on the performance of the database. We then demon-
strate the importance of the experimental setup in obtaining reliable
results, showing how it allows to obtain good results in terms of
both performance and scalability. We also demonstrate the issues
that arise when using an inadequate experimental setup, which
makes the evaluations faster but unreliable. In our experiments
we consider two popular NoSQL databases, Cassandra and Elas-
ticsearch, and we use YCSB as benchmarking tool [9, 11, 19]. To
optimize the parameter configuration we use the irace configurator
[28].

In the next section we review the some works about database
benchmarking and optimization. In Section 3 we describe the soft-
ware packages used in our experiments. In Section 4 we report our
experiments to determine the setup, and evaluate it. In Section 5
we present our conclusions and outline future research directions.

2 RELATEDWORKS
There is consensus among researchers on the need to define bench-
marks for databases and big data applications [5]. However, in
practice this is not easily defined. This task is particularly complex
for NoSQL databases because this definition includes systems that
can be divided into four categories, according to their different data
storage designs [4, 23].

Therefore, comparing the performance of these systems is very
complex due to their heterogeneity [12]. In fact, many existing tools
have been designed for specific databases, such as Rally [15] or Cas-
sandra Stress [3], or for a particular category of NoSQL databases
(XDGBench [13], YCSB++ [33]). However, in recent years generalist
approaches such as YCSB [11] or TPC [40] have been introduced,
allowing to easily test the performance of various databases, and
establishing themselves as the de facto reference solution [2, 35].
All these tools, however, do not provide practical guidelines on how
to properly use them in practice, because it depends also on the
specific application for which the database will be used.

Benchmarking a database is useful not only to measure its perfor-
mance or to select the database more suitable for a certain task, but
it is also a fundamental operation when optimizing a database [47].
Surprisingly, however, this step is often overlooked in works in this
line of research, and little details are usually provided. For example,
in [45] it is only mentioned that the data samples are collected
every ten minutes, while in [32] the sampling time is five minutes.
The experimental section of [44] reports the general infrastructure
and the time of each evaluation, but not the specific load. While we
can hypothesize that the authors of these works consider a setup
representative of the typical load of their applications, in both cases
there is no indication on what is the actual load considered. Other
works such as [47] do not describe their evaluation setup. Even in

works where the setup is described and reproducible, such as [41],
its significance is neither analyzed nor discussed.

3 MATERIAL AND METHOD
3.1 Cassandra
The Cassandra database was originally designed by combining
some features of Amazon’s Dynamo and Google’s Bigtable in or-
der to handle large amounts of unstructured data. This distributed
database has a wide-column data store model, using columns as the
basic unit of data and structuring the data following the concept
of column families [9, 42]. The creation and updating of the data-
base schema as well as the access to the data is possible through a
SQL-like language provided by Cassandra called Cassandra Query
Language (CQL).

The main reasons for choosing Cassandra for our work are as fol-
lows: first, Cassandra is currently one of the most popular NoSQL
databases which allows us to directly compare our results with
other automatic parameter tuning methods as well as showing us
the great number of domains in which Cassandra and our method-
ology could be used. Second, Cassandra has a large community
of users and a very complete documentation, which facilitates the
generalization and replication of the methodology presented in this
work.

We consider five parameters that impact the performance, as
identified in [32]: number of concurrent writes (integer), file cache
size (integer), memtable cleanup rate (real-valued), concurrent com-
pactor strategy (categorical), compaction strategy (integer). Addi-
tional experiments include instead the full list of 23 parameters, as
described in [36].

3.2 Elasticsearch
Elasticsearch is a distributed and open-source search engine built
on Apache Lucene [6, 19]. The information is stored in Elasticsearch
in collections of structured or unstructured JSON documents called
indices. A document is a set of fields organized in key-value pairs.
Elasticsearch is schema-free, which means that the documents are
indexed without the need of defining a structure in advance.

Elasticsearch provides a full query Domain Specific Language
(DSL) to perform create, read, update and delete (CRUD) oper-
ations, searches and aggregations [16]. The data indexed in Elastic-
search is also exposed through a RESTful API supported by most
programming languages. Elasticsearch is a popular choice for text
search engines, due to its efficiency in performing complex full-text
searches in real-time.

Elasticsearch provides several configuration parameters to im-
prove performance [14]. Here we consider a subset of five integer
parameters that have an impact on indexing and search [38]: index
buffer size, minimal index buffer size, cache size, number of replicas,
and number of shards.

3.3 YCSB
One of the most popular benchmarks is the Yahoo! Cloud Serving
Benchmark (YCSB), which allows to evaluate the performance of
both relational and NoSQL database management systems [1, 2, 11].
With YCSB it is possible to define the characteristics of the data to
be stored in the database, for example specifying the length and

1615

Determining a consistent experimental setup for benchmarking and optimizing databases GECCO ’21 Companion, July 10–14, 2021, Lille, France

type of each record, and to load a dataset into a database, defining
the distribution of the data during the insertion.

