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ABSTRACT
Generative adversarial networks (GANs) have recently gained pop-
ularity in artificial intelligence research due to their superior gener-
ation, enhancement and style transfer of content compared to other
generative models. Introduced in 2014, GANs have been used in the
fields of computer vision, natural language processing, medical ap-
plications, and cyber security, with the number of use cases rapidly
growing. GANs are, however, difficult to train in practice due to
their inherent high dimensionality, and the complexity associated
with the adversarial learning task. Loss landscape analysis can aid
in unravelling reasons for difficulty in training GANs as the anal-
ysis creates a topology of the search space. The vanilla and deep
convolutional GAN architectures are examined in this study to gain
a deeper understanding of their loss landscapes during training.
The GAN loss landscape features are visualised through the use
of loss gradient clouds (LGCs). The LGC analysis showcases the
importance of volatility in the training of GANs, as a range of gradi-
ent magnitudes allows more exploration in finding an appropriate
middle ground in balancing the loss objectives of the GAN.
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1 INTRODUCTION
GANs represent a relatively new approach in generating, enhancing
or transferring styles of imagery, textual and video content. The
architecture was developed by Goodfellow et al. [9], where two
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neural networks (NNs) compete adversarially against one another.
The first NN is trained to generate noisy samples initially, and then
over a number of iterations, to generate content from reference
input training data. This model is referred to as the generator, and
its outputs are commonly dubbed fakes in the context of GANs.

A second network, called the discriminator, is then fed a sample
of data from the generator and training data. The discriminator
aims to distinguish whether the sample originates from the training
data or the fakes generated by the generator model. Initially, the
discriminator can easily distinguish the fakes from the training
data, which indirectly feeds back to the generator. The generator
then adjusts to produce samples which makes it harder for the
discriminator to distinguish between fake and real input. This loop
is repeated as the generator attempts to produce content which
the discriminator struggles to tell apart from the real training data.
Figure 1 depicts the generator progressively producing improved
imagery of a handbag over training.
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Figure 1: Generator producing the image of a handbag over
training

The most successful application of GANs has been in the field of
computer vision [22]. GANs have shown particularly impressive
performance in enhancing low resolution imagery, style conver-
sions between images, and producing non-existing realistic human
faces. The applications of GANs continue to expand in the content
generation fields of imagery, audio, video, natural language pro-
cessing, cyber security through anomaly detection, and medical
applications. Many GAN variations have been, and continue to be
developed, including the Wasserstein GAN [2], Conditional GAN
[20], Deep Convolutional GAN [23], CycleGAN [2] and SeqGAN
[31].

An equilibrium solution in the context of GANs is where the
generator produces a wide variety of samples which the discrim-
inator fails to distinguish from real input data. GAN training is a
high dimensional problem, which leads to difficulty in training, as
the generator and discriminator networks may not end up with an
equilibrium solution. In addition, the learning from the generator
may not produce a wide diversity of outputs for input into the
discriminator, known as mode collapse.

Loss landscape analysis (LLA) provides a framework to visualise
the training process of GANs by characterising the topological
features of the loss function in the context of a defined search space.
This gives insight into the training of the GAN as the GAN searches
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for an optimised solution. Visualisations of the training process
can aid in understanding the most prominent features of the GANs
during training. LLA also allows one to study what impact the
algorithms’ parameters have on the resultant landscape. The loss
gradient cloud (LGC) [6] is a recently proposed tool for LLA which
can be used to visualise and gain insight into the training process,
and is the chosen method of analysis for this research.

By understanding the loss landscapes of the GANs through LLA,
this study aims to achieve the following;

• Gain an understanding of loss landscape features which
contribute to the volatility of training GANs.

• Investigate the usefulness of applying a recently proposed
visualisation called loss gradient clouds to the loss landscapes
of GANs.

• Visualise how the landscapes change by investigating the
effect of adversarial training on the landscapes’ dynamics.

