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ABSTRACT
The International Workshop on Learning Classifier Systems (IWLCS)
is an annual workshop at the GECCO conference where new con-
cepts and results regarding learning classifier systems (LCSs) are pre-
sented and discussed. One recurring part of the workshop agenda
is a presentation that reviews and summarizes the advances made
in the field over the last year; this is intended to provide an easy
entry point to the most recent progress and achievements. The
2020 presentation was accompanied by a survey workshop paper, a
practice which we hereby continue. We give an overview of all the
LCS-related publications from 11 March 2020 to 10 March 2021. The
46 publications we review are grouped into seven overall topics:
Formal theoretic advances, contributions to LCS-based multi-agent
reinforcement learning, approaches to setting and adapting LCS
hyperparameters, new LCS architectures and adaptations, LCS im-
plementations, improvements to existing LCSs and applications of
LCSs.

CCS CONCEPTS
• Computing methodologies → Rule learning; Genetic algo-
rithms; • General and reference → Surveys and overviews;

KEYWORDS
Learning Classifier Systems, Survey

ACM Reference Format:
David Pätzel, Michael Heider, andAlexander R.M.Wagner. 2021. AnOverview
of LCS Research from 2020 to 2021. In 2021 Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’21 Companion), July 10–14, 2021,
Lille, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3449726.3463173

1 INTRODUCTION
Since 2019, a recurring segment of the International Workshop on
Learning Classifier Systems (IWLCS) is its organizers giving a pre-
sentation of an exhaustive overview of learning classifier system
(LCS) research that was conducted over the past year. The 2020
presentation was accompanied by a survey workshop paper [31],
a practice which we hereby continue. Our primary goal is to con-
tribute to a better organized research community; showcasing the
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most recent developments of the field helps to connect LCS re-
searchers but also serves people new to the field as they can more
quickly assess the latest achievements, current challenges as well
as links to other areas.

In the next section, we shortly present the methodology we used
for identifying publications to be included in our overview. The
remaining sections correspond to the seven major topics that the
46 contributions we found could be divided into and a concluding
summary. We mention each publication only once, even if some fit
into several sections; for each paper we choose the first section it
fits into, in the order in which the sections appear.

2 METHODOLOGY
This survey is limited to contributions in English with publication
dates on or after 11 March 2020 (one day after the end of the period
of the previous survey) and before 10 March 2021. Note that some
conferences may have published their proceedings within this in-
terval despite in fact taking place at another date; since we only
consider publication dates, these entries are covered by this survey
as well. We intentionally do not include military applications of
LCSs (of which we actually found one this year). Also, we leave out
papers published on arXiv unless they are relevant for a follow-up
paper which meets our criteria. Finally, we exclude publications
that were already cited in the previous year’s survey [31] even if
they were eligible for the present survey as well (this may be the
case, for example, if they have been re-published or moved from a
‘pre-proof’ to a ‘published’ status).

Our primary search tool was Google Scholar1 with its time range
feature as it seemed to consistently report more relevant publica-
tions than comparable tools, especially for more general search
queries. We ultimately only used five different queries, two very
general ones and one for each of the three major LCSs that we knew
have been investigated in recent years; more specific terms did not
yield relevant results that were not found by these as well (at least
not in March 2021). The following lists each query with the number
of Google Scholar result pages that we examined for papers meet-
ing our requirements (numerator) and the total number of result
pages (denominator); each Google Scholar result page displayed 10
publications and we set the time range filter to Since 2020.

• learning "classifier system" (34/>100)2
• "evolutionary rule-based" learning (3/3)
• xcs classifier system (14/14)
• "extracs" classifier system (1/1)
• biohel (2/2)

We also checked a number of LCS researchers (especially, but not
exclusively, ones we know to be active) and the proceedings of the

1https://scholar.google.com
2We stopped when we noticed that the results of at least ten consecutive pages did
not contain any LCS-related publications that had not yet been listed on the preceding
pages (i. e. we estimated the probability of further relevant results to be very low).
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three main venues that have attracted LCS researchers in the past:
CEC, GECCO and Evostar. As we did not find any publications this
way that we had not already found using Google Scholar, we are
confident that our Google Scholar searchwas sufficiently exhaustive
and there was no need to further refine the used search terms.

3 FORMAL THEORY
We only found a single contribution performing formal theoretic
work regarding LCSs. Just like in last year’s survey [31], we want to
stress that although research effort in this direction has decreased
over the years [30], there is a dire need for analysing LCSs more
formally. Only with formal analysis will we be able to conclusively
ascertain which classes of problems they are best suited for, which
of the many design decisions were actually reasonable and, in the
end, improve their performance substantially. One example for a
step in that direction is the following publication.

