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ABSTRACT
When determining the actions to execute, reinforcement learners
are constantly faced with the decision of either exploiting existing
knowledge or exploring new options, risking short-term costs but
potentially improving performance in the long run. This paper de-
scribes and experimentally evaluates four existing explore/exploit
strategies for the learning classifier system XCS. The evaluation
takes place on three well-known learning problems – two mul-
tiplexers and one maze environment. An automized parameter
optimization is conducted, showing that different environments re-
quire different parametrization of the strategies. Further, our results
indicate that none of the strategies is superior to the others. It turns
out that multi-step problems with scarce rewards are challenging
for the selected strategies, highlighting the need to develop more
reliable explore/exploit strategies to tackle such environments.
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1 INTRODUCTION
Learning Classifier Systems (LCS) are increasingly being proposed
to enable self-adaptive and autonomous behavior in technical sys-
tems, e.g. within the concept of Self-aware Computing [6] or Or-
ganic Computing [10]. However, to reach full autonomy, reinforce-
ment learners must decide on their ownwhen to exploit the existing
knowledge by taking the most promising action and when to delib-
erately select an action that is not the apparent best to potentially
gain additional knowledge. This decision is commonly referred to as
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explore/exploit dilemma, since obtaining new knowledge through
exploration incurs a short-term performance loss, while too much
exploitation of the already learned knowledge risks staying on
an unnecessarily low level of performance in the long term [12].
Explore/Exploit (E/E) strategies are required to let reinforcement
learners decide autonomously on their own what way to pursue
depending on the environment and their learning progress.

Nowadays, the most common LCS is XCS [13]. About 25 years
ago, Wilson presented a high-level overview of ten different E/E
strategies [14], which are not necessarily restricted to XCS, but
still quite suited to it. The most important distinction between
the strategies is whether they are global, i.e. based on global per-
formance metrics of the whole classifier population, or local, i.e.
determining the E/E decision for each situational input individually.
Even though the importance of reliable E/E strategies for XCS has
been identified more than two decades ago, not much research has
been conducted in this direction since then. Instead, an 𝜖-greedy
strategy with a fixed exploration probability of 0.5 is commonly
used. And among the few E/E strategies that have been developed,
the majority has mostly been evaluated in a single scenario only
and without comparison to other strategies. Further, their param-
eterization is often discussed on a qualitative level only, giving
practitioners no guidelines on how to apply the strategies to other
learning problems.

This paper aims to narrow the existing gap in research by ex-
perimentally comparing one local and three global E/E strategies
proposed in the literature. The evaluation takes place on learning
problems well known in the LCS community – the Multiplexer and
Maze environments. A considerable part of this evaluation is an
automatized parameter optimization to identify suitable parame-
ter configurations for each of the learning problems. Even though
Multiplexers and Mazes are simulated toy problems used solely
in research and thus do not exhibit any imperative need for a so-
phisticated E/E strategy, they still resemble well-studied problem
environments. Hence, our experimental results can guide future
research on the development of reliable E/E strategies. Further, we
hope that XCS practitioners planning to employ one of the E/E
strategies are able to utilize our findings by relating the characteris-
tics of their application environments to the evaluated Multiplexer
and Maze environments.

The paper continues by presenting the methodology of our lit-
erature search and a description of the selected E/E strategies in
Section 2. The experimental setup is detailed in Section 3, while the
experimental results are discussed in Section 4. Finally, the paper
concludes with Section 5, summarizing our findings and outlining
future work.
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2 EXPLORE/EXPLOIT STRATEGIES
Our study focuses on explore/exploit strategies that enable auton-
omy and determine when exploration is called for and not how the
exploration should take place. Consequently, we focus on schemes
that decide between employing pure exploitation, i.e. taking the
action with the highest payoff prediction, or pure exploration, i.e.
choosing a random action. Therefore, directed or biased exploration,
e.g. by selecting actions that promise the largest gain in knowledge,
is not part of this study, even though it can have a considerable
impact [3]. Nevertheless, with most directed exploration techniques
the question when exploration is called for needs to be answered
as well. In addition, we restrict the study to E/E strategies designed
specifically for XCS, as we deem strategies tailored to its unique
learning mechanism as most useful.

2.1 Literature Study
Our main tool for searching published works on explore/exploit
strategies for XCS was Google scholar and the results represent
the state as of 23rd March 2021. We have employed three differ-
ent search terms, namely XCS "exploration exploitation" (142 result
entries), XCS "exploration strategy" (68 entries) and XCS "explore
exploit" (157 entries). The terms given in quotation marks must
exactly match but can still encompass special characters, e.g. "ex-
plore exploit" matches the phrase "explore/exploit". Further, we
have considered all publications that, according to Google scholar,
cite the seminal paper of Wilson [14]. Overall, this resulted in two
explore/exploit strategies that match our criteria, i.e. the HECS
strategy of McMahon et al. [9] and the meta-rules strategy of Rejeb
et al. [11]. Further, we have searched all publications that reference
these publications or are cited by them, but with no additional re-
sults. In addition to the HECS andMeta-rules strategies, we selected
two error-based strategies from Wilson [14], one global and one
local strategy, which also have served as baseline for comparison
in [11].

