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Abstract
Genetic Programming (GP) for symbolic regression often generates
over-complex models, which overfit the training data and have poor
generalization onto unseen data. One recent work investigated con-
trolling model complexity by using a new GP representation called
Adaptive Weighted Splines (AWS), which is a semi-structured rep-
resentation that can control the model complexity explicitly. This
work extends this previous work by incorporating a new parsi-
mony pressure objective to further control the model complexity.
Experimental results demonstrate that the new multi-objective GP
method consistently obtains superior fronts and produces better
generalizing models compared to single-objective GP with both
the tree-based and AWS representation as well a multi-objective
tree-based GP method with parsimony pressure.
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1 Introduction and Background
Genetic Programming (GP) for Symbolic Regression (GPSR) [4]
aims to learn a mathematical function that best represents some
unknown functional relationship between the given features 𝑋
and the continuous target 𝑦. Compared to traditional regression
methods GPSR is able to learn both the model structure and the
model parameters simultaneously without any prior assumptions
about the distribution of the data or the model structure. With its
flexible representation ability and the symbolic nature of solutions,
GPSR is typically good at learning complex underlying relationship
from the data. However, the downside of the flexible representation
is that it often learns over-complex models which are prone to
overfitting, causing poor generalization onto the unseen data.
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Recent work presented in [7] attempted to regulate this problem
of poor generalization via introducing a new representation for
GPSR called Adaptive Weighted Splines (AWS). Which has the
benefit of more explicit control over the model complexity through
the use of splines. When using GP-AWS, models are represented
by an aggregation of 𝑝 feature splines, which models each feature
in the input space 𝑋 . Each feature spline has three components: a
smoothing spline 𝑆 , a primary coefficient 𝜃 and a secondary coefficient
𝛽 . The two coefficients 𝜃 and 𝛽 simulate embedded feature selection
and feature weighting. The 𝑝 splines are linearly combined using a
weighted summation operation to predict 𝑦 [7].

Goals: This work aims to develop a new GP-AWS method which
uses Evolutionary Multi-objective Optimization (EMO) techniques
to minimize both the training error and the number of active fea-
tures/parameters in the model. To investigate whether considering
the model complexity as a separate objective in GPSR with the AWS
representation can lead to the development of more parsimonious
and better generalizing models.

2 The Proposed Method
Research into the AWS representation has thus far been treated as a
single-objective optimization problem [7], where only the empirical
error is considered. Historically a promising avenue of research to
improving the generalization capabilities of GP models has been
to minimize both the training error and some model complexity
penalty simultaneously.

Accordingly a new multi-objective method for GPSR with the
newly proposed AWS representation is developed, which is called
Adaptive Weighted Splines with Parsimony Pressure (GP-AWS-
PP). Instead of only minimizing the training Mean Squared Error
(MSE) as shown in 𝑓1, where 𝑦 and 𝑦 are the true and predicted
output values respectively, and 𝑛 is the number of instances, an
additional objective is also minimized simultaneously which is the
total number of active features used by the model, made explicit by
the primary coefficients 𝜃 as shown in 𝑓2.

𝑓1 =
1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑦𝑖

)2
(1) 𝑓2 =

𝑝∑
𝑖=1

𝜃𝑖

{
1, if 𝜃𝑖 ≥ 0.5
0, if 𝜃𝑖 < 0.5

(2)

The additional objective 𝑓2 is expected to improve the generalization
of the models generated by GP with the AWS representation. This
is because minimizing the number of active/selected features can
reduce the tendencies of a model to learn spurious patterns in
features that are not relevant to the target 𝑦, or are redundant if
the signal is captured by another feature [1, 8].
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Figure 1: Best Non-dominated Fronts based on the Testing
MSE and the Number of Parameters.

