
Dissipative Polynomials
William B. Langdon, Justyna Petke and David Clark

W.Langdon@cs.ucl.ac.uk,j.petke@ucl.ac.uk,david.clark@ucl.ac.uk
Department of Computer Science, University College London

London, UK

ABSTRACT
Limited precision floating point computer implementations of large
polynomial arithmetic expressions are nonlinear and dissipative.
They are not reversible (irreversible, lack conservation), lose infor-
mation, and so are robust to perturbations (anti-fragile) and resilient
to fluctuations. This gives a largely stable locally flat evolutionary
neutral fitness search landscape. Thus even with a large number of
test cases, both large and small changes deep within software typi-
cally have no effect and are invisible externally. Shallow mutations
are easier to detect but their RMS error need not be simple.

KEYWORDS
genetic programming, information loss, information funnels, en-
tropy, evolvability, mutational robustness, neutral networks, SBSE,
software robustness, Correctness Attraction, diversity, software
testing, theory of bloat, introns

ACM Reference Format:
William B. Langdon, Justyna Petke and David Clark. 2021. Dissipative Poly-
nomials. In 2021 Genetic and Evolutionary Computation Conference Compan-
ion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3449726.3463147

1 INTRODUCTION
Large arithmetic expressions are resilient to change (e.g. bugs).

We sample uniformly the space of large polynomials using ad-
dition and multiplication and show changes (bugs) usually do not
impact expressions values. Further even testing as many as a thou-
sand test points (uniformly selected in the range -1.0 to +1.0), the
disruption caused by changes to the functions on average pene-
trates only about 100 nested levels and so they are often invisible
outside the expression. With fewer tests (i.e. a weaker test oracle),
changes impact fewer levels. However, with such a large number
of tests, chance disruption close to the outermost part of the ex-
pression (the root node) may indeed have a sizable effect. Note the
effect of the inserted change/bug progressively fails to propagate
through the expression since both arithmetic operators (+ and ×)
are dissipative (irreversible, lose information) in practice. (See also
[2, 10–14, 18, 20–22, 26].)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463147

In an idealised computer with infinite precision, sometimes small
changes might be visible. However if the injected perturbation is
far from the top of the expression, real effects, such as floating point
precision and rounding error, may smooth away changes.

For evolutionary computing [8, 27], this means large complex ex-
pressions are robust and present a smooth fitness landscape where
many mutations have no measurable effect or their impact is only
seen on some test cases. Whilst we deal exclusively with arith-
metic expressions, there is growing evidence that this is true of
programming in general [19], [26], [17], [24], [31], [4], [7].

In the case of programming typically there are side-effects. None-
theless it appears that it is common for there to be information
funnels, whereby large amounts of information inside the program
are reduced into a small amount visible externally. If we view each
nested operation or function call in a program as being analogous to
a level in our nested polynomials, then we can view huge software
stacks, which are common in modern computer systems, as being
somewhat similar to the large polynomials we investigate in the fol-
lowing sections. Notice one of the reasons why software engineers
try to test small parts of huge software systems in isolation (unit
testing) is the difficulty of seeing externally the impact of deeply
nested errors or bugs.

Sections 3 and 4 give more details on sampling all possible expres-
sions and changes to them. In the experimental section (Section 5)
addition and multiplication are performed on ordinary 32 bit float-
ing point numbers. We create large arithmetic expressions, make
small changes to them, and trace the impact of the change. In most
cases, the impact dies away before it can affect anything outside
the expression. Section 6 analyses in more detail the dissipation
of one of the larger changes sampled. In Section 7 we conclude
information loss makes software robust but this makes software
engineering, e.g. bug fixing, harder and makes large evolutionary
computing search landscapes smooth and so difficult to search.

2 WHY SOME CHANGES ARE INVISIBLE
In genetic programming [8, 27] the idea of useless bloated code is
well known. Indeed the term intron [30],[1],[29] is often used to
refer to code that has no, or little, impact on the program’s output(s).
For example, a subtree “ored” with true has no effect as the OR
function will always return true regardless of the intron. Similarly
multiplying by 0 always gives 0, so MUL’s other argument has no
effect and can also be said to be in an intron. (There are automatic
expression simplification tools which will spot and remove obvious
introns.) Traditional introns can explain in evolved code many
examples of large expressions being robust to changes. However
the phenomenon is general.