Nakata and Browne [24] investigate more in-depth their previous
formal results on setting XCS’s hyperparameters 𝛽 (learning rate),
𝜖0 (error tolerance) and 𝜃sub (subsumption threshold) optimally for
binary classification problems. They discuss the issues arising from
applying one of their central assumptions, namely, that a rule’s true
accuracy value can be determined at every iteration from previous
experiences—which is not true in general due to sampling usually
having to be considered random. However, they are able to derive
an adjustment to their framework which takes this problem into
account. They compare the theoretically derived ideal parameter set-
tings (both with and without the adjustment) with commonly-used
XCS parameter settings on a range of comparatively large-scale
synthetic problems (70- and 135-bit binary multiplexers, the real-
valued 37-bit multiplexer, a design verification toy problem as well
as concatenated and aliased multiplexers). Configurations using
the formally derived hyperparameter values perform best in all sce-
narios but the design verification problem where the (unadjusted)
optimal configuration actually performs worst; however, the latter
can be traced back to the above-mentioned problematic assumption
and the adjusted optimal settings perform best by far.

4 MULTI-AGENT REINFORCEMENT
LEARNING

This section showcases the two publications from last year that
explicitly investigate general approaches to multi-agent reinforce-
ment learning settings.

Chen et al. [7] present an XCS extension, X-OMQ(𝜆), for learning
deterministic policies for zero-sum Markov Games (ZSMG) with
fully competitive tasks and alternating turns. To speed up training,
an eligibility trace mechanism is used: encountered states and ac-
tions are recorded and, instead of merely updating the last action
set, X-OMQ(𝜆) also updates all classifiers matching that historical
data. The authors provide a comprehensive study of their algo-
rithm and compare it to several other state-of-the-art approaches
that are typically used for solving ZSMG, that is, six Q-learning–
based and five neural network–based ones. The tasks investigated
are Littman’s soccer, hunter prey and Hexcer with the respective
RL-agents competing against random opponents or, in the case of
Hexcer, both random opponents as well as an HAMMQ-based agent.
From their detailed results, the authors conclude that X-OMQ(𝜆)

performs similarly to the other approaches. However, they also
stress the greater explainability over neural network–based algo-
rithms as well as the possibility to transfer rules to similar scenarios
and point out that the approach in its current form comes short of
solving image-based or continuous action tasks.

To improve the capabilities of XCS in the context of other com-
petitive multi-agent RL problems, Chen et al. [6] further introduce
Bayes-XCS, a variant of XCS extended in several aspects:

• A library for the policies of each opponent which is used
to assess offline the agent’s available response policies with
respect to the policies in the opponents’ policy library by
forming performance models using Bayesian policy reuse.

• The use of neural network–based opponent modelling from
behavioural data collected during interaction.

• An online policy reuse part in which a response policy is
selected based on multiple factores (e. g. opponent models
and behaviours) during online interactions.

The evaluation in a soccer game on a discrete grid revealed that
Bayes-XCS outperforms both examined state-of-the-art multi-agent
RL algorithms (namely, Bayes-Pepper and Bayes-ToMoP) as Bayes-
XCS is capable of accurately and efficiently detecting the opponent
policy in this game and, thus, reuse the best response policy.

5 SETTING AND ADAPTING
HYPERPARAMETERS

Evolutionary ML techniques often have a significant number of
hyperparameters. In order to achieve optimal learning performance,
some of these need to be configured carefully—which is not always
possible in advance, especially in real-world problems. Also, having
sensitive hyperparameters exposed reduces the overall usability
of a method as non-expert users may be discouraged by default
configurations not working that well or the prospect of having to
perform more or less complicated analysis (e. g. hyperparameter
studies) beforehand. This section presents four recent approaches to
automatedly adjusting some of the more sensitive hyperparameters
of XCS, XCSF and BioHEL, respectively.

