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ABSTRACT
Reinforcement learning (RL) is experiencing a resurgence in re-
search interest, where Learning Classifier Systems (LCSs) have been
applied for many years. However, traditional Michigan approaches
tend to evolve large rule bases that are difficult to interpret or scale
to domains beyond standard mazes. A Pittsburgh Genetic Fuzzy
System (dubbed Fuzzy MoCoCo) is proposed that utilises both mul-
tiobjective and cooperative coevolutionary mechanisms to evolve
fuzzy rule-based policies for RL environments. Multiobjectivity in
the system is concerned with policy performance vs. complexity.
The continuous state RL environment Mountain Car is used as a
testing bed for the proposed system. Results show the system is
able to effectively explore the trade-off between policy performance
and complexity, and learn interpretable, high-performing policies
that use as few rules as possible.
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1 INTRODUCTION
Genetics-Based Machine Learning (GBML) [13] has a long history
of being applied to reinforcement learning (RL) problems where
new methods are needed to take advantage of the renewed interest
in such domains. Genetic Fuzzy Systems (GFSs) [5] are a type of
GBML that aim to evolve fuzzy rule-based systems (FRBSs). Also
under the umbrella of GBML, Learning Classifier Systems (LCSs)
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are a family of evolutionary rule-based systems that create solutions
to machine learning problems.

Within both families, there are two broad types of systems that
represent different ways to solve a problem: the Michigan and
Pittsburgh approaches. Both approaches utilise population-based
evolutionary mechanisms. In a Michigan system, each individual
in the population is an element of the solution; all individuals act
in ensemble to create the entire solution. In contrast, a Pittsburgh
system treats each individual in the population as an entire solution
to the problem [5, 23]. Within GFSs, a wide array of works have
focused on the Pittsburgh approach [5, 8], while in the LCS literature
the predominant paradigm is Michigan [23].

Both LCSs and GFSs can be applied to RL problems. LCSs were
originally designed to perform RL, and much work has been done
in this area already, particularly in maze-like environments, e.g.
[14, 16]. In contrast, most GFSwork has focused on supervised learn-
ing: classification or regression [8], with some work being done
on “control” problems, e.g. [9]. However, such control problems are
often not formulated under the RL framework; this framework pre-
scribes problems that are multi-step, involve delayed rewards, and
are characterised by two fundamental issues: the explore-exploit
dilemma and temporal credit assignment. Michigan and Pittsburgh
systems address these issues at different levels of abstraction. Michi-
gan systems learn in an online fashion, and they address both issues
at the level of individual state-action pairs within a stream of ex-
perience. Particularly in problems where exploration is difficult
and/or reward signals are sparse, this can be difficult to achieve. On
the other hand, Pittsburgh systems assign credit to entire solutions,
and address the explore-exploit problem in the more abstract policy
parameter space.

Generally, there is a lack of work applying LCSs to common
environments from the RL literature that are not maze-like, e.g.
Mountain Car or Cart Pole [21], an exception being [20]. Such envi-
ronments often have continuous state spaces. Since LCSs prescribe
a paradigm of learning rather than a specific algorithm, they enable
the representation of rule conditions to be flexibly chosen to suit
the problem domain. For continuous domains, there are a variety of
choices available, some examples being hyperrectangles [16], hyper-
ellipsoids [2], and fuzzy logic [24]. Fuzzy logic attempts to perform
inference in a way that better emulates how a human expert may
solve a problem by including degrees of truth rather than absolute
values. It is an attractive representation to use if the purpose of the
system is to produce a human-understandable explanation of how
a problem is solved.

An issue for both LCSs and GFSs is how to deal with the complex-
ity of rule bases that are evolved in order to prefer parsimonious
(low complexity) models. In the Michigan approach, a post hoc
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compaction mechanism is often employed to remove rules that
do not contribute much to the solution [23]. In contrast, more op-
tions are available for Pittsburgh systems, some being: i) limiting
the size of candidate solutions, ii) employing fitness penalisation
based on complexity ([1] is an approach that uses the Minimum De-
scription Length principle in this manner), iii) multiobjective (MO)
formulation of solution performance vs. complexity [11, 15]. The
third strategy is particularly attractive if the practitioner desires
to understand the trade-off between performance and complexity;
and to understand how many rules are needed to achieve a given
performance value.

Therefore, the first objective of this work is to address an RL
problem that incorporates both i) difficult exploration, and ii) a con-
tinuous state space (a candidate is Mountain Car, see justification
Section 4). Objective two is to understand the trade-off between
rule base complexity and performance, through employing a Pitts-
burgh GFS that performs MO optimisation of FRBSs. Finally, since
an FRBS can be naturally decomposed into a rule base (RB) and
a data base (DB) (see Section 2.2.1), the third objective is to show
that cooperative coevolution (CoCo) can be employed to jointly
optimise the RB and DB. Thus, the overall aim of this work is to
develop a Pittsburgh GFS that utilises CoCo and MO mechanisms
to produce parsimonious and interpretable policies for RL problems.
As a proof of concept, we show that this system is able to produce
compact and interpretable policies for the Mountain Car problem.

2 BACKGROUND
2.1 Reinforcement Learning
In RL, an agent interacts with an (episodic) environment E to max-
imise the expected amount of cumulative reward it receives. Let
E = (𝑆,𝐴, 𝑃, 𝑅,𝛾, 𝑡max), where 𝑆 is the state space, 𝐴 is the action
space, 𝑃 (𝑠 ′ |𝑠, 𝑎) is the transition function, 𝑅(𝑠, 𝑎, 𝑠 ′) is the reward
function, 0 ≤ 𝛾 ≤ 1 is the discount factor, and 𝑡max is the maxi-
mum number of episode time steps [21]. In this work, we assume
𝑆 is continuous and 𝐴 is discrete. The agent takes the form of a
policy, which is a mapping 𝜋 : 𝑆 → 𝐴. A common way to address
RL problems is for the agent to construct an action-value function
𝑄 : 𝑆 ×𝐴 → R which represents the expected cumulative reward
obtainable from each state-action pair. A policy can then be con-
structed by acting greedily with respect to 𝑄 . This is the approach
followed by Michigan systems.