This benchmark also allows to define workloads, that is, sets
of operations to be performed during an evaluation, specifying
the amount and type of operations to be executed. The operations
available to YCSB are (i) read: get the value contained in a register,
(ii) update: overwrite the value of a register already present in
the database, (iii) scan: read all or a subset are read of records
in a table, (iv) insert: add a new record to the database, and (v)
read-modify-write: the value of a record is altered by executing
three successive operations as an atomic operation. YCSB also has
a set of six default workloads. In this work we consider the default
YCSB Workload A, which has a 50/50 read and update ratio.

3.4 Experimental procedure
We test each database using YCSBWorkload A, under varying loads
of data and operations. This step is necessary to trade-off speed and
consistency. The metric we consider in our tests is the throughput,
the rate of transactions processed by the database per second, one
of the most common metrics to evaluate a database system. Having
established the size of each experiment, we estimate the impact
of different configurations, in terms of number of machines and
concurrent threads used, which mimic the use of the database by
different users. We also test the impact of destroying and reloading
the database in between experiments, since not all the database
alterations (e.g. in the configuration) cannot be performed while
the database is running, and to test the impact of the startup phase
(cold experiments, [34]).

We use Cassandra version 3.6, Elasticsearch version 7.9.0, YCSB
version 0.17 and irace version 3.4. All the experiments are performed
on Google Cloud machines using n1-standard-8 machines, with
8 virtual CPUs, 30GB of RAM and a 20GB persistent disk. The
database records for Cassandra are ten varchar fields of 100 bytes
each. The Elasticsearch records are Java strings of 100 characters
that Elasticsearch internally converts to a text field. Each evaluation
is repeated ten times separately for statistical evaluation.

4 EXPERIMENTAL RESULTS
4.1 Experimental setup for Cassandra
In this section we expand the analysis performed in determining
the experimental setup for the configuration of Cassandra using
irace we performed in [36]. Part of the experiments reported here
were first presented in that work.

4.1.1 Number of operations. What is the minimum number of
operations required to run representative experiments? To answer
this question we test YCSB workload A with Cassandra’s default
settings, leaving the amount of data fixed at 100K database rows1
and varying the number of operations. With this we want to find
the minimum number of operations that would be representative of
larger experiments. Figure 1 shows the results of experiments with
10K, 50K, 100K, 500K and 1M operations. We can see that the results
in terms of throughput (left plot) for 100K, 500K and 1M operations
are very similar in terms of performance and consistency. On the

1This value was determined representative in preliminary experiments. Additional
experiments with 1M rows confirmed the validity of our choice [37].

other hand, in terms of time (right plot) the results for up to 100K
operations are similar to the smallest experiments. This indicates
that runs with 100K operations are as good as larger runs in terms of
performance and just as fast as smaller runs. Therefore, we choose
100K operations for our experiments.

10K 50K 100K 500K 1M
Number of operations

0

1K

2K

3K

4K

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

10K 50K 100K 500K 1M
Number of operations

0

100

200

300

Ti
m

e(
se

c)

Figure 1: Throughput (left plot) and time (right plot) ob-
tained with 100K rows of data changing the number of oper-
ations between 10K, 50K, 100K, 500K and 1M.

4.1.2 Number of rows in the database. In this experiment, con-
ducted with the same workload and the same default settings of the
previous one, we set the number of operations to 100K and we test
different amounts of data in the database. In Figure 2 we show the
results obtained. In terms of throughput (left plot), the experiments
with 10K, 50K and 100K rows obtain similar results, with 100K rows
yielding slightly more consistent results than the other ones. In
terms of running time (right plot) we see that there is not much
difference when executing the experiments with 10K, 50K or 100K.
Hence, we choose 100K rows amount of data for our experiments.

10K 50K 100K 500K 1M
Number of rows

0

1K

2K

3K

4K

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

10K 50K 100K 500K 1M
Number of rows

0
10
20
30
40
50

Ti
m

e(
se

c)

Figure 2: Throughput (left plot) and time (right plot) ob-
tained with 100K operations, changing the number of rows
in the database between 10K, 50K, 100K, 500K and 1M.

4.1.3 Number of machines. Another important factor to consider
when evaluating the performance of a distributed database is the
number of machines. We evaluate the performance on 1, 2, 4, 8 and
16 machines, using the default configuration and YCSB workload A
with 100K rows and operations.

The results shown in Figure 3 indicate a decrease in throughput
as the number of machines increases. This may seem surprising,
considering that Cassandra is a distributed database, but our obser-
vations are consistent with those reported by other authors, and
are caused by Cassandra’s replication model [20, 39, 43]. The use
of YCSB workload A can also partly explain the results, and a more
writing-heavy workload for writing would probably perform better
on a larger number of machines [20].

1616

GECCO ’21 Companion, July 10–14, 2021, Lille, France Silva-Muñoz et al.

1 2 4 8 16
Number of machines

0

2K

4K

6K

8K

10K

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

Figure 3: Throughput obtained by running experiments of
100K operations and rows, changing the number of ma-
chines between 1, 2, 4, 8 and 16.

