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ABSTRACT
Limited precision floating point computer implementations of large
polynomial arithmetic expressions are nonlinear and dissipative.
They are not reversible (irreversible, lack conservation), lose infor-
mation, and so are robust to perturbations (anti-fragile) and resilient
to fluctuations. This gives a largely stable locally flat evolutionary
neutral fitness search landscape. Thus even with a large number of
test cases, both large and small changes deep within software typi-
cally have no effect and are invisible externally. Shallow mutations
are easier to detect but their RMS error need not be simple.
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1 INTRODUCTION
Large arithmetic expressions are resilient to change (e.g. bugs).

We sample uniformly the space of large polynomials using ad-
dition and multiplication and show changes (bugs) usually do not
impact expressions values. Further even testing as many as a thou-
sand test points (uniformly selected in the range -1.0 to +1.0), the
disruption caused by changes to the functions on average pene-
trates only about 100 nested levels and so they are often invisible
outside the expression. With fewer tests (i.e. a weaker test oracle),
changes impact fewer levels. However, with such a large number
of tests, chance disruption close to the outermost part of the ex-
pression (the root node) may indeed have a sizable effect. Note the
effect of the inserted change/bug progressively fails to propagate
through the expression since both arithmetic operators (+ and ×)
are dissipative (irreversible, lose information) in practice. (See also
[2, 10–14, 18, 20–22, 26].)
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In an idealised computer with infinite precision, sometimes small
changes might be visible. However if the injected perturbation is
far from the top of the expression, real effects, such as floating point
precision and rounding error, may smooth away changes.

For evolutionary computing [8, 27], this means large complex ex-
pressions are robust and present a smooth fitness landscape where
many mutations have no measurable effect or their impact is only
seen on some test cases. Whilst we deal exclusively with arith-
metic expressions, there is growing evidence that this is true of
programming in general [19], [26], [17], [24], [31], [4], [7].

In the case of programming typically there are side-effects. None-
theless it appears that it is common for there to be information
funnels, whereby large amounts of information inside the program
are reduced into a small amount visible externally. If we view each
nested operation or function call in a program as being analogous to
a level in our nested polynomials, then we can view huge software
stacks, which are common in modern computer systems, as being
somewhat similar to the large polynomials we investigate in the fol-
lowing sections. Notice one of the reasons why software engineers
try to test small parts of huge software systems in isolation (unit
testing) is the difficulty of seeing externally the impact of deeply
nested errors or bugs.

Sections 3 and 4 give more details on sampling all possible expres-
sions and changes to them. In the experimental section (Section 5)
addition and multiplication are performed on ordinary 32 bit float-
ing point numbers. We create large arithmetic expressions, make
small changes to them, and trace the impact of the change. In most
cases, the impact dies away before it can affect anything outside
the expression. Section 6 analyses in more detail the dissipation
of one of the larger changes sampled. In Section 7 we conclude
information loss makes software robust but this makes software
engineering, e.g. bug fixing, harder and makes large evolutionary
computing search landscapes smooth and so difficult to search.

2 WHY SOME CHANGES ARE INVISIBLE
In genetic programming [8, 27] the idea of useless bloated code is
well known. Indeed the term intron [30],[1],[29] is often used to
refer to code that has no, or little, impact on the program’s output(s).
For example, a subtree “ored” with true has no effect as the OR
function will always return true regardless of the intron. Similarly
multiplying by 0 always gives 0, so MUL’s other argument has no
effect and can also be said to be in an intron. (There are automatic
expression simplification tools which will spot and remove obvious
introns.) Traditional introns can explain in evolved code many
examples of large expressions being robust to changes. However
the phenomenon is general.