Not considered due to our selection criteria has been, among
others, the work of Bagnall and Smith [1], who propose a strategy
that not only determines when to explore but combines it with di-
rected exploration through temperature-based Boltzman weighting.
Also not considered has been the E/E strategy based on a fuzzy
system as proposed by Hamzeh and Rahmani [4], since it requires
to know the lifetime of the system, represented by the number of
total XCS iterations. For truly autonomous systems, we assume
this information to be unknown or at least associated with a high
degree of uncertainty.

2.2 Selected E/E Strategies
Meta-rules [11]. Exploration and exploitation is balanced by ex-
ecuting repeated cycles of n exploration runs, followed by m ex-
ploitation runs. After each such cycle, the performance during
the exploration and exploitation runs, denoted by 𝑃𝑒𝑟 𝑓𝑒𝑥𝑝𝑙𝑜𝑟𝑒 and
𝑃𝑒𝑟 𝑓𝑒𝑥𝑝𝑙𝑜𝑖𝑡 , respectively, is used to increase or decrease the number
of exploitation runs𝑚. This is done by the following twometa-rules,
where 𝑒𝑟 is termed the exploration rate:

𝑚 =

{
𝑚 · (1 − 𝑒𝑟 ) if 𝑃𝑒𝑟 𝑓𝑒𝑥𝑝𝑙𝑜𝑟𝑒 > 𝑃𝑒𝑟 𝑓𝑒𝑥𝑝𝑙𝑜𝑖𝑡

𝑚 · (1 + 𝑒𝑟 ) if 𝑃𝑒𝑟 𝑓𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ≤ 𝑃𝑒𝑟 𝑓𝑒𝑥𝑝𝑙𝑜𝑖𝑡
(1)

Hence, the meta-rules balance exploration and exploitation by
adapting the ratio of exploration to exploitation runs, while always
maintaining a minimum amount of exploration through keeping 𝑛
constant. To assure that the intervals between exploration periods
are not growing too large, a maximum value of𝑚 can be specified.
In multi-step environments,𝑛 and𝑚 represent numbers of complete
runs and are unaffected by the number of steps done in these runs.
Overall, the strategy is parameterized by three values: The number
of exploration runs 𝑛, the initial value of exploitation runs𝑚 and
the exploration rate 𝑒𝑟 , ranging from 0 to 1, controlling the change
of𝑚.

Global Error [14]. At the beginning of a run, it is decided if an
exploration run is conducted according to the exploration proba-
bility 𝑝𝑒𝑥𝑝𝑙𝑜𝑟𝑒 . As opposed to the common 𝜖-greedy strategy, the
exploration probability is not fixed but determined as

𝑝𝑒𝑥𝑝𝑙𝑜𝑟𝑒 =𝑚𝑖𝑛(1,𝐺 · 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 ) (2)

where 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 is the moving average of the global prediction error
and 𝐺 a configurable gain factor. The global prediction error is
the absolute difference between predicted and received payoff. In
our implementation, we used the values in the prediction array as
the predicted payoff, but other schemes are possible as well. For
instance, the prediction of the classifier with the highest fitness in
the action set could be used, which would make the strategy less
susceptible to non-optimal classifiers, but could stop exploration
too early. The strategy is parameterized by two parameters, namely
the gain factor 𝐺 and the moving average’s windows size𝑊 . To
make gain factors between environments with different reward
schemes comparable, 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 is normalized to the range of rewards.
In multi-step environments, the prediction errors during a run,
based on the internal payoffs and not the immediate rewards, are
averaged and inserted into the window as a single value to avoid
that runs have a different impact on the global prediction error just
because they are shorter or longer.

Local Error [14]. Since it is a local strategy, the exploration
probability 𝑝𝑒𝑥𝑝𝑙𝑜𝑟𝑒 is individually determined for each input that is
received. For each action in the match set, the numerosity-weighted
average of the prediction error values 𝜖 , as estimated by each clas-
sifier, is calculated. The average over the actions’ error estimates is
then used to set the exploration probability as

𝑝𝑒𝑥𝑝𝑙𝑜𝑟𝑒 =𝑚𝑖𝑛(1,𝐺 · 𝐸𝑙𝑜𝑐𝑎𝑙 ) (3)

where 𝐸𝑙𝑜𝑐𝑎𝑙 is the average over the actions’ error estimates and 𝐺
a configurable gain factor, which is the only configurable parameter
of this strategy. Again, 𝐸𝑙𝑜𝑐𝑎𝑙 is normalized to the range of rewards.