In the remainder of this section we use one machine for our
experiments. In a real world application, however, other consid-
erations such as redundancy and robustness should be taken into
account, and a higher number of machines could be employed to
ensure a certain level of service.

4.1.4 Reload the database each time? How data is loaded between
runs is another factor that can influence database performance. In
fact, the startup phase can take a non-negligible amount of time,
impacting the overall evaluation. Furthermore, when considering
applications such as configuration, not all the modifications can
be applied without restarting the entire database. We therefore
test nine different Cassandra parameter configurations, and run
all of them in different order. The results in Figure 4 show that
destroying and reloading the database between each run (a situation
also known as cold evaluation) results in greater consistency and
better throughput than keeping the data in the database between
runs.

1 2 3 4 5 6 7 8 9
Configuration

0
1K
2K
3K
4K
5K
6K
7K
8K

Th
ro
ug

hp
ut
(o
ps
/s
ec
)

1 2 3 4 5 6 7 8 9
Configuration

0
1K
2K
3K
4K
5K
6K
7K
8K

Th
ro
ug

hp
ut
(o
ps
/s
ec
)

Figure 4: Throughput obtained by running a series of nine
different configurations nine times, changing the order of
the configurations each run, destroying the database after
each experiment (left plot) and without destroying the data-
base after each experiment (right plot).

4.1.5 Multithreading. Since both Cassandra and YCSB are systems
that allow the use of client threads in their executions, we test also
the performance of Cassandra in this scenario, observing how the
execution ofmultiple client threads could influence the performance
and consistency of the results.

In Figure 5 we report the results of the experiments comparing
the performance of Cassandra with 1, 2, 4, 8 and 16 threads of YCSB
clients for workload A with 100K operations and rows. We choose
to use 4 client threads because of the good performance in terms of
consistency and speed.

1 2 4 8 16
Number of Threads

0

3K

6K

9K

12K

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

Figure 5: Throughput obtained by running experiments of
100K operations and rows, with 1, 2, 4, 8 and 16 threads.

4.1.6 Results. We have therefore identified a setup with 100K rows
of data, 100K operations, one machine, four threads and cold ex-
periments. We show the usefulness of this experimental setup by
using it to configure Cassandra with irace, using 500, 1000 and
2000 experiments as tuning budget, both including (boxplots D-×,
where × is the tuning budget used in the experiment) and ignoring
(boxplots ND-×) the default configuration, and considering five
selected parameters and the whole set of 23 parameters that impact
the performance (Figure 6). The results are reported with two differ-
ent test sets: TS1𝑐 corresponds to the same setup we identified for
the tuning, while TS2𝑐 simulates a situation of heavier workload,
with a database of 1M rows and operations, to evaluate the scala-
bility enabled by the setup. All the results are reported in terms of
speedup with respect to the default configuration; higher boxplots
indicate therefore a better performance. For more details on our
tuning process we refer to [36].

ND
-T

S1
c-5

00
ND

-T
S1

c-1
K

ND
-T

S1
c-2

K

D-
TS

1 c
-5

00
D-

TS
1 c

-1
K

D-
TS

1 c
-2

K

ND
-T

S2
c-5

00
ND

-T
S2

c-1
K

ND
-T

S2
c-2

K

D-
TS

2 c
-5

00
D-

TS
2 c

-1
K

D-
TS

2 c
-2

K−20
−10

0
10
20
30
40
50

Sp
ee

du
p(

%
)

Workload A, 5p

ND
-T

S1
c-5

00
ND

-T
S1

c-1
K

ND
-T

S1
c-2

K

D-
TS

1 c
-5

00
D-

TS
1 c

-1
K

D-
TS

1 c
-2

K

ND
-T

S2
c-5

00
ND

-T
S2

c-1
K

ND
-T

S2
c-2

K

D-
TS

2 c
-5

00
D-

TS
2 c

-1
K

D-
TS

2 c
-2

K−20
−10

0
10
20
30
40
50

Sp
ee

du
p(

%
)

Workload A, 23p

Figure 6: Speedup with respect to the default configuration
obtained in 100K experiments tuning 5 (top) and 23 param-
eters (bottom) tested on TS1𝑐 and TS2𝑐 .

1617

Determining a consistent experimental setup for benchmarking and optimizing databases GECCO ’21 Companion, July 10–14, 2021, Lille, France

The results indicate that in almost all the cases we considered
we were able to obtain good results. We also see how using our
setup is robust to scaling, both including and excluding the default
configuration and in both parameter settings. Also, as expected, a
higher tuning budget consistently results in better performance.

As a comparison we, report the results obtained when tuning
using a lighter setup, labeled TS0𝑐 , with 10K rows of data and 10K
operations. The results are reported in Figure 7 for five and 23
parameters, in terms of speedup over the default configuration. The
results now include the tests on TS0𝑐 , TS1𝑐 and TS2𝑐 . Now the
results exhibit a high variability, and a higher tuning budget does
not necessarily yield a better performing configuration, even for
the same TS0𝑐 , in particular when considering 23 parameters. This
indicates that the throughput measured during the tuning phase
on this lighter setup is not a reliable value and, therefore, that the
experimental setup used is not adequate.