Horiuchi and Nakata [15] build on the formal theoretic work
of Nakata and Browne [24] (see Section 3) who derived optimal
values for the XCS hyperparameters 𝛽 (learning rate), 𝜖0 (error tol-
erance) and 𝜃sub (subsumption threshold) for Boolean classification
problems. As stated earlier, the formal framework to compute those
values relies on knowledge of an accuracy threshold value that cor-
rectly splits rules into being accurate or inaccurate; while this value
can be determined for some synthetic problems, it is not known in
general. Horiuchi and Nakata now formulate a scheme to estimate
that value during learning which enables an adaptation mechanism
for 𝛽 , 𝜖0 and 𝜃sub that can be used on Boolean classification prob-
lems. They test their mechanism on several well-known Boolean
problems and are able to show that the resulting XCS derivative is
able to solve problems that XCS with commonly-used parameter
settings cannot solve (e. g. the 11-bit class-imbalanced multiplexer,
carry problems and majority-on). On very simple problems (e. g.
the 6-bit multiplexer), however, their approach is inferior to the
original XCS due to the optimal values not having much impact on
performance and the additional time that the adaptationmechanism
requires to converge.
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Hansmeier et al. [13] aim at reducing the number of sensitive
hyperparameters of XCSF and improving the system’s performance
in dynamic environments (i. e. cases where the function learned by
XCSF changes over time). They introduce an adaptation mechanism
for optimizing one of XCSF’s most important hyperparameters: the
highly problem dependent error tolerance 𝜖0, that is, the target
bound on the approximation error. Different to the aforementioned
approach by Horiuchi and Nakata [15] for binary classification
with XCS, Hansmeier et al. rely on heuristics. The proposed online
updates are based on the approximation error achieved on recent
examples. The authors evaluate their approach on two dynamic
test functions: the RMS function (which is suddenly scaled by a
factor of four) and the oblique sine function (whose frequency is
suddenly changed). Based on this analysis, the authors show that,
in dynamic scenarios, their adaptive error threshold can be superior
to static error thresholds and that it may, although the problem to
be learned changes considerably, even perform similar to a close-
to-optimal static threshold after a short adaptation time. In [12],
the authors then extend their analysis to four additional scenarios
and perform a parameter study regarding the hyperparameters of
their adaptation updates. They conclude that even with suboptimal
hyperparameters, the adaptation mechanism is “able to maintain an
approximation error (. . . ) close to what is achieved with well-suited
static thresholds”. Also, on the problems considered, performance
is comparable to configurations with optimal static error thresh-
olds (optimality determined empirically; the new approach led in
the worst case only to a 11.5% higher approximation error) and
significantly better than less suited error thresholds.

Like XCS(F), BioHEL has quite sensitive hyperparameters. Franco
et al. [10] present an analysis method for binary problems with
which the coverage breakpoint—one of BioHEL’s most critical and
sensitive hyperparameters—can be set at runtimewithout expensive
preliminary testing. The employed heuristic combines observations
from data and a sample of randomly initialised rules to group prob-
lems according to the structure of their 𝑘-DNF form. Besides a
reduction in runtime, this approach benefits usability as users tend
to opt for default configurations rather than performing expensive
hyperparameter studies. The authors validate their approach on
synthetic problems with and without noise as well as on a noisy
real world binary protein structure prediction problem (i. e. the
contact number prediction). For the synthetic data, the heuristic
achieves sub-par results in cases of highly overlapping rules and
for larger 𝑘 with either too few or too many terms but is gener-
ally able to optimize the coverage breakpoint satisfactorily. For
the contact number prediction, the highest accuracy models found
by traditional hyperparameter search and the new approach were
identical; however, computation time was reduced from 285 hours
to 81 hours—a reduction of 71%. Based on this, the authors propose
the heuristic be used for other LCSs like GAssist and XCS as well.

6 NEW LCS ARCHITECTURES AND
ADAPTATIONS

We found seven contributions proposing some kind of new LCS
architecture or extensions of existing LCSs to entirely new kinds
of problems.

Liu et al. develop a new LCS for Boolean supervised learning
problems which they name Absumption and Subsumption based
Learning Classifier System (ASCS) [20]. Instead of attempting to
learn what Butz and Kovacs termed the optimal solution [5], ASCS
tries to compile what the authors call a natural solution, that is,
the set containing all the correct and unsubsumable rules. Other
than for optimal solutions, where there, in general, is more than
one for a certain problem, there is exactly one natural solution
and this solution provides human-understandable insights into the
problem’s properties. Learning natural solutions requires a more
deterministic process than most currently-used LCSs have; ASCS
thus only relies on absumption (removes over-general rules), sub-
sumption (removes over-specific rules), informed mutation and
compaction—this also results in less hyperparameters than, for ex-
ample, XCS-based systems. The authors evaluate their system on
a range of Boolean problems (multiplexers, carry, majority-on) of
different sizes, showing that ASCS is capable of solving problems
that XCS and UCS cannot and is more efficient in terms of comput-
ing time. On the problems considered, other than XCS and UCS,
ASCS consistently finds the natural solution which can be directly
translated into human-readable diagrams. However, further work
is needed to adapt ASCS to real-world, noisy domains.

In their extended abstract, Verma et al. [46] report on the prelim-
inary results of a genetic programming (GP) tree–based LCS called
GP-LCS derived from ExSTraCS. Their project’s goal is to develop
a more flexible framework that allows for different knowledge rep-
resentations (in particular, GP trees and rules) to coexist in an LCS
population and automatedly chooses a well-suited mix of these
for the problem at hand. As a first study, they compare GP-LCS
to several GP-based learning methods on six regression and two
classification datasets. They conclude that GP-LCS seems to be a
competitive approach; one reason of which is conjectured to be the
inherent ensemble nature of ExSTraCS. For future work, they plan
to develop a well-behaving fitness function which allows for rules
and GP trees to coevolve in a single population and then reintegrate
ExSTraCS rules into their system.

An extension of UCS to multi-label classification tasks is pre-
sented by Nazmi et al. [25]. They investigate two fitness measures
suitable in this context as well as two different ways for computing
predictions. In a comparison with other multi-label classification
methods, their system’s average rank is better or competitive on
most metrics; findings are supported by a sound statistical analysis.