If a leaf 0.892 is changed to 0.992, it is as if an error of 0.1 is
injected into the expression at that point. In a small expression,
this might be easily observed. In a large expression the 0.1 error

1683

http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.cs.ucl.ac.uk/staff/J.Petke
http://www.cs.ucl.ac.uk/staff/D.Clark
http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.cs.ucl.ac.uk/staff/J.Petke
http://www.cs.ucl.ac.uk/staff/D.Clark
https://doi.org/10.1145/3449726.3463147
https://doi.org/10.1145/3449726.3463147


GECCO ’21 Companion, July 10–14, 2021, Lille, France William B. Langdon, Justyna Petke and David Clark

is transformed by each function it passes through. In general the
error may become bigger or smaller. Even under ideal conditions,
floating point arithmetic loses about half a bit of precision at each
operation. So disruption is progressively suppressed. As the ex-
pressions are hierarchical, once disruption on a test case is lost
(i.e. an internal function yields the same answer before and after
the change) it cannot be reintroduced higher in the tree. (Note the
number of disrupted test cases falls monotonically.) This continued
interference of finite computing, means the impact of even large
errors can be totally lost in large expressions.

3 UNIFORMLY SAMPLING
LARGE ARITHMETIC EXPRESSIONS

All the experiments sample uniformly the space of expressions with
12 500 arithmetic operators. As both operators have two inputs,
the expressions are binary trees with 12 500 internal nodes and
12 501 leafs (or external nodes). For a particular input x , the value
of the whole expression is the value calculated by the operator
that is the root node of the tree. (Figure 1 shows an example sub-
expression. Note in all our pictures of polynomials as trees, the
result returning part, the root, is at the top. Figure 2 shows the first
example expression.)

We chose a tree size of 25 001 (internal + external), since such
trees on average have a depth of close to

√
2π |size| ≈ 400 (Flajolet

and Oldyzko [5]) and our earlier work with evolved trees showed on
average typically the impact of mutations was lost after traversing
about 100 functions [16]. Thus if the effect holds in general and not
just in evolved genetic programming trees, we would expect to see
the effect in trees of 25 001 nodes. (As indeed we do.)

The leafs are also sampled. With a probability of 50% the input x
is chosen. The other leafs are chosen uniformly from 250 constant
values chosen at random without replacement from the 2001 multi-
ples of 0.001 between -1.0 and +1.0. By random chance, none of the
special values -1.0, 0, or +1.0 are included.

4 SAMPLING CHANGES
A site for each change is selected uniformly from each large expres-
sion. The subexpression at that location is removed and replaced by
another subexpression. The inserted subexpression is similarly cho-
sen uniformly from a large expression of the same size (i.e. 25 001
nodes). (Cf. Koza’s subtree crossover [8].)

Table 1 describes the random changes. They are plotted in Fig-
ure 3. Notice (column 3 in Table 1), by chance, change 9 is closest
to its root node (depth 47) and is the only example where a change
is visible on any of our 1001 test cases.

5 EXPERIMENT: DISSIPATION OF CHANGE
Figure 4 shows the ten large randomly chosen polynomials.

Figure 5 confirms the monotonic fall in disruption of test cases
as we move away from the disruption. (I.e., as we move up the tree
towards the root node.) Figure 6 shows the same thing, but instead
of counting the number of test caseswhich are not identical, Figure 6
plots the average (root mean square, RMS) difference before and
after the change in the values inside each of the large expressions.
Figure 6 shows, as expected, RMS differences can rise as well as fall

ADD

MUL ADD

0.613 -0.935 0.927 ADD

MUL -0.878

ADD X

MUL -0.475

-0.755 ADD

X MUL

0.825 -0.543

Figure 1: Example subexpression (0.613 × −0.935) + 0.927 +
(−0.755 × (x + (0.825 × −0.543)) − 0.475)x − 0.878 as a tree (fun 0
from Table 1). The value of the expression is given by the
root node, here ADD, at the top. And plotted as an inverted
parabolic red line with + in Figure 3.

Figure 2: Expression 0 presented as a binary tree of 25 001
nodes (depth 383). Root node at top.

1684

http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.cs.ucl.ac.uk/staff/J.Petke
http://www.cs.ucl.ac.uk/staff/D.Clark


Dissipative Polynomials GECCO ’21 Companion, July 10–14, 2021, Lille, France

-2

-1.5

-1

 0

 0.5

 1.5

 2

-1 -0.5  0  0.5  1

V
a
lu

e

x

fun 1  fun 5

fun 7 

 fun 9

 New

 constant

 value

Removed 

constant 

value 

Removed  code

Inserted code

Figure 3: Ten pairs of changes plotted as functions of x , see Table 1. Inserted subexpressions are plotted with lines and crosses.
Horizontal lines indicate constants. Labels on the left margin indicates constant values that are removed. Labels on the right,
constants that are inserted. In three cases x is removed and in two, x is inserted. These are plotted on top of each other along
the diagonal. E.g. in fun 7 the constant -0.149 is replaced by a randomly chosen non-linear function.