An alternative way to address the problem is to treat the en-
vironment as a black box and perform direct policy search; an ap-
proach taken by Pittsburgh systems. In this view, the agent receives
feedback about its performance via a collective sum of discounted
rewards, termed the return:𝐺 [21]. The task is to construct a policy
that directly maximises the expected return, without decomposing
the return into individual rewards. The expected return (perfor-
mance) of a policy is measured over a set of initial states 𝑍 of
cardinality 𝜂 drawn from an initial state space 𝑆𝐼 ⊆ 𝑆 . Using this
formulation, the performance of a policy, abbreviated perf, can be
measured as:

perf =
1
𝜂

∑
𝑧∈𝑍

𝐺 (𝑧) (1)

where 𝐺 (𝑧) is the return yielded by performing a rollout of the
policy, starting at initial state 𝑧.

2.2 Fuzzy Rule-Based Systems
We use the following terminology when discussing aspects of fuzzy
reasoning: Linguistic variable — analogous to an environmental
feature; includes both the name of the feature and a fuzzy partition
along its domain. A fuzzy partition is composed of multiple fuzzy
sets. Fuzzy set — defined by a membership function along the do-
main of a linguistic variable; has an associated name or linguistic
value to linguistically describe the set [5].

2.2.1 FRBS Structure. The specific FRBS type considered is a
zero-order Takagi-Sugeno-Kang system [22]. The FRBS is composed
of two components, that together form the knowledge base: the rule
base (RB) and data base (DB) [5]. The rule base contains the fuzzy
rules that act in the context of the fuzzy partitions contained in the
DB. In the RB, we use fuzzy rules that are individually expressed in
Conjunctive Normal Form (CNF) [5]. Assuming the dimensionality
of 𝑆 is 𝑑 and there are 𝑘 possible actions (|𝐴| = 𝑘), each rule has the
structure:

IF 𝑥1 is 𝐿1 = {𝐿(1,1) or . . . or 𝐿(1,𝑚1) } and . . .

and 𝑥𝑑 is 𝐿𝑑 = {𝐿(𝑑,1) or . . . or 𝐿(𝑑,𝑚𝑑 ) }
THEN 𝑦1 = 𝛼1, . . . , 𝑦𝑘 = 𝛼𝑘

where, for 𝑖 ∈ {1, . . . , 𝑑}:
• 𝑥1, . . . , 𝑥𝑑 — components of input vector 𝑥 ; linguistic vari-
ables

• 𝑚𝑖 — num. linguistic values belonging to 𝑖𝑡ℎ linguistic vari-
able

• 𝐿(𝑖, 𝑗) , 𝑗 ∈ {1, . . . ,𝑚𝑖 } — 𝑗𝑡ℎ linguistic value of 𝑖𝑡ℎ linguistic
variable

• 𝐿𝑖 — non-empty set of linguistic values for 𝑖𝑡ℎ linguistic
variable

• 𝑦1, . . . , 𝑦𝑘 — components of consequent vector 𝑦
• 𝛼1, . . . , 𝛼𝑘 — voting weights for each action in consequent

𝛼1, . . . , 𝛼𝑘 are constrained to be either 0 (inactive) or 1 (active),
with exactly one weight active in every rule, all others inactive,
i.e. a one-hot encoding. Such a scheme represents each rule voting
(fully) for a single action in its consequent. When writing rule
consequents we simply specify the action whose weight is active
(𝑎 𝑖𝑠 𝑘). This type of rule allows for flexible levels of generalisation.
Selecting all linguistic values of a linguistic variable is equivalent to
a “don’t care”, denoted by #. Note that it is not possible to select zero
linguistic values; as stated above the set of linguistic values must
be non-empty. As an example, assuming that 𝑑 = 2, 𝑘 = 2, 𝑚1 =

𝑚2 = 3, the following CNF rule generalises partially over the first
feature and fully over the second feature:

IF 𝑥1 is {𝐿(1,1) or 𝐿(1,2) } and 𝑥2 is # THEN 𝑎 is 2
and can be encoded using GABIL encoding [6] as: 110|111|2, where
each clause of the antecedent is a binary mask, followed by the
action to vote for, separated by vertical bars. In the inference engine
of the FRBS, we use 𝑓and = min for conjunction (ANDing) and
𝑓or = max for disjunction (ORing) of membership values. Let 𝑛 be
the number of rules in the RB. Given an input vector ®𝑥 , a voting
strength 𝑔𝑎 is calculated for each 𝑎 ∈ 𝐴 via:

𝑔𝑎 ( ®𝑥) =
∑𝑛

𝑖=1 𝑦 (𝑖,𝑎) · 𝜏𝑖 ( ®𝑥)∑𝑛
𝑖=1 𝜏𝑖 ( ®𝑥)

where 𝑦 (𝑖,𝑎) is the voting weight for action 𝑎 in the consequent of
the 𝑖𝑡ℎ rule, and 𝜏𝑖 (𝑠) is the overall antecedent truth value (rule
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firing strength) of the 𝑖𝑡ℎ rule in the context of ®𝑥 ; calculated through
application of 𝑓or and 𝑓and to the membership values computed in
the rule antecedent. The action to select is then determined via:

action = argmax
𝑎∈𝐴

𝑔𝑎 ( ®𝑥)

2.2.2 Measuring FRBS Complexity. There are many possible
ways to measure the complexity of an FRBS, including: number of
rules in the RB, longest antecedent of any rule in the RB [11]. We
choose an option that is based on the number of “decision points”
represented in the system. For a 𝑑-dimensional feature space, let a
fuzzy subspace be defined as the intersection of 𝑑 fuzzy sets over
the features:

(
𝐿(1, 𝑗) ∩ . . . ∩ 𝐿(𝑑,𝑗)

)
, 𝑖 ∈ {1, . . . , 𝑑}, 𝑗 ∈ {1, . . . ,𝑚𝑖 }.