If a leaf 0.892 is changed to 0.992, it is as if an error of 0.1 is
injected into the expression at that point. In a small expression,
this might be easily observed. In a large expression the 0.1 error
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is transformed by each function it passes through. In general the
error may become bigger or smaller. Even under ideal conditions,
floating point arithmetic loses about half a bit of precision at each
operation. So disruption is progressively suppressed. As the ex-
pressions are hierarchical, once disruption on a test case is lost
(i.e. an internal function yields the same answer before and after
the change) it cannot be reintroduced higher in the tree. (Note the
number of disrupted test cases falls monotonically.) This continued
interference of finite computing, means the impact of even large
errors can be totally lost in large expressions.

3 UNIFORMLY SAMPLING
LARGE ARITHMETIC EXPRESSIONS

All the experiments sample uniformly the space of expressions with
12 500 arithmetic operators. As both operators have two inputs,
the expressions are binary trees with 12 500 internal nodes and
12 501 leafs (or external nodes). For a particular input x , the value
of the whole expression is the value calculated by the operator
that is the root node of the tree. (Figure 1 shows an example sub-
expression. Note in all our pictures of polynomials as trees, the
result returning part, the root, is at the top. Figure 2 shows the first
example expression.)

We chose a tree size of 25 001 (internal + external), since such
trees on average have a depth of close to

√
2π |size| ≈ 400 (Flajolet

and Oldyzko [5]) and our earlier work with evolved trees showed on
average typically the impact of mutations was lost after traversing
about 100 functions [16]. Thus if the effect holds in general and not
just in evolved genetic programming trees, we would expect to see
the effect in trees of 25 001 nodes. (As indeed we do.)

The leafs are also sampled. With a probability of 50% the input x
is chosen. The other leafs are chosen uniformly from 250 constant
values chosen at random without replacement from the 2001 multi-
ples of 0.001 between -1.0 and +1.0. By random chance, none of the
special values -1.0, 0, or +1.0 are included.

4 SAMPLING CHANGES
A site for each change is selected uniformly from each large expres-
sion. The subexpression at that location is removed and replaced by
another subexpression. The inserted subexpression is similarly cho-
sen uniformly from a large expression of the same size (i.e. 25 001
nodes). (Cf. Koza’s subtree crossover [8].)

Table 1 describes the random changes. They are plotted in Fig-
ure 3. Notice (column 3 in Table 1), by chance, change 9 is closest
to its root node (depth 47) and is the only example where a change
is visible on any of our 1001 test cases.

5 EXPERIMENT: DISSIPATION OF CHANGE
Figure 4 shows the ten large randomly chosen polynomials.

Figure 5 confirms the monotonic fall in disruption of test cases
as we move away from the disruption. (I.e., as we move up the tree
towards the root node.) Figure 6 shows the same thing, but instead
of counting the number of test caseswhich are not identical, Figure 6
plots the average (root mean square, RMS) difference before and
after the change in the values inside each of the large expressions.
Figure 6 shows, as expected, RMS differences can rise as well as fall

ADD

MUL ADD

0.613 -0.935 0.927 ADD

MUL -0.878

ADD X

MUL -0.475

-0.755 ADD

X MUL

0.825 -0.543

Figure 1: Example subexpression (0.613 × −0.935) + 0.927 +
(−0.755 × (x + (0.825 × −0.543)) − 0.475)x − 0.878 as a tree (fun 0
from Table 1). The value of the expression is given by the
root node, here ADD, at the top. And plotted as an inverted
parabolic red line with + in Figure 3.

Figure 2: Expression 0 presented as a binary tree of 25 001
nodes (depth 383). Root node at top.
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Figure 3: Ten pairs of changes plotted as functions of x , see Table 1. Inserted subexpressions are plotted with lines and crosses.
Horizontal lines indicate constants. Labels on the left margin indicates constant values that are removed. Labels on the right,
constants that are inserted. In three cases x is removed and in two, x is inserted. These are plotted on top of each other along
the diagonal. E.g. in fun 7 the constant -0.149 is replaced by a randomly chosen non-linear function.
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Figure 4: Ten large floating point functions. Vertical axis has been linearly rescaled to plot very different output ranges on the
same axis.
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Test Depth Change
Max Mean depth, size and function