 0

-1 -0.5  0  0.5  1

y

x

ten large expressions
48 test cases

Figure 4: Ten large floating point functions. Vertical axis has been linearly rescaled to plot very different output ranges on the
same axis.

1685



GECCO ’21 Companion, July 10–14, 2021, Lille, France William B. Langdon, Justyna Petke and David Clark

Test Depth Change
Max Mean depth, size and function

0 383 162.9 163 1 X
replaced by fun 0 19 (ADD (MUL 0.613 -0.935) (ADD 0.927 (ADD (MUL (ADD (MUL -0.755 (ADD X (MUL 0.825 -0.543))) -0.475)

X) -0.878)))
1 377 206.3 325 1 -0.549
replaced by fun 1 1 X
2 305 161.8 190 5 (ADD X (ADD 0.474 X))
replaced by fun 2 9 (MUL (ADD X X) (ADD -0.474 (MUL X -0.543)))
3 376 180.6 148 1 X
replaced by fun 3 7 (ADD (ADD 0.265 X) (MUL 0.837 -0.13))
4 491 253.1 298 1 X
replaced by fun 4 67 (MUL (ADD (ADD (MUL 0.581 (MUL (ADD X 0.837) (ADD (ADD (MUL 0.255 -0.622) X) (ADD X 0.113))))

(MUL X -0.801)) 0.965) (MUL X (MUL (ADD (MUL 0.758 (MUL (ADD X (MUL (MUL -0.07 (MUL (ADD
(ADD (MUL (MUL -0.399 X) -0.285) X) 0.185) X)) (MUL (MUL 0.255 (ADD (MUL (MUL 0.14 (ADD X -0.015))
-0.619) (ADD X -0.106))) (ADD (ADD X X) X)))) X)) X) -0.546)))

5 417 192.1 167 1 X
replaced by fun 5 1 -0.543
6 504 229.2 224 49 (ADD (MUL 0.653 (MUL X (MUL (MUL X (ADD X (MUL (ADD X (ADD 0.305 (MUL -0.247 X))) -0.415))) X)))

(MUL (MUL (ADD (MUL X (MUL 0.289 0.263)) (ADD X -0.147)) (MUL (MUL X (MUL (ADD (ADD -0.272
-0.67) X) (MUL 0.379 0.176))) (MUL X 0.038))) (MUL 0.662 X)))

replaced by fun 6 1 X
7 345 181.1 175 1 -0.149
replaced by fun 7 37 (ADD X (ADD (MUL -0.756 (ADD (ADD 0.667 0.558) (MUL (MUL 0.411 (MUL X (ADD (ADD (MUL 0.243

0.243) 0.752) X))) (ADD (ADD (ADD (MUL X X) (MUL 0.443 X)) (MUL -0.294 (MUL X 0.892))) -0.106))))
-0.082))

8 332 160.6 142 3 (ADD -0.011 X)
replaced by fun 8 7 (ADD (MUL -0.636 0.318) (ADD X X))
9 390 189.3 47 77 (MUL (MUL (MUL -0.546 0.371) 0.704) (ADD (MUL (ADD X (ADD (MUL (MUL (ADD -0.876 (ADD (MUL

(MUL 0.979 (MUL 0.474 0.522)) X) X)) X) X) (MUL X (ADD X (ADD 0.217 (ADD -0.27 X)))))) (ADD 0.558 X))
(ADD (MUL (MUL (MUL X -0.889) (MUL (MUL (ADD (MUL -0.718 (ADD (ADD X 0.593) X)) X) (ADD X
0.309)) (MUL 0.048 (MUL X (MUL 0.879 (MUL -0.831 (ADD X (MUL 0.185 (ADD 0.912 X))))))))) 0.146) (ADD
X X))))

replaced by fun 9 1 0.379

Table 1: Ten changes. Left: maximum and average depths of ten uniformly selected polynomials with 25 001 nodes (Section 3).
Right: uniformly selected changes (Section 4). Column 4 shows the depth of the uniformly chosen change site, whilst column 5
gives the size of the removed subexpression and its replacement and the rightmost column (6) shows them as prefix (lisp like)
expressions. (See also Figures 1 and 3.)

but where the change is deep enough, differences also eventually
fall to zero.