Such an intersection of fuzzy sets represents an elementary fuzzy
rule that is only capable of representing conjunctions, i.e. a single
decision point in feature space. A CNF rule represents possibly
many elementary rules, because disjunctions in such a rule repre-
sent generalisations over fuzzy subspaces. For an RB containing 𝑛
CNF rules, if the number of linguistic values specified in the 𝑗𝑡ℎ

clause of the 𝑖𝑡ℎ rule’s antecedent is given by 𝑙 (𝑖, 𝑗) , then the total
number of decision points embodied in the RB is:

complexity =

𝑛∑
𝑖=1

𝑑∏
𝑗=1

𝑙 (𝑖, 𝑗) (2)

This is the measure of complexity that we use for an RB. The com-
plexity of the overall FRBS is equal to the complexity of its RB.

3 RELATEDWORK
Many of the ideas required in this work have been considered
previously in small combinations and in non-RL domains. The
cooperative coevolution architecture originally described in [19]
has been adopted by GFSs to jointly evolve FRBS components,
where one population (species) is dedicated to RBs and the other to
DBs. For example, Fuzzy CoCo [18] used this architecture to address
the well-known classification problem of Wisconsin Breast Cancer
Diagnosis. This particular system employed a fitness penalty for
RB complexity, and so did not utilise multiobjectivity. However, it
was able to evolve compact and interpretable FRBSs to address the
problem, and it set a strong example for how CoCo could be used
within a GFS.

A number of Pittsburgh GFSs have been designed to use MO
mechanisms according to a survey conducted by Ishibuchi [11]. An
apposite example is the work of Ishibuchi et al. [12], where an MO
evolutionary algorithm evolves FRBSs to address various classifica-
tion problems; finding trade-offs between three objective functions:
i) maximise classification accuracy, ii) minimise the number of fuzzy
rules, iii) minimise the total number of fuzzy rule antecedent con-
ditions. These ideas need development to RL domains, especially
adapting to credit assignment in multi-step problems.

In the broader evolutionary computation context, MO and CoCo
have also been combined in a single system, such as in the work of
Iorio and Li [10]. The validity of this system was demonstrated on a
number of benchmark function optimisation problems, but not yet
RL. Peripherally related work includes Michigan style LCSs that
use fuzzy logic rule representations, such as the Fuzzy Classifier
System in [24] and Fuzzy-XCS in [3]. The former was applied to
multi-step control problems (true RL), while the latter was only

applied to single-step problems (function approximation and robot
control). What is missing in all of these works is the combination
of CoCo, MO, and FRBSs to address multi-step RL problems, and
the intention of our work is to make a first attempt at addressing
this gap.

4 MOUNTAIN CAR ENVIRONMENT
In Mountain Car (MC), the agent must push a car out of a valley
to the top of a mountain, as shown in the top plot of Figure 4.
State features are the position of the car on the horizontal axis:
𝑥 ∈ [−1.2, 0.5], and the horizontal component of the car’s velocity:
¤𝑥 ∈ [−0.07, 0.07]. 𝐴 = {1, 2}, representing push car 1: Left or 2:
Right. 𝑅 yields −1 at every time step, with 𝑡max = 200. Discounting
is not used (effectively 𝛾 = 1). The goal is reached when 𝑥 ≥ 0.5. Let
𝑆𝐼 = {[−0.6,−0.4], 0} with 𝑍 constructed by sampling uniformly at
random from 𝑆𝐼 , such that the agent starts around the bottom of the
valley with zero velocity. 𝜂 = 30, with samples being drawn from 𝑆𝐼
using a fixed RNG seed, such that all performance evaluations use
the same initial states. These initial conditions make exploration
difficult; if learning online (Michigan approach), the agent must
somehow explore to the goal in order to learn how to escape the
valley, then reinforce this path over time. In contrast, Pittsburgh
approaches may find the task easier if they are able to construct
coherent policies that escape the valley, then improve them over
successive generations.

The minimum possible performance of a policy in MC is −200,
indicating all 𝜂 rollouts were unable to reach the goal within 𝑡max
steps. To calculate an upper bound on performance, we obtained a
policy that was approximately optimal, and calculated the expected
return achieved by it. To find this policy, we performed value itera-
tion on a finely discretised version of MC (1000 bins per feature),
yielding an approximately optimal action-value function 𝑄 , then
constructed an approximately optimal policy 𝜋 by querying 𝑄 for
each discretised state. The performance of 𝜋 was −96 (rounded up
to nearest integer).

5 COOPERATION AND SUBSPECIATION
As previously mentioned, natural decomposition of an FRBS leads
to the concept of a DB cooperating with an RB. We evolve FRBSs
where both the DB and RB are subject to adaptation via a CoCo
algorithm where one population represents DBs and the other RBs.
These populations are termed species [19]. We choose to label the
DB species as the first population and the RB species as the second
population, and for the remainder of this section refer to them as
𝑂1 and 𝑂2 respectively.