0 383 162.9 163 1 X
replaced by fun 0 19 (ADD (MUL 0.613 -0.935) (ADD 0.927 (ADD (MUL (ADD (MUL -0.755 (ADD X (MUL 0.825 -0.543))) -0.475)

X) -0.878)))
1 377 206.3 325 1 -0.549
replaced by fun 1 1 X
2 305 161.8 190 5 (ADD X (ADD 0.474 X))
replaced by fun 2 9 (MUL (ADD X X) (ADD -0.474 (MUL X -0.543)))
3 376 180.6 148 1 X
replaced by fun 3 7 (ADD (ADD 0.265 X) (MUL 0.837 -0.13))
4 491 253.1 298 1 X
replaced by fun 4 67 (MUL (ADD (ADD (MUL 0.581 (MUL (ADD X 0.837) (ADD (ADD (MUL 0.255 -0.622) X) (ADD X 0.113))))

(MUL X -0.801)) 0.965) (MUL X (MUL (ADD (MUL 0.758 (MUL (ADD X (MUL (MUL -0.07 (MUL (ADD
(ADD (MUL (MUL -0.399 X) -0.285) X) 0.185) X)) (MUL (MUL 0.255 (ADD (MUL (MUL 0.14 (ADD X -0.015))
-0.619) (ADD X -0.106))) (ADD (ADD X X) X)))) X)) X) -0.546)))

5 417 192.1 167 1 X
replaced by fun 5 1 -0.543
6 504 229.2 224 49 (ADD (MUL 0.653 (MUL X (MUL (MUL X (ADD X (MUL (ADD X (ADD 0.305 (MUL -0.247 X))) -0.415))) X)))

(MUL (MUL (ADD (MUL X (MUL 0.289 0.263)) (ADD X -0.147)) (MUL (MUL X (MUL (ADD (ADD -0.272
-0.67) X) (MUL 0.379 0.176))) (MUL X 0.038))) (MUL 0.662 X)))

replaced by fun 6 1 X
7 345 181.1 175 1 -0.149
replaced by fun 7 37 (ADD X (ADD (MUL -0.756 (ADD (ADD 0.667 0.558) (MUL (MUL 0.411 (MUL X (ADD (ADD (MUL 0.243

0.243) 0.752) X))) (ADD (ADD (ADD (MUL X X) (MUL 0.443 X)) (MUL -0.294 (MUL X 0.892))) -0.106))))
-0.082))

8 332 160.6 142 3 (ADD -0.011 X)
replaced by fun 8 7 (ADD (MUL -0.636 0.318) (ADD X X))
9 390 189.3 47 77 (MUL (MUL (MUL -0.546 0.371) 0.704) (ADD (MUL (ADD X (ADD (MUL (MUL (ADD -0.876 (ADD (MUL

(MUL 0.979 (MUL 0.474 0.522)) X) X)) X) X) (MUL X (ADD X (ADD 0.217 (ADD -0.27 X)))))) (ADD 0.558 X))
(ADD (MUL (MUL (MUL X -0.889) (MUL (MUL (ADD (MUL -0.718 (ADD (ADD X 0.593) X)) X) (ADD X
0.309)) (MUL 0.048 (MUL X (MUL 0.879 (MUL -0.831 (ADD X (MUL 0.185 (ADD 0.912 X))))))))) 0.146) (ADD
X X))))

replaced by fun 9 1 0.379

Table 1: Ten changes. Left: maximum and average depths of ten uniformly selected polynomials with 25 001 nodes (Section 3).
Right: uniformly selected changes (Section 4). Column 4 shows the depth of the uniformly chosen change site, whilst column 5
gives the size of the removed subexpression and its replacement and the rightmost column (6) shows them as prefix (lisp like)
expressions. (See also Figures 1 and 3.)

but where the change is deep enough, differences also eventually
fall to zero.