The remainder of this paper is set out by firstly covering a review
of the vanilla GAN and deep convolutional GAN (DCGAN), the
difficulty in training GANs, followed by the practical use cases of
GANs in Section 2. Section 3 conducts a literature review on loss
landscapes and discusses the value of visualising training results
through a LGC. Section 4 covers the experimental setup, followed
by Section 5 which summarises the modelled results. Section 6
concludes the paper and discusses the limitations of this research
and topics for future investigation.

2 GENERATIVE ADVERSARIAL NETWORKS
GANs were introduced in 2014 by Goodfellow et al. [9] and repre-
sent a unique approach to generating samples by learning the data
distribution from sampled data. GAN research is a rapidly evolving
field with many architectural improvements suggested since its
introduction. This section firstly looks at the vanilla GAN’s loss
function to gain a better understanding of the training logic. This is
followed by a discussion of the training difficulty, and the practical
use cases of GANs.

2.1 GAN
A vanilla GAN consists of two NNs competing adversarially against
each other. The NNs can range from fully-connected networks, con-
volutional networks, recurrent networks to auto-encoders with the
differing architectures attempting to improve on the GAN’s training.
This research will focus on the fully-connected and convolutional
network architectures.

The generator network is trained to produce samples which
capture the underlying distribution of the training data. The dis-
criminator network is fed a sample of training and generator data
in order to estimate the probability of whether the sample origi-
nates from the training data or the fakes generated by the generator
model. The discriminator output will initially result in a large loss
for the generator in its early training iterations. The generator
would then adjust its weights in order to minimise this loss. This
process is then repeated with the generator aiming to produce
samples which make it harder for the discriminator to distinguish
between fake and real input. This loop is repeated in the hopes of
finding an equilibrium state, where the generator produces fakes

which the discriminator struggles to tell apart from the training
data.

The objective of the discriminator network is to maximise its
ability to distinguish between real and fake inputs. The objective of
the generator network is to minimise the discriminator’s ability to
tell the difference between the fake and real data. These objectives
are summarised with the following objective function [9].

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log𝐷 (𝑥)]

+ E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))] .
(1)

where;
• 𝐺 represents the generator model.
• 𝐷 represents the discriminator model.
• 𝐺 (𝑧) represents the data generated by the generator model.
• 𝑝𝑑𝑎𝑡𝑎 (𝑥) is the probability distribution of the training data.
• 𝑝𝑧 (𝑧) is the probability distribution of input noise variables.
• 𝐷 (𝑥) is the probability that 𝑥 comes from the training data
not produced by the generator.

• 𝐷 (𝐺 (𝑧)) is the probability that𝐺 (𝑧) comes from the training
data not produced by the generator.

• 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎 (𝑥) represents 𝑥 being sampled from the distribu-
tion 𝑝𝑑𝑎𝑡𝑎 (𝑥) .

• 𝑧 ∼ 𝑝𝑧 (𝑧) represents z being sampled from the distribution
𝑝𝑧 (𝑧) .

The deep convolutional GAN (DCGAN) replaces the fully con-
nected multi-layer perceptron structure with transposed convolu-
tional layers in the generator network and convolutional layers
in the discriminator network [23]. The DCGAN showed improved
image generation performance compared to the vanilla GAN [23].

2.2 Training Difficulty
Training GANs is difficult in practice for the following reasons
[21, 22]:

• The generator and discriminator networks may not end up
with an equilibrium solution.

• The gradient of the generator tends to vanish as the dis-
criminator improves to optimality, resulting in the generator
producing a decreasing diversity of fakes for input into the
discriminator. This is known as the GAN’s mode collapsing.

• The adversarial nature of training may lead to unstable pa-
rameters, e.g. the weights of the NN changing drastically for
small changes in the input space.

The search space of a GAN is composed of the set of weights
used in the discriminator and generator. The loss landscape of
a GAN can be defined as the loss function applied to each of the
sampled weights during GAN training. By sampling from the search
space and calculating the loss function for each of the sampled
points, loss landscape properties can be examined by analysing the
relationships between the calculated loss values [5].