In implementing this CoCo paradigm we must primarily ask:
what kinds of structures are the two species searching over, and why?
A related secondary question is: how are individuals of each species
genetically encoded? An answer to the primary question has to take
into account the goal of the evolutionary process. In our case, we
are performing an MO search over performance and complexity
of FRBSs. Since the performance of an FRBS is governed by its
interaction with the environment (and is outside of our control),
diversity in this objective is a natural consequence of searching
over many possible FRBSs of varying complexity. Therefore, there
must be mechanisms built into the evolutionary process to support
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diversity in FRBS complexity. To achieve this, and to provide an
answer to the primary question, we include a niching mechanism
in our algorithm in the form of subspecies. Since each population
represents a species, a subspecies is a subpopulation.

To explain exactly what a subspecies is, and how it works in
our CoCo paradigm, we have to begin to answer the secondary
question posited above: how are individuals of each species geneti-
cally encoded? Let idv1 ∈ 𝑂1 be a DB and idv2 ∈ 𝑂2 be an RB. In
order to form a solution, idv1 must cooperate with idv2; however,
it must actually be possible for these individuals to form a valid
FRBS. For example, assuming 𝑑 = 2, let there be an idv1 for which
𝑚1 = 𝑚2 = 2, i.e. two fuzzy sets defined on each feature. Next,
assume there is an idv2 containing the following rule:

IF 𝑥1 is 𝐿(1,1) and 𝑥2 is 𝐿(2,3) THEN . . .

idv2 does not make sense in the context of idv1 because there is no
fuzzy set 𝐿(2,3) defined in idv1; therefore cooperation cannot occur.
There must be a mechanism in the algorithm to prevent situations
like this from occurring.

To accomplish this, each individual in both populations is as-
signed a (non-alterable) subspecies tag 𝜎 from a set of possible
subspecies tags Σ, that indicates what subspecies it belongs to. A
subspecies tag is a tuple of 𝑑 integers each ≥ 2 representing the
number of fuzzy sets defined on each of the 𝑑 feature domains (at
least two on each). For example, the subspecies tag of idv1 from
the previous example is (2, 2). The subspecies tag determines the
granularity of the fuzzy partitions over the feature space. Within
each possible level of granularity, many levels of RB complexity
are possible, as we explain in Section 5.2. For a given problem, this
setup allows the evolutionary process to produce FRBSs with appro-
priate granularity and complexity to address the problem. Diversity
in granularity drives diversity in complexity, which enables diver-
sity in performance; thus subspeciation is a critical mechanism
in our MO search. Subspecies tags are primarily used to coordi-
nate cooperation between individuals of both species. Let idv.𝜎
denote the subspecies tag of idv. Cooperation is restricted to be per-
formed intra-subspecies, such that idv1 and idv2 can only cooperate
if idv1 .𝜎 = idv2 .𝜎 .

To genetically represent individuals of a given subspecies, we
use a fixed-length positional vector encoding, where the length of
an individual’s genotype is dependent on its subspecies tag. For
individuals in 𝑂1, the genotype encodes “reference coordinates”
along each feature domain that are used to construct fuzzy sets,
as described in Section 5.1. For individuals in 𝑂2, the genotype
encodes the advocation of actions in fuzzy subspaces, as detailed
in Section 5.2.

5.1 DB Genetic Representation
For an individual idv ∈ 𝑂1, each element 𝜎𝑖 of idv.𝜎 represents the
number of fuzzy sets used to partition feature 𝑖 . To encode𝑚 = 𝜎𝑖
fuzzy sets,𝑚 values are required, as explained below. Therefore,
the length of such an individual’s genotype is given by:

𝜆1 (𝜎) =
𝑑∑
𝑖=1

𝜎𝑖 (3)

1

0

0.5

D
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e 
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Figure 1: Example decoding of alleles from a DB individual
over a single feature domain to produce fuzzy sets.

Since the genotype is a vector, its genes can be logically split
into sections that are responsible for a specific feature. Alleles in
the genotype are real numbers in the range [0, 1]. Figure 1 depicts
an example of genotype decoding for an individual in 𝑂1, on a
single feature domain [𝑓min, 𝑓max]. This process is repeated with
the appropriate alleles for each feature domain to create fuzzy sets
for all linguistic variables. Applicable alleles in this example are
( 34 ,

1
2 ,

2
3 ), shown in orange at the bottom of the figure. Since there

are three alleles, three fuzzy sets are constructed along the domain;
𝑚 = 3. The outer two fuzzy sets on the extremes of the domain are
trapezoidal in shape and the inner fuzzy set is triangular in shape.
In general, for𝑚 = 2 there is no inner triangular fuzzy set and for
𝑚 ≥ 4, there are multiple inner triangular fuzzy sets.

First, the domain is split into𝑚 equal width subdomains. Next,
a fraction 𝜔 of the center of each subdomain is marked as a valid
region (shaded green, red areas are invalid). We set 𝜔 = 0.75, i.e.
75% of the middle of each subdomain is valid, 12.5% on each side
(remaining 25%) is invalid. Each allele specifies a relative fraction
of the width of the valid region — measuring from the left hand side
of the region — at which a “reference coordinate” is placed along
the domain.𝑚 reference coordinates 𝑟1, . . . , 𝑟𝑚 are placed, shown
in orange at the top of the figure.

Using these reference coordinates, lines are drawn to construct
the fuzzy sets. To construct the outer two trapezoidal fuzzy sets,
lines are drawn between the following pairs of points:(

(𝑓min, 1), (𝑟1, 1)
)
,
(
(𝑟1, 1), (𝑟2, 0)

)
,
(
(𝑟𝑚−1, 0), (𝑟𝑚, 1)

)
,(

(𝑟𝑚, 1), (𝑓max, 1)
)

which correspond to lines 𝑙1, 𝑙2, 𝑙5, 𝑙6 in our example. Next, lines
for the inner triangular membership functions are created: for
𝑟𝑖 , 𝑖 ∈ {2, . . . ,𝑚 − 1}, lines are drawn from the point (𝑟𝑖 , 1) to
points (𝑟𝑖−1, 0) (positive gradient) and (𝑟𝑖+1, 0) (negative gradient),
corresponding to lines 𝑙3, 𝑙4 in our example. Because of the concept
of valid/invalid regions, this construction process has the desirable
property of ensuring that there is a minimum amount of separation
between neighbouring fuzzy sets, which reduces overlap and aids
linguistic distinguishability [5].