HECS [9]. The HECS strategy was developed specifically for
multi-step problems and distinguishes between two different ex-
ploration levels. The accuracy induced exploration level 𝐸𝐴 ranges
between -1 and +1 and is updated every step with

Δ𝐸𝐴 = Δ𝐸𝑚𝑎𝑥 · 𝐹 ·
(

2
1 − 𝑒𝑀𝑃𝐴

·
(
𝑒 |𝑂𝑠 | ·𝑀𝑃𝐴 − 1

)
+ 1

)
(4)

where Δ𝐸𝑚𝑎𝑥 is the maximum possible change, 𝐹 the fitness of
the prediction, 𝑂𝑠 the payoff over-/undershoot (positive/negative
prediction error) scaled to the maximum range of rewards and𝑀𝑃𝐴

a parameter that defines the tolerance to perfect accuracy. The
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exploration probability, used to determine if an exploration run
should be conducted, is determined as

𝑝𝑒𝑥𝑝𝑙𝑜𝑟𝑒 =

(
0.5 −

𝐿𝑒𝑥𝑝𝑙𝑜𝑖𝑡 · 𝐸𝐴
2

)
(5)

where 𝐿𝑒𝑥𝑝𝑙𝑜𝑖𝑡 takes a value between 0 and 1 and assures a mini-
mum level of exploration for values below one. As fitness of the
prediction, we take the numerosity-weighted average of the classi-
fiers’ fitnesses in the action set.

In multi-step problems, a second, reward induced explorer level
𝐸𝑅 is used to escape from unsuccessful exploit trials. First, the
maximum numbers of steps required to reach a reward is estimated
as 𝑛𝑚𝑎𝑥 = 𝑙𝑜𝑔𝛾

(
𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥

)
, where 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 are the minimum

and maximum predictions present in the population and 𝛾 the
discount factor of XCS. In case 𝑃𝑚𝑖𝑛 is negative or zero, 𝑛𝑚𝑎𝑥 must
be sanitized to a meaningful value. After 𝑛𝑚𝑎𝑥 steps have passed,
the reward induced explorer level 𝐸𝑅 , initialized as 1, begins to
change according to

Δ𝐸𝑅 = Δ𝐸𝑚𝑎𝑥 · 1
𝑒𝑀𝑅𝑆 − 1

· 𝑠𝑖𝑔𝑛(𝑅𝑆 ) ·
(
𝑒 |𝑅𝑆 | ·𝑀𝑅𝑆 − 1

)
(6)

where 𝑅𝑆 is the immediate reward (punishment) that is received
scaled to the maximum reward (punishment) and𝑀𝑅𝑆 is a scaling
factor that affects the sensitivity of Δ𝐸𝑅 to the magnitude of 𝑅𝑆 .
Hence, a reward increases 𝐸𝑅 , while punishments decrease 𝐸𝑅 . Dur-
ing an exploitation run, HECS switches to exploration mode with
a probability 𝑃𝑆𝑤𝑖𝑡𝑐ℎ𝑇𝑜𝐸𝑥𝑝𝑙𝑟 = 1 − 𝐸𝑅 . Hence, a series of exploita-
tion steps without reward increases the probability of switching to
exploration. Overall, the HECS strategy is parameterized by four
values: Δ𝐸𝑚𝑎𝑥 , 𝐿𝑒𝑥𝑝𝑙𝑜𝑖𝑡 ,𝑀𝑃𝐴 and𝑀𝑅𝑆 .

3 EXPERIMENTAL SETUP
To investigate the characteristics of the E/E-strategies in differ-
ent environments, we have selected three reinforcement learning
problems well-known to the LCS community.

11-Multiplexer. A single-step problem, in which XCS receives
11 input bits, of which the first three are index bits that point to
one of the remaining eight bits that XCS has to predict. If XCS
outputs the correct value of the bit, it receives a reward of 1,000,
otherwise a reward of 0. With the 30,000 iterations that we employ,
it represents a rather simple problem, as XCS with the common
𝜖-greedy strategy and a fixed exploration probability of 0.5 is able
to fully solve the problem in its exploit trials after roughly 10,000
iterations. Hence, a well-suited E/E strategy is expected to do some
exploration at the beginning and then switch to full exploitation
once XCS is able to completely solve the problem.

20-Multiplexer. The 20-Multiplexer is similar to the 11-Multi-
plexer problem but more complex to solve due to the larger input
space, as XCS receives an input of 20 bits containing four index
bits. With the same number of 30,000 iterations, XCS with the
common 𝜖-greedy strategy is not able to derive a complete solution.
Instead, it achieves a classification accuracy of roughly 85% at the
end. Hence, it represents a case in which XCS is not able to find a
perfect solution and tests the ability of the E/E strategies to carefully
balance exploration and exploitation during the whole time to
maximize overall performance.

R R R R R R R R
R . . R . . F R
R R . . R . . R
R R . R . . R R
R . . . . . . R
R R . R . . . R
R . . . . R . R
R R R R R R R R

Figure 1: The Maze4 environment. Empty fields are denoted
by dots, while obstacles are represented by rocks (’R’). The
target field is the food (’F’) in the upper right corner.