In nine of ten cases disruption (red subtrees and string of blue
nodes in Figure 7) is halted before reaching the root node. Even in
the remaining case, fun 9, disruption is rapidly quenched but does
not quite reach zero before encountering the limit of the polynomial.
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Figure 5: Fall in impact of ten changes with distance from disruption. As expected the fall in test case failures is monotonic.
Only fun 9 does not reach zero (26 of 1001 test cases not identical at root node). Colours are the same as in Figure 3, etc.
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Expression 0 (depth 383) Expression 1 (depth 377) Expression 2 (depth 305)

Expression 3 (depth 376) Expression 4 (depth 491) Expression 5 (depth 417)

Expression 6 (depth 504) Expression 7 (depth 345) Expression 8 (depth 332)

Expression 9 (depth 390)

Figure 7: Expressions 0–9 presented as a binary trees of 25 001 nodes. Root nodes at top. Colour indicates disrupted nodes. Red
(lowest shaded nodes) shows a new subexpression replacing an earlier subexpression. Blue nodes show subexpressions where
at least one test case produces a different internal value as a result of the change. Notice only in polynomial 9 does any part
of the disruption reach the root node.
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6 EXPLAINING LACK OF IMPACT OF
CHANGE 4

Table 1 shows at 67 nodes, change 4 is one of the larger syntactic
changes. Indeed the light blue line in Figure 3 shows it also produces
a large change in behaviour at the change site. (Change 4 replaces
a single x by a large expression which is quadratic in x .) See also
Figure 8. At the point of disruption all but one test case are different
and the RMS difference is 0.98 (light blue line in Figure 6).

At the disruption point the new polynomial is different from the
original at all test points (except x = 0). However, notice except for

ADD
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0.468 MUL

ADD 0.306

-0.011 MUL

ADD ADD

MUL MUL MUL -0.801

ADD X X MUL

MUL ADD

X MUL X MUL

X -0.355 X MUL

-0.756 -0.415
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0.889 X -0.003 MUL

X MUL
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ADD 0.965 X MUL
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0.581 MUL X -0.801

ADD ADD
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MUL X X 0.113

0.255 -0.622

ADD -0.546

MUL X

0.758 MUL

ADD X

X MUL
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-0.07 MUL MUL ADD

ADD X

ADD 0.185

MUL X

MUL -0.285
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0.255 ADD ADD X

MUL ADD

MUL -0.619 X -0.106

0.14 ADD

X -0.015

X X

Figure 8: Fragment of change 4. The original leaf X is re-
placed by the 67 node subexpression (MUL (ADD (ADD (MUL
0.581 (MUL (ADD X 0.837) (ADD (ADD (MUL 0.255 -0.622)
X) (ADD X 0.113)))) (MUL X -0.801)) 0.965) (MUL X (MUL
(ADD (MUL 0.758 (MUL (ADD X (MUL (MUL -0.07 (MUL
(ADD (ADD (MUL (MUL -0.399 X) -0.285) X) 0.185) X)) (MUL
(MUL 0.255 (ADD (MUL (MUL 0.14 (ADD X -0.015)) -0.619)
(ADD X -0.106))) (ADD (ADD X X) X)))) X)) X) -0.546))) in
red. The blue nodes show operations in the original expres-
sion where their value on ≥ 796 of 1001 test cases are dif-
ferent before and after change 4. White nodes show frag-
ment of unchanged large expression, shown in full in Fig-
ure 7. The value of the new subexpression is given by its top
most node, here red MUL and plotted as a function of x in
Figure 3 (light blue line). Section 6 explains why disruption
stops completely after 113 blue nodes and the red change
make no visible external difference.

the changed code (red in Figure 8), for the test case x = 0 all of the
original and the new code must be identical. Therefore at x = 0 the
new and the original polynomial must have the same value.

