
An Evolutionary and Neighborhood-based Algorithm for
Optimization under Low Budget Requirements

Jordi Pereira
jorge.pereira@uai.cl

Universidad Adolfo Ibáñez
Viña del Mar, Chile

ABSTRACT
Noisy optimization problems pose several challenges to optimiza-
tion algorithms under limited computational resources. The algo-
rithm must balance the need to explore the search space and to
exploit promising regions of this space. In this work we describe an
algorithm that combines previous ideas to tackle the GECCO 2021
industrial challenge using an exploration and an exploitation step.
The first step consists in an evolutionary algorithm combined with
an experimental design, while the second phase is a neighborhood
search embedded within a multi-armed 𝜖-greedy approach. The
resulting algorithm is not only applicable to the challenge but also
to more general problems with varying conditions.

CCS CONCEPTS
•Applied computing→Decision analysis; •Computingmethod-
ologies → Simulation evaluation.

KEYWORDS
Estimation of distribution algorithms, design of experiments, opti-
mization of simulations, 𝜖-greedy.

ACM Reference Format:
Jordi Pereira. 2021. An Evolutionary and Neighborhood-based Algorithm
for Optimization under Low Budget Requirements. In 2021 Genetic and
Evolutionary Computation Conference Companion (GECCO ’21 Companion),
July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3449726.3463282

1 INTRODUCTION
The GECCO 2021 industrial competition deals with an optimization
problem found in capacity and resource planning for hospitals
where the performance of the solutions corresponds to the result
of a simulation, see [1] for more information. In addition to its
practical interest, the problem itself is a challenging theoretical
test-bed to compare optimization algorithms. The problem has 29
continuous decision variables, each with a suggested lower and
upper value. The aim is to find a value for each variable that reports
the best objective value with a limit of 200 simulation runs. The
budget limits the running time to reasonable values within practical
settings (for instance, it takes over 30 seconds to run one simulation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3463282

on a 2017 3.2 GHz Intel Xeon W processor) and discourages the use
of some common techniques, like averaging, to reduce the noise
within objective function evaluation.

This work describes the implementation submitted to the chal-
lenge by the author. The method combines previous ideas from
different. First, exploration is performed by an estimation of dis-
tribution algorithm (EDA) [2] where candidate solutions and pa-
rameter updates follow a Taguchi experimental design [5]. The
exploration phase is followed by an intensification phase where
an epsilon-greedy strategy [6] balances the exploration between
the neighborhood of an incumbent solution and the probabilistic
model provided by the EDA phase.

2 EXPLORATION PHASE
An EDA can be seen as an evolutionary algorithm in which the
population is encoded as a probabilistic model. In our case, the
probabilistic model consists in a continuous uniform distribution
U (𝑎𝑖 , 𝑏𝑖) for each variable 𝑖 , initialized with the minimum and
maximum values suggested by the challenge. The main loop of the
EDA performs the following actions: (1) create candidate solutions
sampling from the probabilistic model; (2) evaluate solutions and
(3) update the parameters of the probabilistic model to direct the
search to promising regions of the search space.

The major difference between a classical EDA and the proposed
implementation consists in the use of a Taguchi-like experimental
design to sample (i.e., create solutions) and to update the probabilis-
tic model. A Taguchi experimental design, see [5] for more details,
identifies the controllable parameters that affect the outcome of
the process (our problem). For each parameter (our variables), the
experimenter defines the levels that need to be considered and cre-
ates experiments according to an orthogonal design. The result is a
balanced fractional factorial design where the effect of each factor
is independent and higher-order interactions are assumed to be
nonexistent. Once the experiments are performed, an analysis of
means of a loss function is conducted by averaging the results of
the experiments, and decisions are made according to these results.
These ideas are incorporated within the EDA framework as follows.

First, candidate solutions are created considering each solution
as an experiment from the design. Each variable is considered as a
parameter with two levels. The levels identify whether the value
of the variable for the experiment will be “below” or “above” the
average of its corresponding uniform distribution. The experiments
are then constructed according to the smallest cardinality orthog-
onal array that fits the number of parameters and levels (for 29
parameters with 2 levels, the experimental design requires 36 ex-
periments [4]).