In nine of ten cases disruption (red subtrees and string of blue
nodes in Figure 7) is halted before reaching the root node. Even in
the remaining case, fun 9, disruption is rapidly quenched but does
not quite reach zero before encountering the limit of the polynomial.

1686

http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.cs.ucl.ac.uk/staff/J.Petke
http://www.cs.ucl.ac.uk/staff/D.Clark


Dissipative Polynomials GECCO ’21 Companion, July 10–14, 2021, Lille, France

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120  140  160

D
is

ru
p
te

d
 t

e
s
t 
c
a
s
e

s

Distance from mutation

fun 9

Random Polynomial

Figure 5: Fall in impact of ten changes with distance from disruption. As expected the fall in test case failures is monotonic.
Only fun 9 does not reach zero (26 of 1001 test cases not identical at root node). Colours are the same as in Figure 3, etc.

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  20  40  60  80  100  120  140  160

R
M

S
 d

if
fe

re
n
c
e
 b

e
fo

re
 a

n
d

 a
ft
e
r 

m
u
ta

ti
o
n

Distance from mutation

0   

fun 0fun 2 fun 5fun 7 fun 8

fun 9 

Random Polynomial

Figure 6: Impact of ten changes against distance from change location. (Impact measured by root mean squared difference on
1001 test cases.) Only fun 9 does not reach zero (RMS difference 5 10−8 at root node). Colours are the same as in Figure 3, etc.
Note non-linear vertical scale.

1687



GECCO ’21 Companion, July 10–14, 2021, Lille, France William B. Langdon, Justyna Petke and David Clark

Expression 0 (depth 383) Expression 1 (depth 377) Expression 2 (depth 305)

Expression 3 (depth 376) Expression 4 (depth 491) Expression 5 (depth 417)

Expression 6 (depth 504) Expression 7 (depth 345) Expression 8 (depth 332)

Expression 9 (depth 390)

Figure 7: Expressions 0–9 presented as a binary trees of 25 001 nodes. Root nodes at top. Colour indicates disrupted nodes. Red
(lowest shaded nodes) shows a new subexpression replacing an earlier subexpression. Blue nodes show subexpressions where
at least one test case produces a different internal value as a result of the change. Notice only in polynomial 9 does any part
of the disruption reach the root node.

1688

http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.cs.ucl.ac.uk/staff/J.Petke
http://www.cs.ucl.ac.uk/staff/D.Clark


Dissipative Polynomials GECCO ’21 Companion, July 10–14, 2021, Lille, France

6 EXPLAINING LACK OF IMPACT OF
CHANGE 4

Table 1 shows at 67 nodes, change 4 is one of the larger syntactic
changes. Indeed the light blue line in Figure 3 shows it also produces
a large change in behaviour at the change site. (Change 4 replaces
a single x by a large expression which is quadratic in x .) See also
Figure 8. At the point of disruption all but one test case are different
and the RMS difference is 0.98 (light blue line in Figure 6).

At the disruption point the new polynomial is different from the
original at all test points (except x = 0). However, notice except for