5.2 RB Genetic Representation
An individual idv2 ∈ 𝑂2 must operate in the context of fuzzy sets
specified by an individual idv1 ∈ 𝑂1. Because of this, there are only
a certain number of fuzzy subspaces in which idv2 can advocate
actions. The number of fuzzy subspaces is the number of possible
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fuzzy set intersections, i.e. the product of the number of fuzzy sets
defined on each feature dimension. The length of idv2’s genotype
is given by this number:

𝜆2 (𝜎) =
𝑑∏
𝑖=1

𝜎𝑖 (4)

Expressed as a vector, the genes in the genotype are ordered in the
same order as nested for-loops over the fuzzy intersections, e.g. for
𝑑 = 2,𝑚1 = 3,𝑚2 = 2, the genotype is of length six with genes
specifying the following fuzzy subspaces:(

𝐿(1,1) ∩ 𝐿(2,1)
)
,
(
𝐿(1,1) ∩ 𝐿(2,2)

)
,
(
𝐿(1,2) ∩ 𝐿(2,1)

)
,(

𝐿(1,2) ∩ 𝐿(2,2)
)
,
(
𝐿(1,3) ∩ 𝐿(2,1)

)
,
(
𝐿(1,3) ∩ 𝐿(2,2)

)
Each gene has alleles from the set: 𝐴 ∪ {0}, which select the ac-
tion to advocate in the fuzzy subspace. The alleles from 𝐴 are self-
explanatory, but the 0 allele signifies that no action is specified, the
fuzzy subspace is ignored. Thus, it is possible for an RB genotype
to be under-specified in that actions do not have to be advocated
in all fuzzy subspaces. Subspaces with a 0 allele are said to be un-
specified, else they are specified. The possible underspecification of
an RB is how different levels of complexity are achieved. This has
important implications for measuring the performance of an FRBS,
as we expand on in Section 6.

This genetic encoding represents a set of elementary fuzzy rules
that only allow conjunction of fuzzy sets (c.f. Section 2.2.2). How-
ever, since we actually use CNF fuzzy rules in the RB phenotype,
there is a mechanism tomerge fuzzy rules together during genotype
decoding in order to create CNF rules where commonalities are
“factored out”. A merge creates a disjunction that generalises over
multiple fuzzy subspaces, and occurs when the binary encodings
of two rules share the same bits in all but one clause — the dif-
fering clause creates the disjunction. This process is very similar
to how a Karnaugh map is constructed for simplifying Boolean
expressions. For example, using the same format of genotype as
above and given the following specification of linguistic variables
and their corresponding linguistic values:

𝑥1 : {𝐿(1,1) : L, 𝐿(1,2) : M, 𝐿(1,3) : H}, 𝑥2 : {𝐿(2,1) : L, 𝐿(2,2) : H}

0 1 1

2 1 2L

H

L M H

(1): Construct
elementary fuzzy rules

in genotypic order

(2): Group
rules by
action

(3): Merge rules in
order, one at a

time, in each group (4): Repeat
while more

merges
possible

(0): Input genotype

(5): Output CNF
fuzzy rules

Figure 2: Example decoding of an RB genotype to produce a
phenotype of CNF fuzzy rules.

Figure 2 depicts how the genotype < 2, 0, 1, 1, 2, 1 > is decoded
into a phenotype of CNF fuzzy rules. Note that in this example,
only one application of step (3) is necessary, but in general step (3)
may need to be repeated multiple times. Also note that the order
of merging in step (3) is fixed; given our example rule 𝐵 would
always be merged with rule 𝐶 , and it is not possible for rule 𝐶 to
be merged with rule 𝐸 (even though this would result in an equally
valid CNF rule).

Why use this encoding; why not just encode CNF rules directly?
There are two good reasons: it is impossible to have rules that
are over-specified in the sense of being either i) redundant, or ii)
contradictory, since at most one action can be specified in every
fuzzy subspace. Redundancy occurs when two rules 𝐴 and 𝐵 share
the same consequent but rule 𝐴 has an antecedent that logically
subsumes 𝐵’s. Contradictions occur when𝐴 and 𝐵 specify common
fuzzy subspace(s) in their antecedents but their consequents differ
[5]. Both of these situations are problematic, contradictions more so
than redundancies. There has been much attention in the literature
on how to deal with these situations; some approaches allow them
to genetically manifest and phenotypically deal with them via a
conflict resolution procedure when evaluating the rule set, others
employ corrections in genotype space to remove them if they occur
[4]. We take the approach of making them unable to occur.

5.3 Complexity Bounds
In Section 2.2.2 we defined how the complexity of an RB of CNF
rules is (phenotypically) calculated. However, given the RB geno-
type to phenotype decoding example shown in Figure 2, it is ap-
parent that RB complexity can be measured genotypically as the
number of specified alleles in the RB genotype. In the example, the
number of specified alleles in the genotype is 5, which is exactly
the complexity of the RB of CNF rules: applying Equation 2 gives
1 × 1 = 1 for rule E, 1 × 1 = 1 for rule F, 2 × 1 = 2 for rule G,
1 + 1 + 2 = 5 total. Therefore we actually measure RB complexity
genotypically.