2.3 GANs in Practice
Pan et al. [22] categorise the use cases of GANs primarily in the
fields of computer vision and natural language processing and to
a lesser extent in medical applications and cyber security through
anomaly detection. The use of GANs in computer vision includes
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enhancing the resolution of low-resolution images [17], converting
the image style of one image to another, producing images with
texture similar to input images and producing non-existing realis-
tic looking faces. The application of GANs in the field of natural
language processing includes the generation of text from speech,
dialogue, poetry and music. The SeqGAN [31] showcased creative
generation across poetry, speech and music input data.

3 LOSS LANDSCAPE ANALYSIS
For most optimisation problems in the machine learning context
there is a loss function that captures the objectives of the problem
at hand. Potential solutions are evaluated at each training iteration
based on their loss values, which are determined using the loss
function. The aim of a training algorithm is to solve the optimisation
problem, which would usually be to find the solution that minimises
the loss value after multiple iterations. The loss function can be
broadened into a loss landscape by characterising the topological
features of the loss function and some defined surrounding search
space to gain insight into the training algorithm as it searches for
an optimised solution.

3.1 Fitness Landscapes
The concept of fitness landscapes comes from the evolutionary
context [29] and was later applied in the understanding of evolu-
tionary search algorithms [12]. Fitness landscape analysis can be
applied to any optimisation problem which has a defined objective
function. Stadler [26] defines fitness landscapes as consisting of
three elements, namely:

• A set 𝑋 of possible solutions to the problem.
• A neighbourhood around the elements in 𝑋 which can usu-
ally be defined by some distance, nearness or accessibility
metric 𝑑 to 𝑋 .

• A fitness function.

This definition can be used for both continuous and discrete
problem sets. Continuous optimisation problems can be defined in
the case where𝑋 is all points in R𝑛 (where 𝑛 is the dimension of the
search space) and 𝑑 is the Euclidean distance [3]. The evaluation
of continuous landscapes is more difficult in practice due to the
infinite number of neighbours and the distances between a point
and its neighbours compared to the discrete case which functions
within a finite set.

3.2 Continuous Loss Landscapes
By applying fitness landscape analysis techniques in continuous
spaces, the loss landscapes of the GAN can be studied. LLA provides
a means of studying the behaviour of the loss function by estimating
topological characteristics. Merkuryeva and Bolshakovs [19] liken a
landscape to a surface in the search space defined by the loss values
at each possible solution. In the context of NNs, Rakitianskaia et
al. [24] highlight the search space representing all possible weight
combinations forming the landscape with the resultant loss values
corresponding to the weights. As a result, the search space of NNs
is unbounded as the weights can be any real value. This requires a
subset of the search space to be selected in order to estimate the
loss landscape of NNs.

Bosman et al. [4] suggest using a range of regions when conduct-
ing LLA on NNs, with emphasis on the regions where the weights
are initialised and the areas explored in training the NN. Loss land-
scapes can be particularly useful in trying to explain how and why
NNs behave in certain ways during training due to the inherent
black box nature and high dimensionality. LLA can be used to bet-
ter understand optimisation problems by highlighting the most
essential features in the landscape while training the algorithm.
By studying these features, insight can be provided into why the
algorithm performs well or struggles in the training phase. This
research uses training samples to plot LGCs to study the continu-
ous loss landscapes of GANs. Other sampling techniques and LLA
metrics are excluded from this study.

3.3 Loss Gradient Clouds
Bosman et al. [3, 6, 7] introduce the concept of loss gradient clouds
(LGCs), which provide a means of visually representing the clusters
of low error values of a sampled search space in NN loss landscapes.
The plot is produced by calculating the gradients and loss values
for each of the sampled points. A scatter plot is then produced by
plotting the norm of the gradient (𝑦-axis) against its corresponding
loss value (𝑥-axis). When the norm of the gradient is zero, this
represents a stationary point in the search space, which could be
indicative of minima or saddle points. The LGC visualisation can
therefore be used to identify the presence of ‘basins’ of attraction
and can assist in understanding the nature of the search landscapes
in terms of gradients and losses.