3 Experiments and Results
Benchmark Methods: The proposed method is compared to 3
benchmark methods: GP with Parsimony Pressure (GP-PP) [5] a
multi-objective GPSR method which minimizes both the training
MSE as well as the the number of nodes, Genetic Programming (GP)
[4] a standard single objective implementation of GPSR using the
tree-based representation, and GP with AWS (GP-AWS) a single-
objective GPSR method which uses the AWS representation [7].
The same hyper-parameters are used where possible to ensure the
fairest possible comparison.

BenchmarkProblems: The newly proposedGP-AWS-PPmethod
as well as the 3 benchmark methods are evaluated on 4 real-world
regression datasets taken from previous research [2, 6]. The fol-
lowing datasets Concrete Compressive Strength, Boston Housing and
Automobile were procured from the UCI Machine Learning Reposi-
tory. The remaining real-world dataset Pollution was taken from
the CMU StatLib dataset archive.

Pareto Front Results: The final testing fronts extracted from
100 independent runs on each dataset are shown in Fig. 1. The fronts
are computed by taking the union of 100 independent executions
and taking the best MSE values (𝑓1) at each discrete increment
with respect to the number of parameters (𝑓2) and removing all
dominated solutions, thus giving the best nondominated front.

Analyzing the testing fronts it is observed that GP-AWS-PP gen-
erally achieves very promising generalization performance, which
is notably better than both GP and GP-PP on all of the tested
datasets. In contrast to the single-objective GP-AWS method which
typically constructs highly complex solutions (in terms the number
of parameters), GP-AWS-PP is able to develop simpler solutions
using only a small fraction of the full feature set, consequently
generalizes much better onto the testing set. This is especially no-
ticeable on the both the Pollution and Automobile datasets.

Hypervolume Results: The mean ± standard deviation hyper-
volume values [3] over 100 independent executions and are shown
in Table 1, comparing the performance of multi-objective methods
GP-AWS-PP and GP-PP. Statistical significance testing is reported
using the Mann-Whitney U-test (𝛼 = 0.01). A "+" indicates that

Table 1: Training and Testing Hypervolume Values based
on the MSE and the Number of Parameters.

Dataset Method Training SS Testing SSAvg ± Std Avg ± Std

Concrete GP-PP 0.8116 ± 0.0181 - 0.8102 ± 0.0214 -
GP-AWS-PP 0.9402 ± 0.0034 + 0.9353 ± 0.0042 +

Boston GP-PP 0.9532 ± 0.0081 - 0.8576 ± 0.0228 -
GP-AWS-PP 0.9819 ± 0.0004 + 0.9317 ± 0.0061 +

Pollution GP-PP 0.9852 ± 0.0024 - 0.9831 ± 0.0037 -
GP-AWS-PP 0.9917 ± 0.0000 + 0.9884 ± 0.0004 +

Automobile GP-PP 0.8823 ± 0.0249 - 0.7766 ± 0.0996 -
GP-AWS-PP 0.9374 ± 0.0077 + 0.8909 ± 0.0148 +

the method has significantly better performance compared to the
opposing method, a "-" indicates that the method has significantly
worse performance, and a "=" indicates no significant difference.

Analyzing the training hypervolume results it is observed that
GP-AWS-PP performs statistically significantly better on all of the
tested datasets when compared to GP-PP. Regarding the testing
hypervolume results, the results remain largely consistent with the
training results, continuing to show notably better performance
on all datasets. These results reveals that in the majority of cases
GP-AWS-PP is able to achieve much better hypervolume values
compared to GP-PP. Furthermore, results also shown that GP-AWS-
PP typically has a much higher mean and smaller standard deviation
hypervolume values compared to GP-PP (with the exception of the
Pollution dataset where results are somewhat close), suggesting
that GP-AWS-PP consistently learns superior fronts compared to
GP-PP on average.

4 Conclusion
This paper has conducted the first investigation into applying EMO
techniques to the semi-structured AWS respresentation for GPSR.
The experimental results conducted against the two tree-based GP
methods, and the single objective GP-AWS method highlight the
highly performant generalization capabilities of the newly proposed
GP-AWS-PPmethod, which puts parsimony pressure on the number
of active features to promote better generalizing models.
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