17

https://doi.org/10.1145/3449726.3463282
https://doi.org/10.1145/3449726.3463282
https://doi.org/10.1145/3449726.3463282

GECCO ’21 Companion, July 10–14, 2021, Lille, France J. Pereira

Second, each experiment evaluates a solution constructed accord-
ing to the experimental design, i.e., if a variable 𝑖 is set to “below”,
then the value of the said variable is a randomly drawn value from
a continuous uniform distribution U (𝑎𝑖 , 𝑎𝑖+𝑏𝑖2) (if the variable is
set to the “above” level, then the value is drawn from U (𝑎𝑖+𝑏𝑖2 , 𝑏𝑖)).

After performing the experiments, averages are calculated. Let
𝑚−
𝑖
(𝑚+

𝑖
) be the average among all experimentswith “below” (“above”)

level for variable 𝑖 . Then, if𝑚−
𝑖
< 𝑚+

𝑖
(𝑚−

𝑖
> 𝑚+

𝑖
) the probabilistic

model is biased to provide candidate solutions with smaller (larger)
values by shifting the mean of the probabilistic model. Additionally,
the update step also reduces the range of the model to focus the
search into smaller areas.

Let𝛼 and 𝛽 be two algorithmic parameters to control the shift and
the range reduction. Let 𝜇𝑖 be the mean of the uniform distribution
U (𝑎𝑖 , 𝑏𝑖) for any given variable 𝑖 , that is 𝑎𝑖+𝑏𝑖

2 . Then, define the new
range of the probabilistic model as 𝛽 (𝑏𝑖 − 𝑎𝑖) and the new mean,
𝜇 ′, as 𝜇𝑖 − 𝛼 (𝑏𝑖 − 𝑎𝑖) or 𝜇𝑖 + 𝛼 (𝑏𝑖 − 𝑎𝑖) according to the desired
negative or positive bias. Combining both updates, the distribution
becomes U (𝜇 ′ − 𝛽

𝑏𝑖−𝑎𝑖
2 , 𝜇 ′ + 𝛽 𝑏𝑖−𝑎𝑖

2). If the minimum or maximum
parameters fall outside the ranges provided by the challenge, the
parameters are modified to comply with the said limits.

These steps are repeated for a given number of iterations that
depend on the computational budget. To further limit the number
of evaluations required in each step, the use of smaller experimental
designs was considered. If a smaller experimental design is used,
the most important features of the previous designs are kept within
the experiment, i.e., those with larger average difference between
means, and the remaining are sampled directly from their proba-
bilistic model without enforcing balance between levels.

3 INTENSIFICATION PHASE
The exploration phase provides an incumbent, the best-found solu-
tion, and a probabilistic model. The intensification phase tries to
explore the neighborhood of the incumbent and the probabilistic
model using an 𝜖-greedy approach based on a multi-armed bandit
model. The procedure considers a new candidate solution in each
step of the phase. With probability 1−𝜖 the candidate is a neighbor
solution from the incumbent, and with probability 𝜖 it is a solution
sampled from the probabilistic model. Candidates are evaluated,
and replace the incumbent if they are considered to be better. These
operations are repeated until exhausting the computational budget.

To generate a neighbor, the algorithm modifies the incumbent by
slightly perturbing the value of each variable. For each variable 𝑖 of
a given solution x, let 𝑥𝑖 be the value of variable 𝑖 in the incumbent
and let 𝜌 be a parameter that controls the neighborhood size, i.e., the
level of perturbation introduced to the solution. Then, a neighbor
solution x̂ is constructed as 𝑥𝑖 = 𝑥𝑖 + 𝑟 (𝑥−

𝑖
− 𝑥+

𝑖
, 𝑥+

𝑖
− 𝑥−

𝑖
)𝜌, ∀𝑖 ,

where 𝑟 (𝑎, 𝑏) is a pseudo random number generation function. To
generate a solution from the probabilistic model, each value is
randomly drawn from the uniform distribution associated with the
said variable.