ND
-T

S0
c-5

00
ND

-T
S0

c-1
K

ND
-T

S0
c-2

K

ND
-T

S1
c-5

00
ND

-T
S1

c-1
K

ND
-T

S1
c-2

K

ND
-T

S2
c-5

00
ND

-T
S2

c-1
K

ND
-T

S2
c-2

K

D-
TS

0 c
-5

00
D-

TS
0 c

-1
K

D-
TS

0 c
-2

K

D-
TS

1 c
-5

00
D-

TS
1 c

-1
K

D-
TS

1 c
-2

K

D-
TS

2 c
-5

00
D-

TS
2 c

-1
K

D-
TS

2 c
-2

K

−20
−10

0
10
20
30
40
50

Sp
ee

du
p(

%
)

Workload A, 5P

ND
-T

S0
c-5

00
ND

-T
S0

c-1
K

ND
-T

S0
c-2

K

ND
-T

S1
c-5

00
ND

-T
S1

c-1
K

ND
-T

S1
c-2

K

ND
-T

S2
c-5

00
ND

-T
S2

c-1
K

ND
-T

S2
c-2

K

D-
TS

0 c
-5

00
D-

TS
0 c

-1
K

D-
TS

0 c
-2

K

D-
TS

1 c
-5

00
D-

TS
1 c

-1
K

D-
TS

1 c
-2

K

D-
TS

2 c
-5

00
D-

TS
2 c

-1
K

D-
TS

2 c
-2

K

−20
−10

0
10
20
30
40
50

Sp
ee

du
p(

%
)

Workload A, 23P

Figure 7: Speedup with respect to the default configuration
obtained in 10K experiments tuning 5 (top) and 23 parame-
ters (bottom) tested on TS0𝑐 , TS1𝑐 and TS2𝑐 .

4.2 Experimental setup for Elasticsearch
4.2.1 Number of operations. To determine an appropriate amount
of operations for the Elasticsearch setup, we start by considering
10K rows of data. This value was again determined with preliminary
experiments. We use again YCSB workload A with the default
configuration of Elasticsearch, testing five different amounts of
operations from 10K to 1M.

The results are reported in Figures 8 and 9 for 10K and 20K rows
respectively, in terms of throughput and time. In both cases the
throughput is more or less constant for the different amount of data,
while the difference in terms of time is huge. A single evaluation

with one million operations can in fact take more than 100 minutes,
even with this little amount of data, making it unsuitable in practice
for most database optimization tasks.

10K 50K 100K 500K 1M
Number of operations

0
100
200
300
400
500

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

10K 50K 100K 500K 1M
Number of operations

0
1K
2K
3K
4K
5K
6K
7K

Ti
m

e(
se

c)

Figure 8: Throughput (left plot) and time (right plot) ob-
tained with 10K rows of data changing the number of op-
erations between 10K, 50K, 100K, 500K and 1M.

10K 50K 100K 500K 1M
Number of operations

0
100
200
300
400
500

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

10K 50K 100K 500K 1M
Number of operations

0
1K
2K
3K
4K
5K
6K
7K

Ti
m

e(
se

c)

Figure 9: Throughput (left plot) and time (right plot) ob-
tained with 20K rows of data changing the number of op-
erations between 10K, 50K, 100K, 500K and 1M.

4.2.2 Number of rows in the database. In this experiment, per-
formed with workload A and the default configuration of Elastic-
search, we test the impact of 10K, 50K, 100K, 500K and 1M rows in
the database, using 10K operations, whose results are reported in
Figure 10 in terms of throughput (left plot) and time (right plot).
We include also results with 100K operations, reported in Figure 11.

10K 50K 100K 500K 1M
Number of rows

0
100
200
300
400
500

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

10K 50K 100K 500K 1M
Number of rows

0
1K
2K
3K
4K
5K
6K
7K

Ti
m

e(
se

c)

Figure 10: Throughput (left plot) and time (right plot) ob-
tained by running experiments of 10K operations, changing
the number of rows in the database between 10K, 50K, 100K,
500K and 1M.

In both cases, the results are similar in terms of both throughput
and consistency for the different amounts of data rows. The time
necessary for each evaluation is, instead, very different, especially
for the largest datasets. On the other hand, while the time employed
for 100K operations is higher than the time employed with 10K
operations for the same amount of rows, the throughput is very
similar. The choice to use 10K rows and operations seems therefore
a valid one, because it is representative also of heavier loads.

1618

GECCO ’21 Companion, July 10–14, 2021, Lille, France Silva-Muñoz et al.

10K 50K 100K 500K 1M
Number of rows

0
100
200
300
400
500

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

10 50 100 500K 1M
Number of rows

0
1K
2K
3K
4K
5K
6K
7K

Ti
m

e(
se

c)
Figure 11: Throughput (left plot) and time (right plot) ob-
tained by running experiments of 100K operations, chang-
ing the number of rows in the database between 10K, 50K,
100K, 500K and 1M.