With the Supervised Rule-based Learning System (SupRB-1), Hei-
der et al. [14] present a new Pittsburgh-style LCS for supervised
learning of multi-dimensional continuous decision problems. The
system batch-learns an approximation of a continuous quality func-
tion and is then capable of predicting the quality of all possible
choices for a given situation. In order to find an optimal choice for a
given situation (the primary use case is finding optimal parametriza-
tions of industrial machinery), analytical optimization is used. This
aims at providing an ML-based simulation in contexts where tra-
ditional direct optimization on the real-world problem is too ex-
pensive due to high costs of individual function evaluations and
actual physics-based simulations are unavailable or too inaccurate
but data is gathered automatically with every production cycle.
They propose usage in an additive manufacturing context and in-
troduce an adjustable Gaussian mixture problem, which simulates
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similarly complex fitness landscapes but allows to judge SupRB-1’s
optimization capabilities.

The work of Siddique et al. [39] builds on the observation that
vertebrate brains are able to transfer knowledge attained on simple,
small-scale problems to more complex, larger-scale tasks—which is
an often-sought property of ML methods. In biology, this capability
is often attributed to the lateralization and modularity of the brain
and the resulting ability to consider inputs at different levels of
abstraction. This inspired the authors to investigate a lateralized
approach to ML; they use LCSs to do so, since these are suited due
to their inherent niche-based nature. They discuss and evaluate
three classes of problems:

• Boolean problems (parity and hierarchical multiplexer; serv-
ing as a proof of concept),

• navigation/RL (non-Markov maze environments), where
they observe that the problem of aliasing states can be dealt
with by the lateralization, and

• computer vision (cat vs. dog classification).

The merits of the approach for computer vision scenarios are elab-
orated on more in-depth in another publication by the same au-
thors [38]: They are able to show that lateralization increases ro-
bustness against adversarial attacks by performing classification as
follows: In the so-called context phase, multiple deep neural networks
DNNs generate predictions either for the constituent level (i. e. the
individual parts) or the holistic level (i. e. the big picture) of the
given image. In case the predictions at the constituent level and the
holistic level diverge in estimation, the system is in doubt about
correctly classifying the given image and invokes the so-called
attention phase. In this phase, multiple LCSs are used to generate ei-
ther constituent-level predictions or holistic-level predictions based
on different types of features computed for segmented versions
of the given image. Finally, all predictions from both phases are
analysed to determine the final prediction vote. The experimental
results demonstrate that the lateralized system successfully exhibits
robustness against adversarial attacks and outperforms state-of-
the-art DNNs (such as ResNet and VGG) in classifying normal and
adversarial images.

Another challenging task inmachine vision is the classification of
underwater images due to specific factors that affect visibility (e. g.
low illumination and high noise). Motivated by this challenge, Irfan
et al. [16] present a lifelong learning ML model, named CAXCF-LL,
based on a convolutional autoencoder (CAE) and an XCSR variant
called XCSR with code fragment–based lifelong learning (XCF-LL).
The encoder of the CAE is used to reduce the dimensionality of
the input images to an appropriate level for XCF-LL, which classi-
fies the images based on the extracted features. After the learning
phase, XCF-LL accumulates the learned knowledge through con-
tinuous learning as it stores beneficial knowledge from learned
data sets in a knowledge base (KB) by extracting useful code frag-
ments of all experienced and accurate rules present in the final
population. The learnt knowledge stored in the KB is utilized to
solve future problems in the same or related domains. In evalua-
tion experiments comprising two underwater data sets and one
standard data set, CAXCF-LL is compared to an implementation
of CAXCF-LL without lifelong learning (i. e. reuse of previously
learned knowledge) and state-of-the-art CNN algorithms (such as

DenseNet and Xception). The obtained results reveal CAXCF-LL
achieves superior accuracy in almost all the studied situations and
learns the problems faster due to the reuse of knowledge.

7 NEW AND UP-TO-DATE LCS
IMPLEMENTATIONS

Discussions among researchers at recent IWLCSworkshops pointed
towards the lack of an easy-to-use software as a contributing factor
to the unfamiliarity to and poor adoption of LCS research within
the broader field of artificial intelligence and ML. This led to Zhang
and Urbanowicz [50] introducing scikit-eLCS, an implementation
of a UCS derivative called eLCS. Scikit-eLCS is compatible with
the well-known and widely used Python ML library scikit-learn
which facilitates the application of LCS for a broader audience. As
indicated by the evaluation results, scikit-eLCS is an easy-to-use
yet effective supervised LCS and a potential starting point for LCS
developement and research in Python.