Maze4.Maze environments are multi-step problems, where XCS
is navigating an animat through a maze in order to reach a target,
denoted as food. The employed Maze4 environment is shown in
Figure 1. As input, XCS receives the types of the eight surrounding
fields (empty, rock, or food) and then has to make a step in one
of the eight directions. At the beginning of each run, the animat
is placed randomly on an empty field and the goal of XCS is to
learn the shortest path to the food from each field on the map.
Upon reaching the food, XCS receives a reward of 1,000, and for
every other step a reward of zero. XCS is learning the shortest
path by backpropagating the reward received for finding the food
to preceding classifiers through the use of a discount factor. We
employ 3,000 runs, with a run ending after the food is reached or
30 steps have passed. In most cases, XCS finds the shortest path,
on average having a length of 3.5 steps, with the 𝜖-greedy strategy
after roughly 1,500 runs.

Overall, the three environments evaluate different aspects of the
selected E/E strategies. The 11-Multiplexer environment investi-
gates the capability of a strategy to determine when the problem
is fully solved by the classifier population and exploration should
be stopped in favor of performance-maximizing exploitation. On
the other hand, the 20-Multiplexer environment tests how well a
strategy is able to balance between exploration and exploitation if
the learning problem cannot be fully solved and thus neither full
exploration nor full exploitation is called for at any point in time.
The Maze4 environment is the only evaluated multi-step environ-
ment and should reveal any behavioral differences of the strategies
on multi-step problems.

For all our experiments, we have used the Python implementa-
tion scikit-XCS [15], which we have extended with the capability of
solving multi-step problems. We kept the default parameter settings
of scikit-XCS1 and used a discount factor 𝛾 of 0.71 in multi-step
environments. For the 11-Multiplexer and Maze4 problem a popula-
tion size 𝑁 of 800 has been used, while a larger population of 2000
classifiers has been employed for the more complex 20-Multiplexer
problem. All problems have been implemented as randomized re-
inforcement learning environments, i.e. the problem instances are
randomly generated and not drawn from a data set as in supervised
learning settings. It is important to note that we always consider
and report the overall performance of XCS, i.e. both explore and
exploit runs, as opposed to the majority of works in the field that
only report performance during exploit runs.
1That is 𝛽 = 0.2, 𝛼 = 0.1, 𝜈 = 5, 𝜇 = 0.04, 𝛿 = 0.1, 𝑝𝐼 = 10, 𝜖𝐼 = 0, 𝑓𝐼 = 0.01,
𝑃# = 0.5, 𝜖0 = 10, 𝜒 = 0.8, 𝜃𝐺𝐴 = 25, 𝜃𝑠𝑢𝑏 = 20, 𝜃𝑑𝑒𝑙 = 20, 𝛾 = 0.71,
DoGaSubsumption = True, DoActionSetSubsumption = False
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3.1 Parameter Study
Since the selected E/E strategies do not have any obvious well-
suited or even optimal parameter values, we have conducted a
parameter optimization of the strategies on each of the three eval-
uation environments. We have optimized for each environment
separately instead of global optimization over all environments, as
this approach allows to identify strengths and weaknesses of the
strategies in different scenarios. Further, it provides system design-
ers knowing the complexity and problem type of their operational
environment with more useful guidelines in setting the parameters.

As tool for the automated parameter optimization, we have em-
ployed irace [7]. The applied ranges of allowed parameter values are
summarized in Table 1. The parameter𝑚 of the meta-rules strategy
only represents its initial value, since it is adapted at run-time by
the strategy. A possible maximum value for𝑚 has been excluded
from the parameter study and instead be set to 10% of the total
number of iterations. The parameter𝑀𝑅𝑆 of the HECS strategy has
not been considered in this parameter study, either, as it is only
applicable to the Maze4 multi-step environment. However, in the
Maze4 environment, only two possible rewards exist, where the
reward of 0 can be considered as punishment. Hence, the value of
𝑅𝑆 in Equation 6 is either -1 or +1 and 𝑀𝑅𝑆 has no effect on the
change of the explorer level. Further, we have set 𝑛𝑚𝑎𝑥 to 15 steps
(50% of the maximum number of steps) in case 𝑃𝑚𝑖𝑛 is zero.

As problem instances, 15 different seeds have been used to ini-
tialize the random number generators inside the problem environ-
ments. An important aspect is defining the target metric that irace
is optimizing, as there exists no obvious choice for assessing the
quality of the E/E strategies. In general, it depends on the appli-
cation how the performance of XCS is quantified. For instance, in
some environments, the performance at the beginning can be close
to irrelevant, e.g. if the system has an initial setup period, but in
other cases, the performance is equally important over the whole
lifetime. We have opted for a tradeoff between these two cases by
taking all iterations into account for the calculation of the target
metric, but assigning earlier iterations a smaller weight, i.e. the
first quarter of all iterations is assigned a weight of 1

15 , the second
quarter a weight of 2

15 , the third quarter a weight of
4
15 and the last

quarter the highest weight of 8
15 . Our choice is motivated by the

assumption that even though the performance of an autonomous
system is relevant during the whole runtime, it is still expected,
and consequently accounted for by the system designer, that an
untrained system will initially yield suboptimal performance.