4.2.3 Number of machines. We again evaluate the performance on
1, 2, 4, 8 and 16machines, using the default configuration and YCSB
workload A with 10K rows and operations. The results obtained are
shown in Figure 12 where we see that, again, the results are very
similar in terms of throughput and consistency. In the remainder
of this section we use two machines for our experiments.

1 2 4 8 16
Number of machines

0
100
200
300
400
500

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

Figure 12: Throughput obtained by running experiments of
10K operations and rows, changing the number ofmachines
between 1, 2, 4, 8 and 16.

4.2.4 Reload the database each time? Like for Cassandra we test
what is the impact of cold experiments on the performance of Elas-
ticsearch. We observe the results obtained with nine Elasticsearch
configurations in different order nine times. We compare the differ-
ence between experiments where the database is destroyed between
each execution and experiments in which the data is only loaded
at the beginning of the experiments. The results are reported in
Figure 13 for 10K and 100K rows of data and operations. The results
are opposite to those observed with Cassandra, in that the perfor-
mance is more consistent, albeit slightly lower, when the data is
only loaded once.

This can be explained with some special features of Elasticsearch.
When a document is indexed in Elasticsearch, the information
is replicated in multiple shards. There are two types of shards:
primaries and replicas. When Elasticsearch receives a request, the
shards with the information return the response to the coordinating
node. This node collects the data and presents it to the user. The
response is stored in the cache memory of each shard to return the
result quickly. This fragment cache functionality is what we can
see in our results. If the data is not deleted after each experiment,
it is cached and the throughput is constant. However, if the data is
deleted after an experiment, each shard has to elaborate a response,
making more operations. In our results we can see that this chunk

1 2 3 4 5 6 7 8 9
Configuration

0

100

200

300

400

Th
ro
ug

hp
ut
(o
ps
/s
ec
)

1 2 3 4 5 6 7 8 9
Configuration

0

100

200

300

400

Th
ro
ug

hp
ut
(o
ps
/s
ec
)

1 2 3 4 5 6 7 8 9
Configuration

0

100

200

300

400

Th
ro
ug

hp
ut
(o
ps
/s
ec
)

1 2 3 4 5 6 7 8 9
Configuration

0

100

200

300

400

Th
ro
ug

hp
ut
(o
ps
/s
ec
)

Figure 13: Throughput obtained with 10K operations and
rows (top row) and 100K operations and rows (bottom row)
by running a series of nine different configurations nine
times, changing the order of the configurations each run,
destroying the database after each experiment (left plots)
and without destroying the database after each experiment
(right plots).

cache functionality works the same for both small experiments
with 10K operations and rows and for larger experiments with
100K operations and rows.

It is interesting to see that the results obtained by destroying
the database between each experiment are very similar despite the
difference in the number of operations and rows. Similarly, the
results for the experiments where the database was not destroyed
between each run were very similar to each other in terms of
performance and consistency. We can see this by comparing the
plots to the right of Figure 13 where the results are shown for 10K
and 100K operations and rows respectively.

Despite the difference of results with respect to the Cassandra
experiments, the outcome of this analysis is again to perform cold
evaluations. In fact, these results are the consequence of a character-
istic of the Elasticsearch operation, which does not allow to obtain
independent results between executions. Therefore, destroying and
reloading the database between each run is the only option to be
able to run experiments independent on each other.

4.2.5 Multithreading. Elasticsearch provides two multithreading
policies that have an impact on update operations. When a registry
is modified in Elasticsearch, it generates a version number to check
the consistency of the data before altering a record. During the up-
dating process, if different threads have different version numbers
the update is aborted. By default, Elasticsearch implements the “Op-
timistic Lock” configuration that allows that several threads handle
the same registry. This could result in data consistency problems
and cancel update processes. The other configuration is the “Pes-
simistic Lock”, where the thread blocks the registry before updating
it. It guarantees that Elasticsearch does not have concurrency issues
but the update process is slower because internally it has to ensure
the consistency of the data.

In Figure 14 we compare the throughput obtained using the
two strategies for up to 16 threads. The “Pessimistic Lock” setting

1619

Determining a consistent experimental setup for benchmarking and optimizing databases GECCO ’21 Companion, July 10–14, 2021, Lille, France

1 2 4 8 16
Number of threads

0

500

1K

1.5K

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

1 2 4 8 16
Number of threads

0

500

1K

1.5K

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

Figure 14: Throughput obtained by running experiments of
10K operations and rows, changing the multithreading set-
ting between “Optimistic Lock” (left plot) and “Pessimistic
Lock” (right plot) and changing the number of threads be-
tween 1, 2, 4, 8 and 16.

is much slower with respect to the “Optimistic Lock” one, which
in turn exhibits a high variability in the results as the number of
threads increases. Furthermore, with the increase of the number
of threads the error probability when executing update operations
surges as well, in both cases. To balance speed of execution, consis-
tency of the observations and to avoid update errors, we choose to
use the “Optimistic Lock” strategy with one single thread.