ADD

MUL X

-0.654 MUL

0.468 MUL

ADD 0.306

-0.011 MUL

ADD ADD

MUL MUL MUL -0.801

ADD X X MUL

MUL ADD

X MUL X MUL

X -0.355 X MUL

-0.756 -0.415

-0.67 -0.399

MUL ADD

-0.878 MUL MUL X

ADD MUL

0.889 X -0.003 MUL

X MUL

-0.07 -0.431

ADD MUL

ADD 0.965 X MUL

MUL MUL

0.581 MUL X -0.801

ADD ADD

X 0.837 ADD ADD

MUL X X 0.113

0.255 -0.622

ADD -0.546

MUL X

0.758 MUL

ADD X

X MUL

MUL MUL

-0.07 MUL MUL ADD

ADD X

ADD 0.185

MUL X

MUL -0.285

-0.399 X

0.255 ADD ADD X

MUL ADD

MUL -0.619 X -0.106

0.14 ADD

X -0.015

X X

Figure 8: Fragment of change 4. The original leaf X is re-
placed by the 67 node subexpression (MUL (ADD (ADD (MUL
0.581 (MUL (ADD X 0.837) (ADD (ADD (MUL 0.255 -0.622)
X) (ADD X 0.113)))) (MUL X -0.801)) 0.965) (MUL X (MUL
(ADD (MUL 0.758 (MUL (ADD X (MUL (MUL -0.07 (MUL
(ADD (ADD (MUL (MUL -0.399 X) -0.285) X) 0.185) X)) (MUL
(MUL 0.255 (ADD (MUL (MUL 0.14 (ADD X -0.015)) -0.619)
(ADD X -0.106))) (ADD (ADD X X) X)))) X)) X) -0.546))) in
red. The blue nodes show operations in the original expres-
sion where their value on ≥ 796 of 1001 test cases are dif-
ferent before and after change 4. White nodes show frag-
ment of unchanged large expression, shown in full in Fig-
ure 7. The value of the new subexpression is given by its top
most node, here red MUL and plotted as a function of x in
Figure 3 (light blue line). Section 6 explains why disruption
stops completely after 113 blue nodes and the red change
make no visible external difference.

the changed code (red in Figure 8), for the test case x = 0 all of the
original and the new code must be identical. Therefore at x = 0 the
new and the original polynomial must have the same value.

The next function up is an addition and the one above that is a
multiply. Neither reduces the number of non-identical test cases,
however the multiply reduces the average difference from about 1 to
about 0.0001. The third function is another addition, which reduces
the number of non-identical test cases by 18 (see Figure 9). The
next function is a multiply, which further synchronises the new
and the original polynomial on an additional test point. The next
function is an addition which reduces the RMS difference to zero
on a further nine points (see Figure 10). By Figure 11 (top blue node
in Figure 8) 205 of 1001 test points are identical.

-0.8012

-0.80115

-0.8011

-0.80105

-0.801

-0.80095

-0.8009

-0.80085

-0.8008

-0.80075

-0.8007

-0.80065

-1 -0.5  0  0.5  1

y

x

old
new

19 identical

Figure 9: Impact of change 4 at distance three above the
change point (ADD -0.801, Figure 8). The new functionality
(dashed line) closely follows the original for x < 0.2 and in-
deed at 19 points (+) they are identical.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

-1 -0.5  0  0.5  1

y

x

old
new

31 identical

Figure 10: Impact of change 4 at distance five (ADD -0.011).
The new functionality (dashed line) closely follows the orig-
inal and indeed at 31 points (+) they are identical.

1689



GECCO ’21 Companion, July 10–14, 2021, Lille, France William B. Langdon, Justyna Petke and David Clark

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

y

x

old
new

205 identical

Figure 11: Impact of change 4 at distance nine (ADD X, top
of Figure 8). The new functionality (dashed line) closely fol-
lows the original and they are identical at 205 points (+).

7 CONCLUSIONS
Almost all computing operations are irreversible. Meaning after
they have acted it is impossible to know what the state of the
computation was before. For example, adding two registers (r0, r1)
and storing the result in another register (r2). We cannot tell from
the answer which two numbers were added. E.g. 99+1=100 but
so does 98+2, 97+3, and so on1. From an information theoretic
viewpoint, we can say that addition has taken two values with up
to 32 bits of information in each (i.e. ≤ 64 bits in total) and produced
a 32 bit answer, which can contain at most 32 bits of information2.
That is, irreversible operations must lose information.

In the case of polynomials, treating them as side effect free trees
makes it plain that information can only flow from their leafs to-
wards their root, and once information is lost at any point within
the tree, it is gone for good. It cannot be recreated.

A special case of information loss, is software testing [32]. If we
view our actual code as being a mixture of perfect code plus an
“error”, we can analyse the actual code’s behaviour by analysing
the impact of the error on the information (data) flow of the perfect
program. To have any impact, the error needs to be executed, to
change the state of the computation and that change has to be
propagated to a point where it is visible outside the program (e.g. a
print statement). Notice information has to be passed through the
computation. Although the information may be stored in memory,
in many programs it has at some point to pass along a chain of
irreversible information losing computations and as we have seen
as that chain gets longer (e.g. the error is in more deeply nested
1Although we have not over written r0 and r1, and so they do contain their original
values, we have over written r2, so its early value is now unknown.
2Although we have only used standard (32 bit) floating point arithmetic, the same
arguments apply to double precision (64 bit) and even 128 bit arithmetic. That is, they
too will losing information. We suggest that possibly higher precision operations
will tend to be less dissipative and consequently more of them, corresponding to
more deeply nested function calls, will be needed to give the same concealment of
changes. Elsewhere [9] we suggest that the number of nested functions needed to
conceal changes tends to increase only slowly, as O(logn), with the number (n) of tests.
Perhaps we will see a similar O(logn) scaling with number (n) of bits of precision in
the floating point resolution. However we have not proved this.

function calls) there is an increasing chance that it will be lost and
so the error will not be visible externally.