Based on the discussion mentioned in the previous paragraph,
we want to use this survey to also provide readers with a list of
links to open source implementations of LCSs that 1) have received
updates in the past two years and 2) are general enough to be
applied to new data without major rewrites (i. e. are not isolated
solutions created merely for investigating a certain fixed scenario).
They are given in Table 1; aside from the name of each project and
its supposed main maintainers (as far as we were able to determine
them), we also list the LCS variants it implements as well as the
programming language used.

8 FURTHER LCS IMPROVEMENTS AND
EXTENSIONS

This section presents the remaining improvements and extensions
to existing LCSs that have not already been referenced in one of
the previous sections. We divided the 15 contributions we found
into three groups based on whether they are connected to ACS2, to
XCS or to neither of them.

8.1 ACS2
As with other ML techniques, the non-determinism present in many
real-world environments represents a learning challenge for the
Anticipatory Classifier System 2 (ACS2), especially in the face of
perceptual aliasing. To enable ACS2 to learn an accurate internal rep-
resentation of the environment in that case, Orhand et al. [29] devise
PEPACS, an ACS2 variant based on adding probability-enhanced pre-
dictions (PEP) to classifiers whenever aliased states are detected. The
problem of over-generalization due to PEPs is addressed through
adjustments in the learning process, especially in the genetic algo-
rithm, by transforming all PEPs in the offspring of PEP-enhanced
classifiers to the corresponding symbol of the current state. PEPACS
is evaluated on 16 different maze environments comprising aliased
states. The obtained results show that PEPACS generates a complete
and accurate environment representation even when perceptual
aliasing is present.

In two other publications, the same authors pursue another, dif-
ferent, approach to deal with perceptual aliasing [27, 28]: They build
BACS, another ACS2 variant that integrates behavioural sequences
(i. e. sequences of actions) stored in so-called behavioural classifiers
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Name LCSs Maintainer(s) URL (GitHub) Programming language/further comments

XCSF XCSF Preen rpreen/xcsf fast C backend with Python interface

scikit-eLCS eLCS Zhang and Urbanowicz UrbsLab/scikit-eLCS Python, scikit-learn interface

scikit-ExSTraCS ExSTraCS Zhang and Urbanowicz UrbsLab/scikit-ExSTraCS Python, scikit-learn interface

scikit-XCS XCSR Zhang and Urbanowicz UrbsLab/scikit-xcs Python, scikit-learn interface

Piecewise XCS, XCSR Bishop jtbish/piecewise Python

pyalcs
ACS, ACS2
YACS, MACS Kozlowski ParrotPrediction/pyalcs Python

jGCS GCS Unold ounold/jGCS Java, documentation in Polish
Table 1: General open source LCS implementations that received updates in the past two years (in no particular order).

when aliased states are detected. An evaluation is conducted on
23 maze environments with different aliasing levels revealing that
BACS performs similarly to ACS2 in the studied non-aliased en-
vironments and outperforms ACS2 in most of the studied aliased
environments (14 out of 16).

To further enhance ACS2, Kozlowski and Unold [18] investi-
gate exploration techniques for ACS2 and propose the application
of the optimistic initial quality approach for exploration in ACS2,
which is compared to the epsilon-greedy approach and the biased
exploration techniques action-delay and knowledge-array. The au-
thors conclude that the choice of the exploration technique affects
the model learning performance, especially in the early phase of
the learning process. In addition, they perform experiments in
four real-valued environments (e. g. real multiplexer and cart pole),
demonstrating ACS2 being applicable to real-valued environments
through discretizing the input space. In [19], the same authors in-
troduce the average reward criterion to ACS2, forming a modified
variant called average ACS2 (AACS2), to enhance the capabilites of
ACS2 on sequential decision problems. To assess the performance of
AACS2, the authors compare the modified variant to ACS2 and both
a basic implementation of Q-learning and R-learning in three dis-
cretized multi-step environments: Corridor 20, Finite State Worlds
20 and Woods1. From the results they deduce that AACS2 can solve
these multi-step problems as it is capable of generating a distinct
payoff-landscape with uniformly spaced payoff levels.

8.2 XCS and its derivatives
We want to begin this section with a quick remark. In several of
the papers we read, the term XCS was said to be an acronym for
“extended classifier system”. However, according to the very first
papers on XCS [47, 48], this is not the case (and there also is not
anything “extended” about XCS); instead, the term should probably
rather be seen as a proper name or maybe as a recursive acronym
for XCS classifier system.

In the past decades of LCS research, mechanisms such as Ex-
perience Replay (ER), one of the crucial factors for the success of
Deep-Q-Networks, have barely attracted interest. To bridge this
gap, Stein et al. [42] investigate a variant of XCS extended by ER,
XCS-ER, which performs the learning process of XCS on previously
encountered experiences (representing tuples comprising a state

and the related previous state, action and reward). The performed
evaluation experiments revealed on the one hand significant learn-
ing performance improvements through the increased sampling
efficiency due to ER in single-step environments. On the other hand,
the application of ER in XCS reduces the learning performance in
multi-step environments, which is attributed to ER exacerbating
the problem of over-generalization in XCS.