The next function up is an addition and the one above that is a
multiply. Neither reduces the number of non-identical test cases,
however the multiply reduces the average difference from about 1 to
about 0.0001. The third function is another addition, which reduces
the number of non-identical test cases by 18 (see Figure 9). The
next function is a multiply, which further synchronises the new
and the original polynomial on an additional test point. The next
function is an addition which reduces the RMS difference to zero
on a further nine points (see Figure 10). By Figure 11 (top blue node
in Figure 8) 205 of 1001 test points are identical.
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Figure 9: Impact of change 4 at distance three above the
change point (ADD -0.801, Figure 8). The new functionality
(dashed line) closely follows the original for x < 0.2 and in-
deed at 19 points (+) they are identical.
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Figure 10: Impact of change 4 at distance five (ADD -0.011).
The new functionality (dashed line) closely follows the orig-
inal and indeed at 31 points (+) they are identical.
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Figure 11: Impact of change 4 at distance nine (ADD X, top
of Figure 8). The new functionality (dashed line) closely fol-
lows the original and they are identical at 205 points (+).

7 CONCLUSIONS
Almost all computing operations are irreversible. Meaning after
they have acted it is impossible to know what the state of the
computation was before. For example, adding two registers (r0, r1)
and storing the result in another register (r2). We cannot tell from
the answer which two numbers were added. E.g. 99+1=100 but
so does 98+2, 97+3, and so on1. From an information theoretic
viewpoint, we can say that addition has taken two values with up
to 32 bits of information in each (i.e. ≤ 64 bits in total) and produced
a 32 bit answer, which can contain at most 32 bits of information2.
That is, irreversible operations must lose information.

In the case of polynomials, treating them as side effect free trees
makes it plain that information can only flow from their leafs to-
wards their root, and once information is lost at any point within
the tree, it is gone for good. It cannot be recreated.

A special case of information loss, is software testing [32]. If we
view our actual code as being a mixture of perfect code plus an
“error”, we can analyse the actual code’s behaviour by analysing
the impact of the error on the information (data) flow of the perfect
program. To have any impact, the error needs to be executed, to
change the state of the computation and that change has to be
propagated to a point where it is visible outside the program (e.g. a
print statement). Notice information has to be passed through the
computation. Although the information may be stored in memory,
in many programs it has at some point to pass along a chain of
irreversible information losing computations and as we have seen
as that chain gets longer (e.g. the error is in more deeply nested
1Although we have not over written r0 and r1, and so they do contain their original
values, we have over written r2, so its early value is now unknown.
2Although we have only used standard (32 bit) floating point arithmetic, the same
arguments apply to double precision (64 bit) and even 128 bit arithmetic. That is, they
too will losing information. We suggest that possibly higher precision operations
will tend to be less dissipative and consequently more of them, corresponding to
more deeply nested function calls, will be needed to give the same concealment of
changes. Elsewhere [9] we suggest that the number of nested functions needed to
conceal changes tends to increase only slowly, as O(logn), with the number (n) of tests.
Perhaps we will see a similar O(logn) scaling with number (n) of bits of precision in
the floating point resolution. However we have not proved this.

function calls) there is an increasing chance that it will be lost and
so the error will not be visible externally.

The upside of this is: the bug has no effect, whilst the glass half
empty view is: that testing to find bugs, is more difficult. That
is, information loss is inevitable and in general makes complex
software resilient or anti-fragile [19], [4], [28], [7], [23], [3], [6],
[17].

From an evolutionary computing perspective, the same holds.
That is, in the above, if we replace error/bug bymutation or crossover
change, we will see that changes made far from the impact point of
our genome are liable to have little impact on fitness. Conversely
changes near the root node (if we are using trees) or the drive
of our robot are likely to have more impact on fitness. It also ap-
pears that mutations deep within the tree or controller will need
considerably more (possibly exponentially more) fitness testing.
Thus bigger trees or larger control structures are liable to have a
smoother landscapes with larger plateaus.
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