Although LGCs are a new idea, similar scatter plot visualisa-
tions have been used in two well known fitness landscape analysis
techniques, fitness distance correlation [13] and fitness clouds [28].
While fitness distance correlation can also be used to visualise
basins of attraction, it does not display gradient information and
relies on knowledge of the global optimum. Fitness clouds, on the
other hand, focus on displaying evolvability, which is a different
aim to visualising the clusters of good solutions in error landscapes.

4 EXPERIMENTAL PROCEDURE
The aim of this study is to visually analyse features of the loss
landscape of the vanilla GAN and DCGAN architectures in training,
through the plotting of LGCs. This section details the experiments
conducted to illustrate those loss landscape features.

4.1 Data
The vanilla GAN and DCGAN architectures were trained on the
well-known machine learning MNIST [16], Fashion MNIST [30]
and Cifar-10 [15] datasets. A summary of the datasets is briefly
outlined below.

(1) MNIST: The dataset consists of 70,000 examples of 28×28
greyscale handwritten digits from 0 to 9. For the purposes of
this study, a training sample consisting of 60,000 randomly
sampled data points was used for analysis.

(2) Fashion MNIST: The dataset contains 70,000 examples of
greyscale fashion images, labelled on a scale from 0 to 9,
where each digit indicates a different type of fashion item
(such as shirt or bag). The dataset shares the same image size
and split between training and test sets as MNIST.
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(3) Cifar-10: The dataset consists of 60,000 32×32 colour images
in 10 classes ranging from vehicles, air planes and various
animals. There are 50,000 training images and 10,000 test
images. The random sample of 50,000 training images was
used for further analysis.

4.2 GAN Architectures
The vanilla GAN is a simple architecture to implement, and is
similar in structure compared to the original GAN introduced by
Goodfellow et al. [9], while the DCGAN includes convolutional
layers in the generator and discriminator networks.

4.2.1 Vanilla GAN. The vanilla GAN consists of fully connected
generator and discriminator networks with one hidden layer sized
to 100 units. A uniform random distribution ranging from [−1, 1] is
then used to initialise the weights of the generator. The size of the
input vector is set to 20 and referred to as vector ®𝑧, while the size of
the output vector is equal to the size of the image to be generated.
The discriminator is fed the images 𝑥 generated by the generator,
and the training image data 𝑥 found in either the MNIST, Fashion
MNIST or Cifar-10 datasets. The leaky ReLU activation function is
applied to the hidden layers of both the generator and discriminator
to improve their robustness [18]. A dropout layer with probability
0.5 is applied after the hidden layer in the discriminator to reduce
overfitting.

The output layer of the generator uses the tanh activation func-
tion for improved learning, as recommended by Raschka and Mir-
jalili [25]. No activation function is applied to the final layer of the
discriminator in order to get the non-normalized predictions of the
network referred to as the logits of the prediction. Training on the
Cifar-10 dataset has the same structure, however, the image dimen-
sions are adjusted to 32×32×3 to account for the length, width and
RGB colour palette of the Cifar-10 images. The total number of
trainable parameters in the generator and discriminator networks
for the vanilla GAN architecture is shown in Table 1.

Table 1: Vanilla GAN trainable parameters.

Network Dataset Number Parameters
Generator MNIST 81, 184
Generator Fashion MNIST 81, 184
Generator Cifar-10 312, 272
Discriminator MNIST 78, 601
Discriminator Fashion MNIST 78, 601
Discriminator Cifar-10 307, 401

4.2.2 DCGAN. The DCGAN consists of a series of transposed con-
volutional layers in the generator network and convolutional layers
in the discriminator network. The generator initialises its weights
from a uniform random distribution ranging from [−1, 1]. The size
of the input vector is set to 20 and referred to as vector 𝑧. The size of
vector 𝑧 is then reshaped by applying a fully connected layer to 𝑧. A
series of transposed convolutions then upsamples over four layers
until the feature maps to the dimension of the required image size
(28×28×1 for MNIST, Fashion MNIST and 32×32×3 for Cifar-10).
The channel’s size is halved at each transposed convolutional layer
until the last layer which uses a single filter.