To improve covering in XCS and make it less reliant on a good
choice of hyperparameters, Tadokoro et al. [43] introduce local cov-
ering for previously covered inputs (XCS-LCPCI). This approach
utilizes neighbouring classifiers from the population for coverage
by copying them and expanding their conditions’ bounds until they
also include the input. For previously unseen inputs, covering oc-
curs as usual. They demonstrate applicability to XCS for binary
problem domains on MNIST, the 20-bit multiplexer and the 11-bit
class-imbalanced multiplexer and show that one less hyperparame-
ter needs to be configured in contrast to traditional XCS.

One of themain strengths of LCSs are their inherent interpretabil-
ity. However, the presence of redundant over-specific classifiers
and inaccurate over-general classifiers obscures the important in-
formation contained in the generated model of the environment.
Liu et al. [21] compare and evaluate in more detail three previously
proposed approaches to enable human-discernable visualizations
of an LCS model’s underlying patterns: feature importance maps
(FIM), action-based feature importance maps and action-based fea-
ture’s average value maps. Their results highlight that these methods
improve the interpretability of LCSs since they are able to precisely
describe informative underlying patterns of a learned model. Ad-
ditionally, FIMs are capable of reflecting the development of the
classifiers’ generalization levels during the learning process as well
as of precisely identifying redundant attributes for hidden domains.

With greedy niche mass compaction (GNMC), Bishop and Gal-
lagher [4] present a new compaction technique for XCSF in discrete
RL settings. Evaluation of the technique takes place on both de-
terministic and stochastic maze-like FrozenLake8x8 environments.
Their XCSF baseline uses interval-based conditions, linear predic-
tions and the XCS𝜇 extension for handling uncertainty. To perform
compaction, GNMC keeps classifiers greedily according to their
quality (determined by amass function) from each distinct action set.
The number of classifiers that are kept depends on the distribution
of the classifiers and an additionally introduced hyperparameter.
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The authors stress that, in contrast to other compaction techniques,
applying GNMC never results in all classifiers of an action set being
removed. An evaluation shows a significant reduction in popula-
tion size, without increasing function approximation error and only
with a slight decrease in policy accuracy.

Nguyen et al. [26] present mXOF, an extension to multi-task
learning for the XCS derivative XOF. mXOF consists of multiple
XOF instances, one per task to be learned, which transfer features
among each other if their respective tasks are related according to
a novel dynamic task relatedness measure. The authors evaluate
their system on groups of Boolean classification problems, both
unrelated as well as related ones; as a baseline, multiple separate
XOF instanceswithout feature transfer are used. The results indicate
that XOF’s and mXOF’s performance on groups of unrelated tasks
is similar whereas for sets of related tasks, mXOF outperforms XOF.
Besides that, a short comparison with several other standard ML
methods on the UCI Zoo dataset shows mXOF’s potential for being
competitive.

Ramos et al. [32] integrate Hebbian learning (a learning method
based on the plasticity of the connections of neurons) into the gen-
eralized XCS (GXCS), forming the variant GXCS-H by replacing
the prediction array with a Hebbian weight vector and extending
the classifier conditions with input-output pairs for the weight vec-
tor. The first results in comparison experiments with the standard
GXCS in a woods environment and on the 6-multiplexer show that
the addition of Hebbian learning to GXCS results in an improved
overall learning performance. Furthermore, the use of a degrada-
tion variable leads to an increase in accurate classifiers as well as a
reduction of over-specific classifiers.

8.3 Other LCSs and more general results
In LCSs, large amounts of computational resources are expended
on matching, that is determining which classifiers’ conditions are
fulfilled by the current input. To reduce the computation time of this
step, Rosenbauer et al. [34] propose two new generic approaches
that—in contrast to previous proposals—do neither rely on spe-
cialised hardware nor on an implementation in a system-level pro-
gramming language and should be suitable for several LCS repre-
sentatives. The first approach relies on locking access to the match
set, while the second distributes local match sets to threads and
merges them afterwards. The authors measure a 58.33% to 67.74%
decrease in runtime for matching and conclude that their first ap-
proach is better-suited if only a low number of cores is available
while the latter outperforms on larger setups.

Motivated by the need for a robust and interpretable ML algo-
rithm for classification tasks in the medical domain, Alaoui and
Elberrichi [1] propose NCGABIL, an extension of the Pittsburgh-
style LCS GABIL by the neuronal communication algorithm (NCA),
which optimizes the present rule sets in each learning iteration.
The authors compare NCGABIL to the original GABIL and multiple
other classification algorithms present in WEKA (such as a conjunc-
tive rule learner and a decision table/Naive Bayes hybrid classifier)
on 16 well-known medical data sets from the UCI repository. The
results indicate that the application of NCA leads to a considerable
improvement of GABIL as NCGABIL achieves a superior predictive
accuracy in 12 out of 16 data sets.