To obtain valid results quickly, irace has been executed in a
parallelized fashion on the nodes of the PC2 compute cluster located
at Paderborn University2. Each compute node contains two Intel
Xeon Gold 6148F CPUs with 20 cores each. For the 11-Multiplexer
environment, irace was given a computing budget of 150,000 CPU
seconds, which irace used internally to determine the number of
optimization iterations. Due to the higher problem complexity,
the 20-Multiplexer and the Maze4 environment both have been
optimized with a budget of 600,000 CPU seconds.

2pc2.uni-paderborn.de/hpc-services/available-systems/noctua/, accessed 01.04.2021

Table 1: Value ranges used in the parameter optimization.

Strategy Param. Datatype Range

Lower Upper

Meta-rules
𝑛 integer 1 1000
𝑚 integer 1 1000
𝑒𝑟 real 0.01 0.99

Global Error 𝐺 real 0.01 10
𝑊 integer 1 1000

Local Error 𝐺 real 0.01 10

HECS
Δ𝐸𝑚𝑎𝑥 real 0.01 1
𝑀𝑃𝐴 real −10 10

𝐿𝑒𝑥𝑝𝑙𝑜𝑖𝑡 real 0.5 1

4 EXPERIMENTAL RESULTS
This section summarizes the obtained experimental results. First,
Subsection 4.1 presents and discusses the results of the parameter
study. The experimental comparison of the strategies follows in Sub-
section 4.2, where the optimized parameters have been employed
on each of the three evaluation problems. Finally, the sensitivity of
the E/E-strategies to non-optimal parameter choices is investigated
in Subsection 4.3, where the parameters that have been optimized
for one evaluation problem are applied on the other environments.

4.1 Results Parameter Study
The parameter configurations resulting from irace’s optimization
are shown in Table 2, where notable differences between the dif-
ferent evaluation problems can be observed. In the 20-Multiplexer
environment, the constant number 𝑛 of exploration runs used in
the meta-rules strategy is more than four times higher than for
the 11-Multiplexer case, indicating the higher complexity of the
20-Multiplexer problem. In the Maze4 environment, both 𝑛 and𝑚
are considerably smaller, as the environment employs only a tenth
of the runs than the two multiplexer environments. On the other
hand, the exploration rate 𝑒𝑟 is considerably higher, resulting in
a more aggressive adaption of𝑚. This could be related to the fact
that in multi-step problems each run consists of multiple iterations,
allowing XCS to gain more knowledge during a single run.

For the global error strategy, the gain factor 𝐺 , representing the
sensitivity of the exploration probability to the prediction error, is
ten times smaller for the 20-Multiplexer than for the 11-Multiplexer,
again showing the higher complexity of the 20-Multiplexer envi-
ronment. Since we normalize the prediction error to the maximum
range of rewards, the gain factor of 0.655 also represents the upper
bound of the exploration probability. For the Maze4 problem, the
gain factor of 2.769 lies in between the other two values. In the
case of the multiplexer problems, these observations apply to the
gain factor of the local error strategy as well, but in the Maze4
environment, the optimized value of 𝐺 is considerably higher.

That the optimal sensitivity of the exploration probability to the
prediction error differs between the evaluation problems can also
be observed for the HECS strategy, where the 𝑀𝑃𝐴 parameter is
smaller for the 11-Multiplexer than for the 20-Multiplexer, with
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Table 2: Optimized parameterization of each configuration for the evaluated scenarios.

Meta-rules Global Error Local Error HECS
𝑛 𝑚 𝑒𝑟 𝐺 𝑊 𝐺 Δ𝐸𝑚𝑎𝑥 𝑀𝑃𝐴 𝐿𝑒𝑥𝑝𝑙𝑜𝑖𝑡

11-Multiplexer 112 17 0.151 6.907 248 2.992 0.013 -8.336 0.988
20-Multiplexer 467 36 0.227 0.655 115 0.684 0.380 -2.187 0.935
Maze4 14 33 0.524 2.769 23 7.793 0.115 -5.894 0.987

the optimal value for the Maze4 environment ranging in between.
The smaller the value of𝑀𝑃𝐴 is, the more sensitive is the accuracy
induced explorer level to the prediction error. Hence, these results
are in line with the gain factors found for the global error strat-
egy. The value for the parameter Δ𝐸𝑚𝑎𝑥 , the maximum change of
the explorer level, is very small and close to zero in the case of
the 11-Multiplexer, leading to small changes of the explorer level,
while they are considerably larger for the other two environments.
𝐿𝑒𝑥𝑝𝑙𝑜𝑖𝑡 is close to one for all problems, leading to a low level of
minimum exploration and potentially enabling HECS to reach close
to optimal performance in all cases.