4.2.6 Results. Elasticsearch is a database whose characteristics are
very different from those of Cassandra, and this is reflected in the
experiments reported. The setup we identified is thus composed
by 10K rows of data and 10K operations, which offer comparable
throughput and consistency with respect to heavier scenarios, at
a fraction of the time required. The impact of the hardware con-
figuration is also different. We have selected two machines and a
single thread with an “Optimistic Lock” policy, and we perform
cold evaluations. We call this tuning setup TS1𝑒 .

In Figure 15 we report the outcome of a set of tuning tasks per-
formed, like for Cassandra, including and not including the default
configuration, and with budgets of 500, 1000 and 2000 experiments.
To test the scalability, we consider also a test setup TS2𝑒 with 100K
rows and operations. The results show that using TS1𝑒 it is possible
to obtain consistent performance improvements.

ND
-T
S1

e-5
00

ND
-T
S1

e-1
K

ND
-T
S1

e-2
K

D-
TS

1 e
-5
00

D-
TS

1 e
-1
K

D-
TS

1 e
-2
K

ND
-T
S2

e-5
00

ND
-T
S2

e-1
K

ND
-T
S2

e-2
K

D-
TS

2 e
-5
00

D-
TS

2 e
-1
K

D-
TS

2 e
-2
K

−5
0
5

10
15
20

Sp
ee

du
p(
%
)

Figure 15: Speedup with respect to the default configuration
obtained in 10K experiments tuning 5 parameters tested on
TS1𝑒 and TS2𝑒 .

4.3 Discussion
The determination of a proper experimental setup is a complex and
computationally expensive task, with several factors involved. A
full factorial analysis that takes all the components of the setup
into account is clearly impractical, and we have therefore broken
down the task into five basic steps. Some preliminary experiments,
not reported in this work, are anyway necessary to determine an
appropriate range of values to consider.

For both the databases considered we have devised an experi-
mental setup to allow for both consistent and scalable evaluations,
in particular for what concerns the amount of data and operations
to be used. Other important factors that affect the evaluations are
also considered, in particular the amount of machines and threads,
for which we analyzed the impact on the performance. For both
databases we have also noted how cold evaluations are the most
appropriate way of performing sequential evaluations. This is im-
portant in particular when optimizing a database. This set of ex-
periments is anyway not a one-off procedure, but it serves as a
blueprint for the determination and validation of the experimental
setup before a practical database benchmarking and optimization.

In a practical application, in fact, the practitioner may need to
take into account other constraints such as, for example, a certain
data structure, a minimum level of service to maintain, or a given
hardware infrastructure. In particular, for database optimization it
is recommended to design an experimental setup that resembles
as closely as possible the application for which the database will
be used, such as for example the hardware configuration, the data
distribution, or the workload characteristics.

5 CONCLUSIONS
Benchkarking is a necessary operation in the development and
maintenance of data-centric and simulation-based applications,
and a fundamental step in their optimization. In this work we have
outlined a sequence of experiments to determine an experimental
setup that allows to balance the consistency of the results and the
time necessary to obtain them. We have followed our procedure to
devise an experimental setup for the Cassandra and Elasticsearch
databases, using the YCSB benchmarking tool. We have demon-
strated the usefulness of the setups obtained by optimizing the
parameter configuration of Cassandra with the irace configura-
tor, observing how the experimental setup we obtained makes it
possible to both obtain reliable measurements and to scale the
performance obtained in the optimization process also to heavier
scenarios. Conversely, a more lightweight evaluation setup does
not allow neither to obtain reliable measurements, nor to scale to
more challenging scenarios.

Beyond the basic elements considered in this work, other factors
that impact the performance of a database can be taken into account
when devising an experimental setup beyond the basic ones we
considered, such as for example the distribution of operations to be
performed. Moreover, known constraints and information on the
application for which the database is deployed should be exploited
whenever available, to devise a setup as precise as possible. Our
procedure could also be automated, in order to perform it as an

1620

GECCO ’21 Companion, July 10–14, 2021, Lille, France Silva-Muñoz et al.

autonomous preliminary step in a database optimization applica-
tion. The procedure can also be used as a guideline for devising an
experimental setup for other IT systems.

ACKNOWLEDGMENTS
This work has been partially supported by the CHIST-ERA project
CHIST-ERA-17-BDSI-001 ABIDI “Context-aware and Veracious Big
Data Analytics for Industrial IoT”.

REFERENCES
[1] Veronika Abramova, Jorge Bernardino, and Pedro Furtado. 2014. Evaluating

cassandra scalability with YCSB. In International Conference on Database and
Expert Systems Applications. Springer, 199–207.

[2] Yusuf Abubakar, Thankgod Sani Adeyi, and Ibrahim Gambo Auta. 2014. Perfor-
mance evaluation of NoSQL systems using YCSB in a resource austere environ-
ment. Performance Evaluation 7, 8 (2014), 23–27.