The parameters are set according to the DCGAN seen in Raschka
and Mirjalili [25]. The first transposed convolutional layer uses a
kernel size of (5, 5) and strides of (1, 1) as parameters. The second
and third layers use a kernel size of (5, 5) and strides of (2, 2) as
parameters followed by the last layer which uses a kernel size of
(5, 5) and strides of (1, 1) . All transposed convolutional layers use
the same padding process to preserve the size of the outputs to
that of the inputs into a layer. The transposed convolutional layers
are followed by batch normalization and leaky ReLU activation
functions up until the last layer, which uses the tanh activation
function without batch normalization.

The discriminator is fed input from the output of the generator
and the training datasets of either MNIST, MNIST Fashion or Cifar-
10. A series of four convolutional layers then downsamples to the
size of the kernel parameter (7×7×1 for MNIST and Fashion MNIST,
8×8×1 for Cifar-10). The last layer then fits a fully connected dense
network to provide the logits (non-normalized predictions). The
first transposed convolutional layer uses a kernel size of five and
strides of (1, 1) as parameters. The second and third layers use a
kernel size of (5, 5) and strides of (2, 2) as parameters followed by
the last layer which uses a kernel size of (7, 7). All convolutional
layers use the same padding process to preserve the size of the
outputs to that of the inputs into a layer.

In addition, convolutional layers one to three are followed by
batch normalization and leaky ReLU activation functions. Layers
two and three also have a dropout probability of 0.3. The last layer is
a fully connected dense layer with one unit which does not use any
activation function in order to get the logits of the discriminator’s
prediction. Training on the Cifar-10 dataset has the same structure,
however the image dimensions are adjusted to 32×32×3. The total
number of trainable parameters in the generator and discriminator
networks for the DCGAN architecture is shown in Table 2.

Table 2: DCGAN trainable parameters.

Network Dataset Number Parameters
Generator MNIST 804, 832
Generator Fashion MNIST 804, 832
Generator Cifar-10 848, 672
Discriminator MNIST 1, 039, 539
Discriminator Fashion MNIST 1, 039, 539
Discriminator Cifar-10 1, 042, 754

4.3 Data Preprocessing
The input pixels of the datasets lie in the range of [0, 255] . The
datasets are preprocessed to a floating data type and scaled by a
factor of 2 and shifted by −1 in order to rescale the pixel in the
range of [−1, 1]. The rescaling is required due to the output layer
of the generator model using the tanh activation function.

4.4 Training Procedure
The generator and discriminator use the Adam optimizer algorithm
as the optimization method as it is well suited to high dimensional
parameter problems due to its computational efficiency [14]. The
Adam optimiser uses the default parameter settings of 𝛼 = 0.001,
𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 1 × 10−7. A batch (size 128) of input is
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uniformly generated in range [−1, 1], and sent through the genera-
tor to get output. The output is then fed to the discriminator model
to classify whether the output is from the training data or from the
generator. The generator loss is then calculated using the binary
cross entropy loss function, which measures how close output from
the generator is to being classified as real from the discriminator’s
classification. Small losses indicate the generator’s ability to pro-
duce samples similar to the training data distribution, effectively
fooling the discriminator’s classification. Further training attempts
to minimize the loss result in the generator iteratively producing
images which the discriminator classifies as being real.

Processed data from the training datasets of MNIST, Fashion
MNIST or Cifar-10 are then fed (for each separated training ses-
sion) to the discriminator model. The discriminator’s loss is then
calculated using the binary cross entropy loss function, which mea-
sures how close the output from the discriminator is to classifying
inputs from the training data as real and inputs from the generator
model as fake. Small losses indicate that the discriminator is able
to effectively tell apart the real and fake input.

Further training attempts to minimize the difference between
these two losses. The hyper-parameter settings used is based on the
work of Raschka and Mirjalili [25]. A summary of the generator and
discriminator networks hyper-parameters for the vanilla GAN and
DCGAN architectures is shown in Table 3 and Table 4, respectively.