We use the following bounds for complexity: minimum com-
plexity for any RB genotype is equal to 𝑘 (number of actions in
𝐴), meaning we give each RB the opportunity to advocate at least
one rule for each possible action. Maximum complexity is equal to
the maximum possible number of specified alleles for any RB geno-
type, equivalent to the length of the longest genotype of any RB
subspecies.

6 FUZZY MOCOCO
We now present our algorithm for performing multiobjective co-
operative coevolution of FRBSs. Our algorithm most closely re-
sembles the system used in [10], in that it uses the same over-
arching framework for integrating the cooperative coevolution-
ary mechanisms from CCGA [19] with the Pareto multiobjective
and elitist features of NSGA-II [7]. Algorithm 1 presents a top-
level overview of our algorithm: Fuzzy MoCoCo (Multiobjective
Cooperative Coevolution). Algorithms 2–7 detail the main func-
tions used in Algorithm 1. In these algorithms and for the remainder
of this paper, the following notation is used:

• 𝛿 — a probability mass function (PMF) over subspecies tags
• 𝑃 — a parent population
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• 𝑄 — a child population
• 𝑅 — a combined parent and child population
• 𝑂 — a population: used in a general sense when any of
(𝑃,𝑄, 𝑅) could be expected

• 𝑂𝑖 , 𝑖 ∈ {1, 2} — the 𝑖𝑡ℎ population
• 𝑂𝜎 , 𝜎 ∈ Σ — a subpopulation; individuals in 𝑂 with sub-
species tag 𝜎

• 𝑂𝜎
𝑖
— a subpopulation of the 𝑖𝑡ℎ population

• 𝑆 — a set of solutions (FRBSs)
• ≺cc – NSGA-II crowded comparison operator; partial order-
ing based on (Pareto front rank, crowding distance) pairs

Algorithm 1: Fuzzy MoCoCo

Input: E, Σ
1 𝛿1, 𝛿2 = makeSubspeciesDists(Σ)
2 𝑃1 = initDBPop(𝛿1)
3 𝑃2 = initRBPop(𝛿2)
4 𝑄1 = ∅
5 𝑄2 = ∅
6 gen = 0
7 while gen < numGens do
8 𝜒 = buildCollabrMap(𝑃1, 𝑃2, Σ, 𝑔𝑒𝑛)
9 if gen == 0 then
10 𝑆 = buildSolnSet(𝑃1, 𝑃2, Σ, 𝜒)
11 evalSolnSet(𝑆, E)
12 assignIndivsCredit(𝑃1, 𝑆)
13 assignIndivsCredit(𝑃2, 𝑆)
14 else
15 𝑆 = buildSolnSet(𝑄1, 𝑄2, Σ, 𝜒)
16 evalSolnSet(𝑆, E)
17 assignIndivsCredit(𝑄1, 𝑆)
18 assignIndivsCredit(𝑄2, 𝑆)
19 𝑅1 = 𝑃1 ∪𝑄1
20 𝑅2 = 𝑃2 ∪𝑄2
21 𝑃1 = archiveParentPop(𝑅1, 𝛿1, |𝑃1 |)
22 𝑃2 = archiveParentPop(𝑅2, 𝛿2, |𝑃2 |)
23 𝑄1 = breedChildren(𝑃1, 𝛿1)
24 𝑄2 = breedChildren(𝑃2, 𝛿2)
25 gen = gen + 1
26 return (𝑅1, 𝑅2, 𝑆)

Algorithm 2: buildCollabrMap
Input: 𝑃1, 𝑃2, Σ, gen

1 𝜒 = empty mapping of subpop specification pairs to indivs
2 for (𝑖, 𝜎) ∈ ({1, 2} × Σ) do
3 𝜒 [(𝑖, 𝜎)] = selectCollabrs(𝑃𝜎

𝑖
, gen)

4 return 𝜒

As input to Algorithm 1, E and Σ must be specified. The main
generational loop of Algorithm 1 can be split into two phases: the
top half (lines 8–18, evaluation phase) builds solutions via coop-
eration, evaluates these solutions in the MO space, then assigns
credit (objective values) to individuals based on their participation.
The second half (lines 19–24, reproductive phase) archives the best

Algorithm 3: buildSolnSet
Input: 𝑂1,𝑂2, Σ, 𝜒

1 𝑆 = ∅
2 popNums = {1, 2}
3 for (𝑖, 𝜎) ∈ (popNums × Σ) do
4 subpop = 𝑂𝜎

𝑖

5 𝑗 = opposite of 𝑖 in popNums
6 collbars = 𝜒 [( 𝑗, 𝜎)]
7 for (idv, collabr) ∈ (subpop × collabrs) do
8 soln = makeFRBS(idv, collabr)
9 𝑆 = 𝑆 ∪ {soln}

10 return 𝑆

Algorithm 4: evalSolnSet
Input: 𝑆, E

1 for soln ∈ 𝑆 do
2 soln.perf = calcPerformance(soln, E)
3 soln.comp = calcComplexity(soln)
4 assignParetoFrontRanks(𝑆)
5 assignCrowdingDists(𝑆)

Algorithm 5: assignIndivsCredit
Input: 𝑂, 𝑆

1 for idv ∈ 𝑂 do
2 𝐶 = set of solns in 𝑆 that contain idv as a component
3 𝐶 ′ = crowdedComparisonSort(𝐶)
4 best = first soln in 𝐶 ′

5 idv.perf = best.perf
6 idv.comp = best.comp

Algorithm 6: archiveParentPop
Input: 𝑅, 𝛿, numParents

1 𝑅′ = copy of 𝑅
2 𝑃 = ∅
3 while |𝑃 | < numParents do
4 𝜎 = draw sample from 𝛿

5 subpop = 𝑅′𝜎

6 if subpop not empty then
7 𝐶 = crowdedComparisonSort(subpop)
8 best = first soln in 𝐶
9 𝑅′ = 𝑅′ − best

10 𝑃 = 𝑃 ∪ {best}
11 return 𝑃

solutions found so far, then breeds new child populations from
these archives.