The upside of this is: the bug has no effect, whilst the glass half
empty view is: that testing to find bugs, is more difficult. That
is, information loss is inevitable and in general makes complex
software resilient or anti-fragile [19], [4], [28], [7], [23], [3], [6],
[17].

From an evolutionary computing perspective, the same holds.
That is, in the above, if we replace error/bug bymutation or crossover
change, we will see that changes made far from the impact point of
our genome are liable to have little impact on fitness. Conversely
changes near the root node (if we are using trees) or the drive
of our robot are likely to have more impact on fitness. It also ap-
pears that mutations deep within the tree or controller will need
considerably more (possibly exponentially more) fitness testing.
Thus bigger trees or larger control structures are liable to have a
smoother landscapes with larger plateaus.

Acknowledgments
This work was inspired by conversations at Dagstuhl Seminar 18052
on Genetic Improvement of Software [25].

I am grateful for the assistance of the anonymous reviewers.
Funded by EPSRC grant EP/P005888/1.
The new GPQuick code is available in http://www.cs.ucl.ac.uk/

staff/W.Langdon/ftp/gp-code/GPinc.tar.gz

REFERENCES
[1] Peter John Angeline. 1994. Genetic Programming and Emergent Intelligence.

In Advances in Genetic Programming, Kenneth E. Kinnear, Jr. (Ed.). MIT Press,
Chapter 4, 75–98. http://cognet.mit.edu/sites/default/files/books/9780262277181/
pdfs/9780262277181_chap4.pdf

[2] Bobby R. Bruce et al. 2019. Approximate Oracles and Synergy in Software Energy
Search Spaces. IEEE Transactions on Software Engineering 45, 11 (Nov. 2019),
1150–1169. http://dx.doi.org/10.1109/TSE.2018.2827066

[3] David Clark et al. 2020. Software Robustness: A Survey, a Theory, and Some
Prospects. Presented at Facebook Testing and Verification Symposium 2020.

[4] Benjamin Danglot, Philippe Preux, Benoit Baudry, and Martin Monperrus. 2018.
Correctness Attraction: A Study of Stability of Software Behavior Under Runtime
Perturbation. Empirical Software Engineering 23, 4 (August 2018), 2086–2119.
http://dx.doi.org/10.1007/s10664-017-9571-8

[5] Philippe Flajolet and Andrew Oldyzko. 1982. The Average Height of Binary Trees
and Other Simple Trees. J. Comput. System Sci. 25, 2 (October 1982), 171–213.
https://doi.org/10.1016/0022-0000(82)90004-6

[6] Giovani Guizzo et al. 2021. Enhancing Genetic Improvement of Software with
Regression Test Selection. In Proceedings of the International Conference on
Software Engineering, ICSE 2021, Arie van Deursen et al. (Eds.). IEEE. https:
//bit.ly/Guizzo-ICSE-2021 Winner ACM SIGSOFT Distinguished Artifact Award.

[7] Nicolas Harrand et al. 2019. A Journey Among Java Neutral Program Variants.
Genetic Programming and Evolvable Machines 20, 4 (Dec. 2019), 531–580. http:
//dx.doi.org/10.1007/s10710-019-09355-3

[8] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Natural Selection. MIT press.

[9] W. B. Langdon. [n.d.]. Genetic Programming Convergence. ([n. d.]). submitted.
[10] W. B. Langdon. 2003. Convergence of Program Fitness Landscapes. In Genetic

and Evolutionary Computation – GECCO-2003 (LNCS, Vol. 2724), E. Cantú-Paz
et al. (Eds.). Springer-Verlag, Chicago, 1702–1714. http://dx.doi.org/10.1007/
3-540-45110-2_63

[11] W. B. Langdon. 2003. The distribution of Reversible Functions is Normal. In
Genetic Programming Theory and Practice, Rick L. Riolo and Bill Worzel (Eds.).
Kluwer, Chapter 11, 173–187. http://dx.doi.org/10.1007/978-1-4419-8983-3_11

[12] W. B. Langdon. 2005. The Distribution of Amorphous Computer Outputs. In The
Grand Challenge in Non-Classical Computation: International Workshop, Susan
Stepney and Stephen Emmott (Eds.). York, UK. http://www.cs.ucl.ac.uk/staff/W.
Langdon/ftp/papers/grand_2005.pdf

[13] W. B. Langdon. 2009. Scaling of Program Functionality. Genetic Programming
and Evolvable Machines 10, 1 (March 2009), 5–36. http://dx.doi.org/10.1007/
s10710-008-9065-y