Table 3: Vanilla GAN hyper-parameters.

Parameter Value
Generator: Number hidden layers 1
Discriminator: Number hidden layers 1
Generator: Input size 𝑧 20
Number Epochs 100
Generator: Hidden layer size 100
Discriminator: Hidden layer size 100
Batch size 128

Table 4: DCGAN hyper-parameters.

Parameter Value
Generator: Input size 𝑧 20
Number Epochs 100
Batch size 128

Runs are performed for each dataset and architecture for 100
epochs each. The losses and magnitude of gradients are stored
at each iteration of training for both the discriminator and the
generator. The output of the discriminator’s classification is also
stored at each iteration. A LGC is then plotted with the magnitude
of gradients on the 𝑦-axis and losses on the 𝑥-axis across each
iteration.

4.5 Implementation Tools
The implementation of the experimental setup is carried out in
Jupyter notebooks based in Google Colab [10]. The notebook uses
Python 3.6.7, which has a vast number of libraries, documentation
and community support for the deep learning and plotting tools
required to conduct this experiment. In addition, Google Colab

provides limited access to machines with GPUs for model training,
which reduces the resource constraints on running the models on
local machinery. All the Python libraries utilised in this research
are summarised below.

• Tensorflow 2.0, which is a machine learning framework [1],
was used to build the GAN models and source the datasets.

• Numpy, which is a Python library for working with arrays
[27], was used for all array and vector manipulation.

• Matplotlib, which is Python plotting library [11], was used
to plot all the figures produced in this research.

5 EMPIRICAL RESULTS
The generator aims to learn the probability distribution of the train-
ing datasets over 100 epochs. LGC plots are then made by scatter
plotting the norm of the gradient (𝑦-axis) against the corresponding
loss value (𝑥-axis) of the generator and the discriminator’s com-
bined losses. The points on the plot are colour coded according
to the training stage to track the movement of the cloud over its
iterations. Training is subdivided into 1/5, 2/5, 3/5, 4/5 and 5/5 of
completed iterations with colour coding of purple, orange, black,
green, and yellow, respectively. For example, points coloured purple
fall into the first 1/5 of total iterations in the training of the 100
epochs.

Figures 2 - 4 show the LGCs for the vanilla GAN generator pro-
ducing high gradients and losses in the initial iterations of training
(purple dots). As the iterations increase, there is a gradual descent
into areas of lower gradient and loss by epoch 100 (green to yellow
dots). Stationary points (gradient equal to zero) are not reached,
however the trend suggests that with further training stationar-
ity could be reached. Once the gradients descended into the light
green area, the LGC suggests that further iterations may find it
increasingly difficult for the gradients to escape this area due to
its localisation and smaller space size compared to earlier iteration
points.

The LGC for the vanilla GAN discriminator shows a gradual
descent from area of high gradient to lower gradient with the losses
remaining within a narrow range throughout. The combined dis-
criminator loss showcases gradual movement to defined ranges for
both the gradients and losses with a broader area space compared
to the generator, suggesting more scope for movement to other
areas of loss with further training.

It is interesting to note convergence appears to occur away from
zero gradients or loss even though these areas are approached in the
initial iterations of training. This may be a result of the adversarial
nature of training the generator against the discriminator. As the
generator network produces improved fakes, the discriminator has
a harder job of identifying the fakes from the real inputs leading to
larger losses as the training progresses. Improvements in the one
network come at the expense of the other network in GANs.

The DCGAN generator, shown in Figures 5 - 7, displays more
outlier gradient magnitudes in the initial iterations of training
compared to the vanilla GAN. However, themovement from areas of
high to low gradients and losses is comparable. Another interesting
observation is the more funnel-like shape the LGC forms through
the iterations when compared to the movement of the vanilla GAN.
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Figure 2: MNIST vanilla GAN LGC plots with unbounded
ranges

Figure 3: Fashion MNIST vanilla GAN LGC plots with un-
bounded ranges

Stationary points (gradient equal to zero) are not reached as the
LGC suggests movement away from these points.