4.2 Experimental Comparison of E/E Strategies
To compare the E/E strategies, the optimized parameter configura-
tions have been employed on each evaluation problem. To obtain
statistically meaningful results, all reported results are averages
over 50 independent trials, where the seeds that have been used
to initialize the environments are different from those used in the
parameter study.

11-Multiplexer. Figure 2a shows the development of the classi-
fication accuracy for all E/E strategies on the 11-Multiplexer. The
common 𝜖-greedy strategy with a fixed exploration probability of
0.5 achieves an accuracy of 0.75 after approximately 10,000 iter-
ations. The problem is then perfectly solved, but the exploration
iterations negatively affect the achieved accuracy. On the other
hand, all of the evaluated E/E strategies are able to achieve the goal
of first doing exploration and then switching to (nearly) full ex-
ploitation. The distinct pattern of the meta-rules strategy is related
to the alternating periods of exploration and exploitation. Since the
number of explore iterations is not adapted, exploration is done
even when the exploitation iterations achieve perfect accuracy. The
accuracy of the local error strategy is continuously improving until
perfect accuracy is reached. On the other hand, both the global
error and HECS strategies achieve a very low accuracy at the be-
ginning that suddenly increases after around 5,000 iterations, with
the increase of HECS being considerably steeper.

Figure 2b shows the corresponding development of the explo-
ration rate. The graphs basically mirror the development of the
classification accuracy, as the exploration rate of the local error
strategy is continuously decreasing, while the global error strat-
egy first maintains an exploration rate of 1 which suddenly begins
to decrease and eventually falls down to 0. The HECS strategy is
behaving similarly, but its exploration rate is dropping even more
quickly. Overall, the results show that the HECS strategy is best in
determining the point when exploitation is called for to maximize
performance, while the local error strategy seems to be most suited
in case a continuously improving performance is desirable.

20-Multiplexer. Figure 3a shows the development of the classi-
fication accuracy on the more complex 20-Multiplexer. This time,
both the global and the local error strategy achieve a continuous
increase that is consistently better than the common 𝜖-greedy strat-
egy, with the global error strategy having a slight advantage. The
meta-rules strategy is first achieving a worse accuracy, but then
catches up and outperforms both the 𝜖-greedy and the error-based
strategies – at least during its exploitation periods. The HECS strat-
egy depicts a similar behavior than on the 11-Multiplexer problem.
At first, the accuracy is not improving, but towards the end there
is a steep increase, eventually leading to the best accuracy in the
field.

The development of the exploration rate shown in Figure 3b
differs from those observed for the 11-Multiplexer. Both error-based
strategies start with relatively low exploration rates of 0.2 to 0.3 –
a consequence of the small gain factors, which make them more
insensitive to high prediction errors. In addition, their exploration
rates are only slowly decreasing over time. The HECS strategy is
first applying an exploration rate of 1, which after approximately
15,000 iterations begins decreasing to reach a value close to 0 at the
end, mirroring the development of the classification accuracy quite
well. However, the 20-Multiplexer is still incompletely solved at the
end of the experiment and would require additional exploration
afterward to generate a complete solution. In case the operation
period of the system is extended, HECS would not apply this and
settle on a non-optimal classification accuracy. Hence, it seems that
especially the HECS strategy is overfitted to the specific scenario
and the target metric used in the parameter optimization, which
assigns a higher weight to the performance in later iterations as
described in Subsection 3.1.

Maze4. The average number of steps until the food or the maxi-
mum number of steps is reached is shown in Figure 4a. Considering
that on average a minimum number of 3.5 steps towards the food is
required and that XCS is able to optimally solve the problem with
the applied parameter settings, it can be concluded that all evaluated
E/E strategies perform poorly. Until run 400, the HECS strategy is
considerably outperforming all others but shows no improvement
afterward. Both error-based strategies improve continuously, with
the local error strategy being on the lead and achieving the lowest
number of steps at the end. Even though the meta-rules strategy
employs a constant number of exploration runs, its performance
in the exploitation periods is not considerably better than those of
the other strategies. An inspection of the exploration rates shown
in Figure 4b leads to the reason for the poor performance since all
strategies employ low rates of exploration from the beginning on.
Even though the local error strategy is parameterized with a high
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Figure 2: Experimental results obtained on the 11-Multiplexer problem. Results are averages over 50 trials and shown as a
moving average over 400 samples.
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Figure 3: Experimental results obtained on the 20-Multiplexer problem. Results are averages over 50 trials and shown as a
moving average over 400 samples.

gain factor and should thus be rather sensitive to the estimated pre-
diction errors, its resulting rate of exploration is initially increasing
rather slowly, reaching a maximum of approximately 0.2 to then
begin decreasing even slower. The global error strategy is reach-
ing a similar exploration rate of roughly 0.2 almost immediately,
which then slowly decreases as well. The HECS strategy applies
the smallest amount of exploration of all evaluated strategies and
employs close to zero exploration after approximately 2,000 runs.