With the weighted Grammar-based Classifier System (wGCS),
Unold et al. [45] introduce a new LCS for learning a weighted
context-free grammar for some given data. wGCS builds upon pre-
vious work [44] on context-free grammars that did not yet include
weights. Their experiments on three different synthetic context-free
languages show competitiveness over standard methods for said
task.

9 APPLICATIONS
Finally, a number of last year’s contributions are about how LCSs
can be applied to certain problems or how well they perform on
them. We divided these into two groups based on whether they
are directly associated to a real-world application or not (i. e. more
theoretic).

9.1 Theoretic applications
Jordan et al. [17] propose LCSs as decision making modules for
agent-based models that incorporate social influence and heteroge-
neous interconnected agents. Their case study is concerned with
modelling pupils and their decisions of whether to engage with
other pupils based on their expected marks. Each pupil agent uses
a niche- and strength-based LCS to model the expected utility of its
own education. In experiments, achieving good marks, bad marks
and imitating peers were set to be the respective optimal strategy
which the LCS was able to identify and follow. The authors con-
clude that LCSs may be an adequate approach to mimic human
decision making in agent-based models; however, they also point
out the restrictedness of their case study.

A major challenge in exploratory modelling methodology is un-
derstanding the data generated from the explored set of models.
To provide improved explanations in the context of their Strategy
Learning System framework for exploratory modelling, Rodriguez
and Yilmaz [33] develop an XCS-based analytical tool which finds
comprehensible rules and enables visualization of them using heat
maps. The results of the performed experiment illustrate the in-
creased generalization capabilities of the XCS-based tool when
compared to directly visualizing the results of the explored set of
models.

9.2 Real world applications
Automated testing plays a major role in the development and de-
ployment of new products, both software and hardware. During
recent years, due to paradigms such as test-driven development,
for many products the number of tests defined has increased by
so much that it has become infeasible to run all tests unless abso-
lutely necessary. This led to the idea of prioritizing tests in such a
manner that, given a fixed time budget, only the most important
ones, according to some measure, are executed at any time. In [35],
Rosenbauer et al. present their XCS-based solution to this problem
and compare it with an earlier approach based on deep RL, showing
that in six out of nine configurations (three reward functions, three
data sets) their system is significantly superior. Besides this, they
also investigate the effect of the inclusion of prioritized experience
replay (ER), a technique well-known from its application to deep
RL, into their system. This leads to a similar observation Stein et
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al. made earlier [42], namely, that ER can actually worsen XCS’s
performance if the encountered states tend to be similar.

An improvement Rosenbauer et al. develop for their system uses
XCSF with linear local models for approximating the state-action-
value function [36]. This allows to assign a real-valued priority to
each test instead of one of a finite set of ranks which results in the
system outperforming basic XCS and being superior to the deep RL
approach in eight of nine configurations considered. Later in the
year, the same authors also investigate whether ER further improves
XCSF’s performance on the problem considered [37]; they conclude
that this is indeed the case and that XCSF with ER performs equal
or better than the deep RL–based approach.

In order to achieve the desired application goals in the area of
conflict between adequate computing power and necessary perfor-
mance constraints, multiprocessor systems on chips (MPSoCs) are
increasingly dependent on adaptive resource management strate-
gies. Maurer et al. [23] present a hierarchical, cross-layer hard-
ware/software resource manager based on learning classifier tables
(LCTs), which can be seen as a simplified version of LCSs. The
resource manager comprises:

• A reflective monitoring control layer to monitor and, if nec-
essary, control emergent behaviour by translating system
requirements and application goals into objective functions
for the LCTs.

• LCT-based leaf controllers that directly manipulate and en-
force MPSoC building block operation parameters to explore
and optimize potentially conflicting system requirements.

• An archive-based backup policy approach integrated within
the leaf controllers providing the ability to adhere to con-
straints by resetting the system to valid configurations as it
approaches constraints.

By evaluating their resource manager in a hardware implementa-
tion based on an FPGA board containing three SPARC-V8 cores, the
authors show reflective supervision allows the hardware/software
control layers of multicore processors to self-adapt under changing
environmental or workload dynamics. In addition, archive-based
backup policies manage potentially critical actions proactively, pro-
viding a trusted and effective means of complying with critical
system constraints.

Smirnov et al. [40] develop an offline design space exploration
(DSE) technique named Learning Optimizer Constrained by ALtering
conditions (LOCAL) which is heavily inspired by LCSs. Offline DSE
is the problem of pregenerating and optimizing a set of configu-
ration alternatives to choose from at runtime in order to make a
system adaptive that cannot perform expensive computations in
order to choose a new configuration; examples for such systems
are embedded systems. Smirnov et al.’s system generates a set of
reconfiguration rules. They evaluate their approach on an adaptive
many-core system tasked with dynamic application deployment
and conclude that it outperforms a state-of-the-art approach to DSE
in terms of performance and computational efficiency.