The generator plots confirms the movement away from station-
arity in the last training iterations. The comparative size of the
last stages of iterative training (light green area in the LGC) sug-
gests that further iterations have scope for the gradients to escape
compared to the more condensed vanilla GAN at this juncture of
training.

Figure 4: Cifar-10 vanilla GAN LGC plots with unbounded
ranges

Figure 5: MNIST DCGAN LGC plots with unbounded ranges

The DCGAN combined discriminator loss showcases gradual
movement to a large range for the gradient magnitudes and a more
narrowly defined loss range. This suggests the landscape of the
generator has few peaks of attraction judging from the low varia-
tion of the losses range. The discriminator reaches few points of
stationarity in earlier iterations but never settles in this area due to
the volatility associated with the abrupt changes of the calculated
gradients and losses with each training iteration. The discriminator
has a broader range of gradient norms but a narrower loss range
compared to the generator.
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Figure 6: Fashion MNIST DCGAN LGC plots with un-
bounded ranges

Figure 7: Cifar-10 DCGAN LGC plots with unbounded
ranges

For all datasets the DCGAN generates samples which visually
outperform the vanilla GAN. The LGC of the generator is more
funnel shaped in comparison to the vanilla GAN with a broader
range of gradient magnitudes and losses. As a result, the generator
appears more capable of exploring a wider range of possible image
generations in order to fool the discriminator in training.

LGC plots for the DCGANs show a wider range of gradient mag-
nitudes compared to the vanilla GAN, allowing the discriminator
to be more volatile in its prediction at each iteration. This volatility

appears to boost the GAN’s performance as the learning in correct-
ing poorly generated samples is steeper, forcing the generator to
perform better at each passing iteration. Samples produced from
the generator’s output for epochs 1, 25, 50, 75 and 100 are shown
for the vanilla GAN and DCGAN in Figures 8 - 9.
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Figure 8: MNIST vanilla GAN (left) and DCGAN (right) gen-
erated samples
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Figure 9: Fashion MNIST vanilla GAN (left) and DCGAN
(right) generated samples

6 CONCLUSIONS
The LGC revealed the importance of volatility in the training of
GANs. This is illustrated by DCGAN’s broader range of gradient
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magnitudes, allowing more exploration to find an appropriate mid-
dle ground in balancing the loss objectives of both the discriminator
and generator. The vanilla GAN appeared to learn more gradually
over each passing iteration in a more linear fashion. The move-
ment of the vanilla GAN LGC is more distinct for each passing
iteration, moving from a more expansive area to an area of greater
constriction (shown by the colour palette of the LGC plots). The
LGC for each passing training iteration is less distinguishable for
the DCGAN, meaning the scale of learning remains fairly constant
from the beginning to the end of the GAN’s training.

The limitations and avenues for further work of this research
include the following:

• This study only considered two GAN architectures. Doing
comparisons on more GAN architectures may provide more
insight than is currently presented. The Wasserstein GAN
is of particular interest due to its use of the Earth-Mover
distance which allows for improved discriminator training.

• The MNIST and Fashion MNIST datasets are similar in struc-
ture and shape. Choosing a wider variety of datasets may
serve to further validate the findings in this research.

• A scalability study which uses more than 100 epochs for
training can be explored.

• The findings may differ with the use of other optimization
techniques e.g. RMSPROP.

• The study does not focus on hyper-parameter tuning of the
GAN architectures.

• This research is limited to LGCs to understand the loss land-
scape of GAN training, various other loss landscape tech-
niques can be employed to corroborate or question the find-
ings presented here.

Further research can extend on the landscape analysis of GANs
by analysing the curvature by taking the eigenvalues of the Hessian
matrix [8]. As a result, the LGC can be classified as convex, concave,
saddle or singular [6]. The number of GAN architectures is ever
increasing as new techniques attempt to alleviate the difficulties
associated with GAN training. Loss landscape analysis can be per-
formed on a more varied array of GAN architectures to further
understand these approaches by visualising the training by means
of a LGC. A comparative study between the architectures can then
be made.
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