1690

http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.cs.ucl.ac.uk/staff/J.Petke
http://www.cs.ucl.ac.uk/staff/D.Clark
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18052
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPinc.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPinc.tar.gz
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap4.pdf
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap4.pdf
http://dx.doi.org/10.1109/TSE.2018.2827066
http://dx.doi.org/10.1007/s10664-017-9571-8
https://doi.org/10.1016/0022-0000(82)90004-6
https://bit.ly/Guizzo-ICSE-2021
https://bit.ly/Guizzo-ICSE-2021
http://dx.doi.org/10.1007/s10710-019-09355-3
http://dx.doi.org/10.1007/s10710-019-09355-3
http://dx.doi.org/10.1007/3-540-45110-2_63
http://dx.doi.org/10.1007/3-540-45110-2_63
http://dx.doi.org/10.1007/978-1-4419-8983-3_11
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/grand_2005.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/grand_2005.pdf
http://dx.doi.org/10.1007/s10710-008-9065-y
http://dx.doi.org/10.1007/s10710-008-9065-y


Dissipative Polynomials GECCO ’21 Companion, July 10–14, 2021, Lille, France

[14] W. B. Langdon. 2012. Genetic Improvement of Programs. In 18th International
Conference on Soft Computing, MENDEL 2012 (2nd ed.), Radomil Matousek (Ed.).
Brno University of Technology, Brno, Czech Republic. http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf Invited keynote.

[15] William B. Langdon. 2020. Fast Generation of Big Random Binary Trees. Technical
Report RN/20/01. Computer Science, University College, London, Gower Street,
London, UK. https://arxiv.org/abs/2001.04505

[16] William B. Langdon. 2021. Incremental Evaluation in Genetic Programming. In
EuroGP 2021: Proceedings of the 24th European Conference on Genetic Programming
(LNCS, Vol. 12691), Ting Hu et al. (Eds.). Springer Verlag, Virtual Event, 229–246.
http://dx.doi.org/10.1007/978-3-030-72812-0_15

[17] W. B. Langdon et al. [n.d.]. ([n. d.]). Submitted.
[18] William B. Langdon and Mark Harman. 2016. Fitness Landscape of the Triangle

Program. In PPSN-2016 Workshop on Landscape-Aware Heuristic Search, Nadara-
jen Veerapen and Gabriela Ochoa (Eds.). Edinburgh. http://www.cs.ucl.ac.uk/
fileadmin/UCL-CS/research/Research_Notes/rn1605.pdf Also available as UCL
RN/16/05.

[19] William B. Langdon and Justyna Petke. 2015. Software is Not Fragile. In Com-
plex Systems Digital Campus E-conference, CS-DC’15 (Proceedings in Complex-
ity), Pierre Parrend et al. (Eds.). Springer, 203–211. http://dx.doi.org/10.1007/
978-3-319-45901-1_24 Invited talk.

[20] W. B. Langdon and R. Poli. 2006. The Halting Probability in von Neumann Archi-
tectures. In Proceedings of the 9th European Conference on Genetic Programming
(Lecture Notes in Computer Science, Vol. 3905), Pierre Collet et al. (Eds.). Springer,
Budapest, Hungary, 225–237. http://dx.doi.org/10.1007/11729976_20

[21] William B. Langdon and Riccardo Poli. 2006. On Turing complete T7 and
MISC F–4 program fitness landscapes. In Theory of Evolutionary Algorithms
(Dagstuhl Seminar Proceedings, 06061), Dirk V. Arnold et al. (Eds.). Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2006/595
<http://drops.dagstuhl.de/opus/volltexte/2006/595> [date of citation: 2006-01-
01].

[22] William B. Langdon and Riccardo Poli. 2008. Mapping Non-conventional Exten-
sions of Genetic Programming. Natural Computing 7 (March 2008), 21–43. Issue
1. http://dx.doi.org/10.1007/s11047-007-9044-x Invited contribution to special
issue on Unconventional computing.