A challenging task in the field of swarm robotics is the creation
of a mobile ad-hoc network (MANET), that is, establishing con-
nectivity between mobile network devices with minimal operator
interaction in network restricted areas. In their paper, Smith et al.

[41] address this challenge with a neuroevolution- and an LCS-
based algorithm that are both designed to generate the required
behaviour within a swarm to establish a MANET. In evaluation
experiments with virtual swarms, the LCS-based algorithm out-
performs the neuroevolution-based algorithm by up to 61% with
regard to data transmission efficiency and also provides improved
swarm performance and reliability in both known and unknown
environments.

Guevara and Santos [11] develop a hybrid system combining
UCS, Bayesian networks and GANN-C for the assessment of the cor-
rect execution of rehab exercises by patients with hip-surgery. The
authors evaluate several algorithms (besides the aforementioned
ones as well as C4.5 and FURIA) on classifying the correct execution
of rehab exercises based on motion capture data annotated by a
physiotherapist. Then, the algorithm performing best is selected
for each limb, yielding a hybrid approach (e. g. UCS is used for the
right leg whereas a Bayesian network is used for the left leg) which
achieves an accuracy of over 98%.

Yazdani [49] applies XCS to measurements of the force needed
by robot manipulators to displace potential breast cancer tissue.
The author evaluates his approach by training and testing XCS on
a simulated dataset (400 simulation instances for training and 120
for testing) and reveals that XCS is, in this scenario, capable of both
detecting breast cancer and determining the size and location of
the cancer tissue.

The use of wind turbines for power generation has led to an
increase in the variability and uncertainty of power supply as well
as frequency control and transient stability issues in power grids,
which poses significant challenges for grid operators. To address
this, Alipour et al. [2] introduce a hybrid classifier combining XCSR
with an adaptive neuro-fuzzy inference system (ANFIS) to predict
wind speed ranges for arbitrary time intervals. Their approach es-
sentially solves a binary classification task (‘Is the wind speed range
suitable for energy production or not?’) using multiple meteorolog-
ical features (such as temperature and solar radiation). After having
completed XCSR’s learning process, the classifier population is used
to generate two ANFIS models (one for each class) that serve as the
final model in the following. The authors compare their method to
the original XCSR model and several other classifiers included in
MATLAB and demonstrate its superior performance and accuracy
for both short- and long-term horizons.

Alsharafat [3] conducts a study on utilizing the cuckoo algo-
rithm in combination with XCS to select features for intrusion
detection systems—however, the exact details are slightly obscure.
The author’s evaluation results hint towards their method being
competitive.

Malhotra and Jain [22] compare 16 search-based techniques re-
garding their performance on predicting software defects in 13
object oriented software projects. Among the 8 methods considered
that the authors classify as “statistically good predictors” are UCS,
BioHEL as well as other LCSs.

A decision support system for classifying ECG signals is developd
by Zouri et al. [51]. They employ an LCS to improve existing rules
and—if needed—discover new rules that are stored in a Semantic
Web Rule Language (SWRL) repository. The use of SWRL ismeant to
facilitate integration into common systems. Discovering new rules
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is either triggered by expert users or whenever no rules matching
the current input are found.

Ferjani et al. [8, 9] present a multi-agent system for sleep analysis.
Each learning agent encapsulates an XCS and provides predictions
for sleep stage classification. Those predictions are then aggregated
through majority voting and, if needed, selected against a static
knowledge background. In their experiments, the authors utilize
four agents each operating on a distinct physiological signal. They
report difficulties in configuring XCS’s hyperparameters for the
used data although the results are competitive to literature while
needing less labeled data.

10 SUMMARY AND CONCLUSIONS
This paper gave an overview of all the LCS-related publications
since 11 March 2020, that is, since the submission of the previous
such survey to the IWLCS 2020. We clustered the contributions we
found into seven overall topics.

Formal theory has only seen a single work in the last year; how-
ever, based on that and earlier work, there has been created a prac-
tical, well-performing online hyperparameter adaptation method.
We encourage researchers to contribute further formal theory in
order to, in the long term, develop more such formally backed
improvements to LCSs.

Besides the just mentioned one, there were also several other
promising approaches to setting and adapting the hyperparameters
of some of the most popular LCSs. Especially, since some of these
approaches may be utilized in other LCSs than just the ones they
were originally developed for, we expect the number or at least the
sensitivity of LCS hyperparameters to be reduced in the upcoming
years.

We listed recently updated implementations and noticed an
increased awareness to the benefits of compatibility with quasi-
standards such as scikit-learn.

Just like in recent years, both ACS2 and XCS, received the most
attention regarding different kinds of improvements and extensions.

Finally, Sections 6 and 9 showed that new LCS architectures
for solving different kinds of problems are still being developed
as well as that LCSs have been applied to a variety of theoretical
and practical problems; this shows, once more, the versatility of
the LCS paradigm.
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