The reproductive phase is the same for every iteration of the
loop, but the evaluation phase has different behaviour for the first
vs. subsequent generations. In the first generation (gen = 0), 𝑄1
and 𝑄2 are empty and so 𝑃1 must cooperate with 𝑃2. This is a
bootstrapping generation, where the initial parents are evaluated.
In every subsequent generation, 𝑃1 cooperates with 𝑄2 and 𝑃2
cooperates with𝑄1, with the purpose of evaluating individuals in𝑄1
and𝑄2. This means each individual is evaluated exactly once: in the
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Algorithm 7: breedChildren
Input: 𝑃, 𝛿

1 𝑄 = ∅
2 while |𝑄 | < |𝑃 | do
3 𝜎 = draw sample from 𝛿

4 subpop = 𝑃𝜎

5 parentA = selection(subpop)
6 parentB = selection(subpop)
7 childA, childB = crossoverMutate(parentA, parentB)
8 𝑄 = 𝑄 ∪ {childA, childB}
9 return 𝑄

first generation for the initial parents, and in the generation after its
conception for every child. Elitism appears in the form of archiving
individuals from the combined populations 𝑅1 and 𝑅2 as parents.
The function makeSubspeciesDists (Algorithm 1, line 1) creates a
subspecies PMF for both populations: 𝛿1 and 𝛿2. These PMFs specify
what fraction of the search should be (probabilistically) dedicated
to each subspecies: subspecies with larger search spaces receive a
larger fraction of the available resources. For 𝑖 ∈ {1, 2}, 𝜎 ∈ Σ, 𝛿𝑖 is
initialised as:

𝛿𝑖 [𝜎] =
𝛽𝜆𝑖 (𝜎)∑

𝜎′∈Σ 𝛽𝜆𝑖 (𝜎
′)

where 𝜆𝑖 (𝜎) calculates the length of the genotype used by sub-
species 𝜎 in population 𝑖 (Equation 3, Equation 4). 𝛽 ≥ 1 is a hy-
perparameter that controls disparity in probability mass allocation,
larger values of 𝛽 allocate more mass to subspecies with longer
genotypes. 𝑃1 and 𝑃2 are initialised in the functions initDBPop
and initRBPop. These functions create dbPopSize and rbPopSize
individuals respectively, determining which subspecies to create by
drawing samples from 𝛿1 and 𝛿2, respectively. initDBPop initialises
alleles randomly fromU(0, 1). For initRBPop, a hyperparameter
rbPUnspec controls the probability of initialising an allele as un-
specified. The remaining alleles (𝑎 ∈ 𝐴) each have an initialisation
probability of 1−rbPUnspec

𝑘
.

Algorithms 2 and 3 implement cooperation between individuals
as previously described. To select collaborators for cooperation, the
function selectCollbars (Algorithm 2, line 3) has two different
behaviours, depending on the generation counter. During the first
generation there is no information about the objective values of any
individual, so Pareto front ranks and crowding distances cannot be
computed, and ≺𝑐𝑐 cannot be applied. Therefore two collaborators
are randomly selected in each subpopulation. During subsequent
generations, again two collaborators are selected from each subpop-
ulation, but are taken as: i) the best individual according to ≺cc, ii)
a random individual from the remainder of the subpopulation.

In Algorithm 4, the performance and complexity of solutions
in 𝑆 is evaluated. Because we allow RBs to be underspecified (see
Section 5.2), it is possible that an FRBS can fail its performance
evaluation, i.e. an input state is reached that is not covered by any
rule. This is an inherent disadvantage of a Pittsburgh system as
opposed to a Michigan system, the latter makes this impossible via
a covering mechanism. If such a scenario is encountered, the FRBS
is assigned a performance equal to the environmental lower bound
(see Section 4). Evaluation of complexity is done as per Section 5.3.

Following performance and complexity evaluation, the function
assignParetoFrontRanks determines the Pareto front ranks of so-
lutions in 𝑆 , implemented as the same fast non-dominated sort from
NSGA-II. A Pareto front of rank 𝑖 is denoted by F𝑖 , F1 representing
the set of non-dominated solutions on the frontier of the search.
Finally, assignCrowdingDists is used to determine the crowding
distance of solutions, again in the same fashion as NSGA-II. To do
this, lower and upper bounds for both performance and complex-
ity must be known. Performance bounds are a property of E (see
Section 4). Complexity bounds are as discussed in Section 5.3.

Algorithm 5 assigns credit to individuals in a population accord-
ing to the best solution they participated in. The notion of best is
determined via application of ≺𝑐𝑐 (crowdedComparisonSort func-
tion). Algorithm 6 performs an NSGA-II style archiving procedure,
selecting a new 𝑃 . The distribution of subspecies tags in 𝑃 is reflec-
tive of 𝛿 , in that the main loop (lines 4–10) firstly draws a subspecies
tag from 𝛿 . Then, the best individual from the corresponding sub-
population is archived in 𝑃 , and removed from the set of candidate
parents 𝑅′. This is repeated until 𝑃 is full.

Algorithm 7 generates a new child population 𝑄 , via applica-
tion of a GA on 𝑃 . The selection operator is tournament selection
with a tournament size of 2, using ≺cc to rank individuals. Like
Algorithm 6, 𝛿 is sampled to preserve the distribution of subspecies
tags in 𝑄 . Reproduction is done intra-subspecies: the subspecies tag
drawn from 𝛿 determines the subpopulation to select parents from.
We use a real-coded GA on 𝑃1 (since its genotypes are vectors of
real numbers), with crossover implemented as line recombination
[17], performed with probability dbPCross. Mutation is Gaussian
noise, zero mean, standard deviation controlled by dbMutSigma.