[23] Mingyi Lim et al. 2020. Impact of Test Suite Coverage on Overfitting in Genetic
Improvement of Software. In 12th International Symposium on Search Based
Software Engineering SSBSE 2020 (LNCS, Vol. 12420), Juan Pablo Galeotti and
Bonita Sharif (Eds.). Springer, Bari, Italy, 188–203. http://dx.doi.org/10.1007/
978-3-030-59762-7_14

[24] Martin Monperrus. 2017. Principles of Antifragile Software. In Companion to the
First International Conference on the Art, Science and Engineering of Programming
(Brussels, Belgium) (Programming ’17). ACM, New York, NY, USA, Article 32,
4 pages. http://dx.doi.org/10.1145/3079368.3079412

[25] Justyna Petke et al. 2018. Genetic Improvement of Software: Report fromDagstuhl
Seminar 18052. Dagstuhl Reports 8, 1 (23 July 2018), 158–182. http://dx.doi.org/
10.4230/DagRep.8.1.158

[26] Justyna Petke et al. 2019. A Survey of Genetic Improvement Search Spaces. In 7th
edition of GI @ GECCO 2019, Brad Alexander et al. (Eds.). ACM, Prague, Czech
Republic, 1715–1721. http://dx.doi.org/10.1145/3319619.3326870

[27] Riccardo Poli et al. 2008. A field guide to genetic program-
ming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk. http://www.gp-field-guide.org.uk
(With contributions by J. R. Koza).

[28] Joseph Renzullo et al. 2018. Neutrality and Epistasis in Program Space. In GI-
2018, ICSE workshops proceedings, Justyna Petke et al. (Eds.). ACM, Gothenburg,
Sweden, 1–8. http://dx.doi.org/10.1145/3194810.3194812 Best Presentation
Award.

[29] Craig W. Reynolds. 1994. Evolution of Corridor Following Behavior in a Noisy
World. In Simulation of Adaptive Behaviour (SAB-94), David Cliff et al. (Eds.). MIT
Press, Brighton, UK, 402–410. http://www.red3d.com/cwr/papers/1994/sab94.pdf

[30] Walter Alden Tackett. 1994. Recombination, Selection, and the Genetic Construction
of Computer Programs. Ph.D. Dissertation. University of Southern California,
Department of Electrical Engineering Systems, USA. http://www.cs.ucl.
ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WAT_PHD_DissFull_USC94_
Recombination_etc_Genetic_Construction_of_Computer_Programs.pdf

[31] Nadarajen Veerapen and Gabriela Ochoa. 2018. Visualising the global structure
of search landscapes: genetic improvement as a case study. Genetic Programming
and Evolvable Machines 19, 3 (Sept. 2018), 317–349. http://dx.doi.org/10.1007/
s10710-018-9328-1 Special issue on genetic programming, Genetic improvement,
Fitness landscape, Local optima network, Visualisation.

[32] Jeffrey M. Voas. 1992. PIE: a dynamic failure-based technique. IEEE Transactions
on Software Engineering 18, 8 (Aug 1992), 717–727. http://dx.doi.org/10.1109/32.
153381

1691

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
https://arxiv.org/abs/2001.04505
http://dx.doi.org/10.1007/978-3-030-72812-0_15
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/rn1605.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/rn1605.pdf
http://dx.doi.org/10.1007/978-3-319-45901-1_24
http://dx.doi.org/10.1007/978-3-319-45901-1_24
http://dx.doi.org/10.1007/11729976_20
http://drops.dagstuhl.de/opus/volltexte/2006/595
http://dx.doi.org/10.1007/s11047-007-9044-x
http://dx.doi.org/10.1007/978-3-030-59762-7_14
http://dx.doi.org/10.1007/978-3-030-59762-7_14
http://dx.doi.org/10.1145/3079368.3079412
http://dx.doi.org/10.4230/DagRep.8.1.158
http://dx.doi.org/10.4230/DagRep.8.1.158
http://dx.doi.org/10.1145/3319619.3326870
http://www.gp-field-guide.org.uk
http://dx.doi.org/10.1145/3194810.3194812
http://www.red3d.com/cwr/papers/1994/sab94.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WAT_PHD_DissFull_USC94_Recombination_etc_Genetic_Construction_of_Computer_Programs.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WAT_PHD_DissFull_USC94_Recombination_etc_Genetic_Construction_of_Computer_Programs.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WAT_PHD_DissFull_USC94_Recombination_etc_Genetic_Construction_of_Computer_Programs.pdf
http://dx.doi.org/10.1007/s10710-018-9328-1
http://dx.doi.org/10.1007/s10710-018-9328-1
http://dx.doi.org/10.1109/32.153381
http://dx.doi.org/10.1109/32.153381

	Abstract
	1 Introduction
	2 Why Some Changes are Invisible
	3 Uniformly Sampling  Large Arithmetic Expressions
	4 Sampling Changes
	5 Experiment: Dissipation of Change
	6 Explaining Lack of Impact of Change 4
	7 Conclusions
	References