We presume that the poor performance is related to the specific
multi-step characteristics of the Maze environment, which make it
challenging for accuracy- or error-based strategies, like the HECS,
global error, and local error strategy, to assess the current capabil-
ity of the classifier population to solve the problem. In the Maze
environment, a positive reward is obtained only once at the end of

a run and only in case the food is reached. On all other steps, an
immediate reward of zero is received. To learn the shortest paths
to the food, the reward received upon reaching the food is back-
propagated to the preceding classifiers with the Q-learning-like
internal reinforcement mechanism of XCS using the discount factor
𝛾 . For classifiers early in the path, i.e. those matching to positions
distant to the food, the path needs to be repeatedly taken until a
small portion of the reward is arriving at the classifier. Until then,
these classifiers keep a perfectly accurate payoff prediction of zero.
However, if the majority of classifiers in the population lead to a
prediction error of zero, the error- and accuracy-based strategies
are lured into believing that XCS is solving the problem quite well
and thus apply a small exploration probability. Our assumption is
supported by the development of the exploration rate of the local
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Figure 4: Experimental results obtained on the Maze4 problem. Results are averages over 50 trials and shown as a moving
average over 50 runs. The exploration rate of a run is defined as the percentage of exploration steps in the run.

Table 3: Standard deviation 𝜎 of the average over the last 500
runs of each E/E strategy in the Maze4 environment.

𝜖-greedy Meta-rules Global Error Local Error HECS

𝜎 3.06 6.44 8.92 6.37 7.91

error strategy as shown in Figure 4b. Even though the strategy is
parameterized with a high gain factor, the exploration rate starts at
nearly zero, which is the initial prediction error of the majority of
classifiers, and then increases very slowly, presumably in line with
the backpropagation of the discounted reward.

The impact that low prediction errors have not only arises at the
beginning of the trials. For instance, the HECS strategy is applying
nearly no exploration in the second half of our experiment, which
means that its accuracy induced exploration level seems to dictate
no further exploration. The second, reward induced exploration
level that is used to escape from unsuccessful exploit runs is not able
to correct this, either, as the classifiers with a low prediction lead
to a high estimate of the maximum number of steps 𝑛𝑚𝑎𝑥 . Thus, as
soon as XCS has evolved a solution requiring less than the current
𝑛𝑚𝑎𝑥 steps, exploration is no longer applied and HECS settles on
a suboptimal model. Even though the meta-rules strategy is not
based on accuracy, but directly on the target metric, i.e. the number
of steps, it is not reaching a superior performance, either, but this
could be related to the mechanism of alternating periods of explo-
ration and exploitation and its optimistic approach of increasing
exploitation once it receives better performance than exploration.

However, all averaged results obtained in the Maze4 environ-
ment must be interpreted with caution. When inspecting single
evaluation runs, which only differ through the applied random seed,
we have noticed that the performance can differ considerably, e.g.
in some case all strategies haven been able to achieve good results,
while in others some strategies performed poorly. We have not been

able to identify any obvious pattern or correlation between different
strategies. To quantify this effect, we averaged the number of steps
taken during the last 500 runs of every evaluation trial and then
calculated the standard deviation of the 50 average values of each
strategy, resulting in the standard deviations given in Table 3. The
common 𝜖-greedy strategy with its fixed exploration probability of
0.5 has a standard deviation of roughly 3 steps, representing 10%
of the applied maximum limit of 30 steps. This can be considered
as the baseline deviation or noise that is introduced due to ran-
domness in XCS and the Maze4 environment, e.g. through different
placements of the animat. The relatively high standard deviation is
related to the fact that XCS is not always reliably solving the Maze4
problemwithin the employed number of runs, which may be caused
by non-optimal parameter settings of XCS or overgeneralization
in the classifier population, which is known to occur especially in
multi-step environments [2]. However, all four E/E strategies lead
to standard deviations that are even higher than the baseline, with
the least affected strategies being the meta-rules and local error
strategy. The deviations of the HECS and global error strategy are
even higher, reaching a standard deviation that is, in the case of the
global error strategy, nearly three times larger than the baseline.
Even though the increased standard deviations observed with the
E/E strategies can potentially be explained by the lower level of
exploration, further intensifying the low GA frequency in states far
from the target field, this does not give any reason for the differ-
ences between the four strategies. Deeper investigations have to
be conducted to identify the source of this phenomenon and how
E/E strategies can be designed to achieve a more reliable behavior.

4.3 Parameter Sensitivity
To assess how sensitive the strategies are to non-optimal parame-
ters, we have evaluated the performance on each evaluation prob-
lem not only with the parameters optimized for the specific problem
but also with the parameter configurations optimized for the other
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Table 4: Change of the performance metric when non-optimized parameter configurations are applied. Rows represent the
evaluation scenarios, columns the applied parameter configuration. The values in parentheses give the absolute value of the
performance metric. The asterisk (*) marks differences statistically significant at a significance level of 1 − 𝛼 = 0.05 according
to a two-tailed Mann-Whitney U test [8].