[3] Cassandra Apache. 2021. Cassandra Stress. Website. Available online at
https://cassandra.apache.org/doc/latest/tools/cassandra_stress.html 1 (2021).

[4] Fuad Bajaber, Sherif Sakr, Omar Batarfi, Abdulrahman Altalhi, and Ahmed Bar-
nawi. 2020. Benchmarking big data systems: A survey. Computer Communications
149 (2020), 241–251.

[5] Chaitanya Baru, Milind Bhandarkar, Raghunath Nambiar, Meikel Poess, and
Tilmann Rabl. 2012. Setting the direction for big data benchmark standards. In
Technology Conference on Performance Evaluation and Benchmarking. Springer,
197–208.

[6] Andrzej Białecki, Robert Muir, Grant Ingersoll, and Lucid Imagination. 2012.
Apache lucene 4. In SIGIR workshop on open source information retrieval. 17.

[7] Lin Cai, Yong Qi, Wei Wei, Jinsong Wu, and Jingwei Li. 2019. mrMoulder: A
recommendation-based adaptive parameter tuning approach for big data pro-
cessing platform. Future Generation Computer Systems 93 (2019), 570–582.

[8] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. 2018. Towards better
understanding of black-box auto-tuning: A comparative analysis for storage
systems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). 893–907.

[9] Apache Cassandra. 2014. Apache cassandra. Website. Available online at
https://www.datastax.com/cassandra 13 (2014).

[10] Yu-Chun Chen, Hsiao-Yun Yeh, Jau-ChingWu, Ingo Haschler, Tzeng-Ji Chen, and
Thomas Wetter. 2011. Taiwan’s National Health Insurance Research Database:
administrative health care database as study object in bibliometrics. Scientometrics
86, 2 (2011), 365–380.

[11] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[12] Alejandro Corbellini, Cristian Mateos, Alejandro Zunino, Daniela Godoy, and
Silvia Schiaffino. 2017. Persisting big-data: The NoSQL landscape. Information
Systems 63 (2017), 1–23.

[13] Miyuru Dayarathna and Toyotaro Suzumura. 2012. Xgdbench: A benchmarking
platform for graph stores in exascale clouds. In 4th IEEE International Conference
on Cloud Computing Technology and Science Proceedings. IEEE, 363–370.

[14] Hui Dou, Pengfei Chen, and Zibin Zheng. 2020. Hdconfigor: Automatically
Tuning High Dimensional Configuration Parameters for Log Search Engines.
IEEE Access 8 (apr 2020), 80638–80653.

[15] Elasticsearch. 2021. Rally 2.1.0. Website. Available online at
https://esrally.readthedocs.io/en/stable/index.html 1 (2021).

[16] Adrian Filip, Vadim Doga, Tatiana Poleacov, and Nina Cavcaliuc. 2019. SEPT-
search engine and processing tool (Query DSL). (Sep. 2019).

[17] Alberto Franzin, Raphäel Gyory, Jean-Charles Nadé, Guillaume Aubert, Georges
Klenkle, and Hugues Bersini. 2020. Philéas: Anomaly Detection for IoT Moni-
toring.. In Proceedings of the 32nd Benelux Conference on Artificial Intelligence.
56–70.

[18] Christine Gertosio and Alan Dussauchoy. 2004. Knowledge discovery from
industrial databases. Journal of Intelligent Manufacturing 15, 1 (2004), 29–37.

[19] Clinton Gormley and Zachary Tong. 2015. Elasticsearch: the definitive guide: a
distributed real-time search and analytics engine. O’Reilly Media, Inc.

[20] Gerard Haughian, Rasha Osman, and W. Knottenbelt. 2016. Benchmarking
Replication in Cassandra and MongoDB NoSQL Datastores. In DEXA.

[21] Clive Humby. 2006. Data is the new oil. Proc. ANA Sr. Marketer’s Summit.
Evanston, IL, USA (2006).

[22] Marko Javornik, Nives Nadoh, and Dustin Lange. 2019. Data is the new oil. In
Towards User-Centric Transport in Europe. Springer, 295–308.

[23] Samiya Khan, Xiufeng Liu, Syed Arshad Ali, and Mansaf Alam. 2019. Storage
solutions for big data systems: A qualitative study and comparison. arXiv preprint
arXiv:1904.11498 (2019).

[24] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2018. Learning to optimize join queries with deep reinforcement learning.

arXiv preprint arXiv:1808.03196 (2018), 1–19.
[25] Jörn Kuhlenkamp, Markus Klems, and Oliver Röss. 2014. Benchmarking scal-

ability and elasticity of distributed database systems. Proceedings of the VLDB
Endowment 7, 12 (2014), 1219–1230.

[26] Latrice G Landry, Nadya Ali, David R Williams, Heidi L Rehm, and Vence L
Bonham. 2018. Lack of diversity in genomic databases is a barrier to translating
precision medicine research into practice. Health Affairs 37, 5 (2018), 780–785.