For 𝑃2 we use uniform crossover, performed with probability
rbPCross per allele. Mutation allows each allele (being one of 𝑘 + 1
values from 𝐴 ∪ {0}) to switch to one of the other 𝑘 alleles, each
with probability 1

𝑘
. The probability of performing such a mutation

is rbPMut per allele. Crossover and mutation probabilities are delib-
erately constant across subspecies, inciting more exploration (more
frequent crossover and mutation) in subspecies with longer geno-
types. Because we specify a minimum RB complexity, we include a
repair operator, applied after mutation in𝑄2. This operator rectifies
situations where the number of specified alleles in an RB genotype
is less than the minimum complexity — altering the genotype to
be of minimum complexity by randomly selecting an appropriate
number of unspecified alleles and assigning them random values
from 𝐴.

7 RESULTS
We conducted thirty independent runs of Fuzzy MoCoCo1 on the
OpenAI Gym implementation of MC2, in order to determine if par-
simonious, high-performing policies could be found. Hyperparame-
ters for each runwere: rbPUnspec=0.1, numGens=50, dbPCross=0.75,
dbMutSigma=0.02, rbPCross=0.25, rbPMut=0.05, 𝜂=30,
Σ={(2, 2), (3, 3), (4, 4), (5, 5)}, 𝛽=1.125, dbPopSize=300,
rbPopSize=600. 𝛽 , dbPopSize, and rbPopSize were set in tandem to
allocate each subspecies approximately ten times as many individ-
uals as the dimensionality of its search space. Figure 3 (middle)

1Source code for algorithm available at: https://github.com/jtbish/fuzzy-mococo
2https://gym.openai.com/envs/MountainCar-v0/
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Figure 3:Middle: scatter plot ofmerged F1s over thirty Fuzzy
MoCoCo runs on MC. Bottom: zoomed in view of high-
lighted region in middle plot. Top: histogram of complexity
values in middle plot.

shows a scatter plot of F1 yielded by each run (thirty F1s, plotted
on one set of axes). Each solution is plotted as an individual point
with high transparency, giving some indication of solution density
in a particular area. A small amount of jitter is used on the com-
plexity axis to make individual points in low density areas more
visible. Points are coloured by their subspecies tag. Note that in
areas of very high density (e.g. around (2,−200)), multiple points
are plotted on top p of one another and so cannot be distinguished;
this is a limitation of the plotting technique. The top plot of the
figure shows the frequency of each level of complexity. The bottom
plot of the figure shows a zoomed in view of the magenta area in
the middle plot. From this figure, we observe the following:

(1) A large number of solutions are of minimum complexity,
minimum performance: (2,−200).

(2) Increasing complexity up to 5 provides increased perfor-
mance, but from then on provides no improvement.

(3) Solutions offering the best tradeoff between performance
and complexity are of complexity 5, subspecies (4, 4).

The first observation manifests because the minimum performance
attainable in MC is −200, indicating that no performance rollouts
were able to reach the goal. This can easily occur, via an FRBS that
either i) has rules that do not cooperate enough to reach the goal,
or ii) is too underspecified and so fails its performance evaluation.

We chose one of the solutions from the complexity 5 subspecies
(4, 4) group as the best solution found by any run. The performance
of this best solution was −96.17, while the performance of our ap-
proximately optimal policy was −96. This is notable: our algorithm
has produced a policy that has almost attained the upper bound of
performance. Due to limited available space, a discussion of the
performance and computational complexity of Fuzzy MoCoCo vs.
other learning approaches is omitted. Such a discussion is a task
for future work.
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Figure 4: Top: curvature of the MC valley. Middle, bottom:
fuzzy sets used by the best evolved FRBS in MC.

Figure 4 shows the fuzzy sets used by the best solution (mid-
dle, bottom), accompanied by the curvature of the valley (top)
to make fuzzy sets over 𝑥 easier to interpret. Linguistic values
are as follows: 𝑥 : {FL: Far Left, L: Left, R: Right, FR: Far Right}, ¤𝑥 :
{VL: Very Low, L: Low,H: High,VH: Very High}. The RB used by
the best solution is:

(A) IF 𝑥 is L and ¤𝑥 is L THEN 𝑎 is 1 (Left)
(B) IF 𝑥 is {FL or L or FR} and ¤𝑥 is H THEN 𝑎 is 2 (Right)
(C) IF 𝑥 is R and ¤𝑥 is VH THEN 𝑎 is 2 (Right)

Rule (A) is responsible for pushing the car up the LHS mountain.
Rule (B) pushes the car right when it has a moderate amount of
positive velocity and is either i) on the LHS mountain, ii) in the
valley, or iii) towards the top of the RHS mountain (almost at the
goal). This rule deliberately omits the case where the car is on the
steeper (lower) part of the RHS mountain, because there is not
enough momentum to reach the goal by pushing right. Rule (C)
covers this scenario, pushing the car to the right when it is on the
steep part of the RHS mountain if there is a large amount of positive
velocity.

8 CONCLUSION
Weproposed a novel Pittsburgh GFS that utilises bothMO and CoCo
mechanisms to learn FRBSs that act as policies in RL environments.
The system was tested on the Mountain Car environment, as it was
a prime candidate due to its combination of a continuous state space
and difficult exploration. Results show that the system was able
to effectively balance resources and explore the tradeoff between
FRBS performance and complexity. Analysis of a selected “best”
(near optimal performance) FRBS showed that its rules were both
interpretable and parsimonious.
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