Solutions are compared according to the median value among a
given number of evaluations, which was set to three for the chal-
lenge. Multiple evaluations lessen the impact of outliers within the
procedure and the suggested number of evaluations still maintains
a low computational footprint. Additionally, the evaluation can

be stopped if an optimistic bound on the objective is shown to be
worse than the incumbent. In our case, we can provide a bound of
the median with two evaluations, potentially saving an evaluation
for a different candidate solution. Note that the challenge aims at
finding the minimum objective value among all 200 evaluations.
Consequently, the incumbent of the intensification phase may differ
from the best solution reported at the end of the algorithm.

4 PARAMETER SETTING AND
COMPUTATIONAL RESULTS

The proposed method uses different control parameters to fine-tune
its performance to specific problems and conditions. For competi-
tion purposes, the parameters were tuned using two independent
runs of Irace [3], each with a computational budget of 1000 evalua-
tions. The parameters for the first run were 𝛼 = 0.188, 𝛽 = 0.122,
𝜖 = 0.18, 𝜌 = 0.0962 with two iterations of the exploration phase,
while the parameters for the second run were 𝛼 = 0.228, 𝛽 = 0.0307,
𝜖 = 0.0153, 𝜌 = 0.0568 with four iterations of the exploration phase,
two with a 36-experiments orthogonal array followed by two with
a 28-experiments orthogonal array.

These combinations were then compared by running sixty inde-
pendent runs of the algorithm with each parameter set. A t-test and
a Mann-Whitney test showed no statistical difference between both
parameter settings. The average and standard deviation among
the 120 tests were 15.4 and 1.3 units, respectively. Note some of
the variability may be attributed to the objective function. We ran
100 independent evaluations for a single solution with an average
objective of 24.6 units, and standard deviation of 2.9.

A detailed examination of the parameters show that the algo-
rithm devotes between one and two thirds of the computational
budget to the exploration phase, and adapts the degree of explo-
ration within the second phase according to the time spent within
the first phase (i.e., if the number of experiments allotted to the first
phase is low, then it increases 𝜖 and 𝜌 to include more exploration
within the second phase). Consequently, while the parameters may
differ significantly, the algorithm reaches a balance between explo-
ration and exploitation within the search.

5 ACKNOWLEDGMENTS
This research has been partially funded by the Chilean Council
of Scientific and Technological Research (CONICYT) through the
Fondecyt grant 1191624 “Assembly line balancing for industry 4.0”.

REFERENCES
[1] Thomas Bartz-Beielstein, Frederik Rehbach, Olaf Mersmann, and Eva Bartz. 2020.

Hospital Capacity Planning Using Discrete Event Simulation Under Special Con-
sideration of the COVID-19 Pandemic. arXiv:2012.07188 [stat.AP]

[2] Pedro Larrañaga and Jose A. Lozano. 2001. Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation. Kluwer Academic Publishers, USA.

[3] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas
Stützle, andMauro Birattari. 2016. The irace package: Iterated Racing for Automatic
Algorithm Configuration. Operations Research Perspectives 3 (2016), 43–58. https:
//doi.org/10.1016/j.orp.2016.09.002

[4] National Institute of Standards and Technology. 2017. Dataplot: Tabulated designs.
Retrieved April 12, 2021 from https://www.itl.nist.gov/div898/software/dataplot/
designs.htm

[5] Madhan Shridhar Phadke. 1995. Quality Engineering Using Robust Design (1st ed.).
Prentice Hall PTR, USA.

[6] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA.

18

https://arxiv.org/abs/2012.07188
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://www.itl.nist.gov/div898/software/dataplot/designs.htm
https://www.itl.nist.gov/div898/software/dataplot/designs.htm

	Abstract
	1 Introduction
	2 Exploration phase
	3 Intensification phase
	4 Parameter setting and computational results
	5 Acknowledgments
	References