Strategy Meta-rules Global Error Local Error HECS
Config. 11-Mul. 20-Mul. Maze4 11-Mul. 20-Mul. Maze4 11-Mul. 20-Mul. Maze4 11-Mul. 20-Mul. Maze4

11-Mul. - -5.3%* -20.2%* - -4.2%* -0.0%* - -4.1%* -1.0%* - -6.2%* -2.1%*
(0.94) (0.89) (0.75) (0.96) (0.92) (0.96) (0.97) (0.93) (0.96) (0.97) (0.91) (0.95)

20-Mul. -1.5% - -8.8%* -21.5%* - -10.8%* -9.4%* - -18.8%* -23.2%* - -11.6%*
(0.67) (0.68) (0.62) (0.51) (0.65) (0.58) (0.58) (0.64) (0.52) (0.53) (0.69) (0.61)

Maze4 -65.3%* -126.8%* - +0.1% -8.9% - -30.6% -31.1%* - -5.3% +12.7% -
(17.56) (24.09) (10.62) (13.48) (14.70) (13.50) (13.14) (13.19) (10.06) (10.59) (8.78) (10.06)

two problems. As figure of merit, we have employed the target met-
ric used in the parameter study (cmp. Subsection 3.1). The results
are shown in Table 4. On the 11-Multiplexer, all strategies seem to
be relatively insensitive to non-optimal parameters. However, it
represents a simple problem, and thus the parameters mainly influ-
ence how quickly the maximum classification accuracy is reached
and not so much if it is reached at all. A notable exception is the
meta-rules strategy with its Maze4 configuration, which points to
the obvious drawback of using parameters representing a number
of iterations in environments with a vastly different number of total
iterations.

On the other hand, a higher parameter sensitivity can be ob-
served on the more complex 20-Multiplexer problem. The reported
relative changes of the performance metric are a bit misleading in
this case, as the absolute performance value has a lower limit of 0.5,
achieved by random guessing. Hence, strategy/configuration pairs
with an absolute value of around 0.5 do not apply any reasonable
balance of exploration and exploitation. Both error-based strate-
gies and HECS have one such configuration, while the meta-rules
strategy shows at least some level of reasonable balance in all cases.
Thus, the conclusion regarding the parameter sensitivity of the
strategies is exactly inverted compared to the 11-Multiplexer case.

In the Maze4 environment, the meta-rules strategy shows by far
the highest parameter sensitivity. The performance metric repre-
sents number of steps and thus should be as small as possible, as
opposed to the multiplexer environments. The local error strategy
shows a considerable amount of parameter sensitivity as well, while
the global error and HEC strategies seem to be rather insensitive.
For both strategies, the optimized parameter configurations are
even outperformed by configurations optimized for other problems.
This could be related to the strong influence that the randomness
has in theMaze4 environment, which potentiallymislead the param-
eter optimization, as the seeds used in the parameter optimization
have been different from those used in the final evaluation. The
strong influence of randomness is most likely also the reason why
most observed differences lack statistical significance.

5 CONCLUSION
Our experimental comparison of four different explore/exploit
strategies for XCS has not yielded a clear winner that achieved

superior performance in all evaluated cases. If parameterized appro-
priately, the HECS strategy with its non-linear and accuracy-based
equations seems to be best in determining a point when to switch
to full exploitation. On the other hand, linear error-based strategies
tend to lead to a more steady increase in performance by contin-
uously decreasing the rate of exploration. Our parameter study
showed that different environments require vastly different param-
eter configurations. Especially if the strategies are configured to be
very sensitive to the prediction error and employed in environments
that XCS is not able to completely solve, the overall performance is
negatively affected. Naturally, our experimental evaluation has not
been exhaustive and did not evaluate all use cases, e.g. changing
or stochastic environments have not been considered. Another as-
pect that has not been investigated in this work is the influence of
directed exploration, e.g. through roulette wheel selection.

Still, much more research has to be conducted to develop reliable
explore/exploit strategies for XCS. Our results show that especially
multi-step problems with scarce rewards are challenging, as the
error or accuracy of the classifier population, which is the inter-
nal optimization target of XCS, can misguide the E/E strategies
into applying too much exploitation too early. An outcome to this
could be to base the E/E decisions directly on the target metric of
the environment, as it is done in the meta-rules strategy or the
reward induced exploration used in the HECS strategy to escape
unsuccessful exploit runs. To realize reliable behavior on a wider
range of environments, the parameter sensitivity of the strategies
could be reduced by adapting the parameters at run-time to suit-
able values, e.g. by deriving them from performance or population
state metrics [5]. Further, a meta-strategy could be developed that
automatically switches to the E/E strategy being most appropriate
for the current environment.
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