[27] Mingyu Li, Zhiqiang Liu, Xuanhua Shi, and Hai Jin. 2020. ATCS: Auto-Tuning
Configurations of Big Data Frameworks Based on Generative Adversarial Nets.
IEEE Access 8 (2020), 50485–50496.

[28] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas
Stützle, and Mauro Birattari. 2016. The irace package: Iterated Racing for
Automatic Algorithm Configuration. Operations Research Perspectives 3 (2016),
43–58. https://doi.org/10.1016/j.orp.2016.09.002

[29] Jiaheng Lu, Yuxing Chen, Herodotos Herodotou, and Shivnath Babu. 2019.
Speedup your analytics: Automatic parameter tuning for databases and big data
systems. Proceedings of the VLDB Endowment 12, 12 (2019), 1970–1973.

[30] Divya Mahajan, Cody Blakeney, and Ziliang Zong. 2019. Improving the energy
efficiency of relational and NoSQL databases via query optimizations. Sustainable
Computing: Informatics and Systems 22 (2019), 120–133.

[31] Ashraf Mahgoub, Sachandhan Ganesh, Folker Meyer, Ananth Grama, and Somali
Chaterji. 2017. Suitability of nosql systems—cassandra and scylladb—for iot
workloads. In 2017 9th International Conference on Communication Systems and
Networks (COMSNETS). IEEE, 476–479.

[32] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolfgang Ger-
lach, Travis Harrison, Folker Meyer, Ananth Grama, Saurabh Bagchi, and Somali
Chaterji. 2017. Rafiki: a middleware for parameter tuning of nosql datastores for
dynamic metagenomics workloads. In Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference. 28–40.

[33] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López,
Garth Gibson, Adam Fuchs, and Billie Rinaldi. 2011. Ycsb++ benchmarking and
performance debugging advanced features in scalable table stores. In Proceedings
of the 2nd ACM Symposium on Cloud Computing. 1–14.

[34] Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Mühleisen. 2018. Fair
benchmarking considered difficult: Common pitfalls in database performance
testing. In Proceedings of the Workshop on Testing Database Systems. 1–6.

[35] Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique, and Wouter Joosen. 2017.
On the state of nosql benchmarks. In Proceedings of the 8th ACM/SPEC on Inter-
national Conference on Performance Engineering Companion. 107–112.

[36] Moisés Silva-Muñoz, Alberto Franzin, and Hugues Bersini. 2021. Automatic
configuration of the Cassandra database using irace. (2021). Under review.

[37] Moisés Silva-Muñoz, Alberto Franzin, and Hugues Bersini. 2020. Supplementaty
Material for: Automatic configuration of the Cassandra database using irace.
http://iridia.ulb.ac.be/supp/IridiaSupp2020-014.

[38] Mohamad Sobhie. 2019. Tuning of Elasticsearch Configuration-Parameter Opti-
mization Through Simultaneous Perturbation Stochastic Approximation Algorithm.
Master’s thesis.

[39] Surya Narayanan Swaminathan and Ramez Elmasri. 2016. Quantitative analysis
of scalable NoSQL databases. In 2016 IEEE International Congress on Big Data
(BigData Congress). IEEE, 323–326.

[40] Transaction Processing Performance Council TPC. 2010. TPC BENCHMARK™E.
(2010).

[41] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM International Conference on Management
of Data. 1009–1024.

[42] Guoxi Wang and Jianfeng Tang. 2012. The nosql principles and basic application
of cassandra model. In 2012 international conference on computer science and
service system. IEEE, 1332–1335.

[43] Huajin Wang, Jianhui Li, Haiming Zhang, and Yuanchun Zhou. 2014. Bench-
marking replication and consistency strategies in cloud serving databases: Hbase
and cassandra. InWorkshop on Big Data Benchmarks, Performance Optimization,
and Emerging Hardware. Springer, 71–82.

[44] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic
cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 International Conference on Management of Data. 415–432.

[45] Conghuan Zheng, Zuohua Ding, and Jueliang Hu. 2014. Self-tuning performance
of database systemswith neural network. In International Conference on Intelligent
Computing. Springer, 1–12.

[46] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2020. Database Meets
Artificial Intelligence: A Survey. IEEE Transactions on Knowledge and Data
Engineering (2020).

[47] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. Bestconfig: tapping the perfor-
mance potential of systems via automatic configuration tuning. In Proceedings of
the 2017 Symposium on Cloud Computing. 338–350.

1621

https://doi.org/10.1016/j.orp.2016.09.002
http://iridia.ulb.ac.be/supp/IridiaSupp2020-014

	Abstract
	1 Introduction
	2 Related works
	3 Material and method
	3.1 Cassandra
	3.2 Elasticsearch
	3.3 YCSB
	3.4 Experimental procedure

	4 Experimental results
	4.1 Experimental setup for Cassandra
	4.2 Experimental setup for Elasticsearch
	4.3 Discussion

	5 Conclusions
	References

