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ABSTRACT
Fitness landscape analysis (FLA) is a useful tool in the domain of
(meta-)heuristic optimization but depends on explicitly knowing
what fitness value is assigned to each solution. Dynamic optimiza-
tion problems often do not provide their fitness landscape in such
an explicit form, but by employing problem-specific knowledge,
information about the problem itself and its current state can still be
obtained. In this paper, a type of gray-box analysis of states of the
open-ended stacking problem in two variations is presented. The
current states obtained by monitoring the problem and algorithm
during optimization are described via statistical measures similar
to FLA measures. From this the distribution of possible states (the
state landscape) and the transitions between problem states are
analyzed. Visualization of the empirically obtained results reveals
insights into algorithm-problem dynamics.
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1 INTRODUCTION
Research in the evolutionary computation (EC) domain often yields
methods/approaches that can be applied to both academic and
real-world optimization problems. Scientific contributions can be
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found in various subareas of the research domain, ranging from
classical static problem formulations to dynamic optimization prob-
lems. The latter are of importance in real-world optimization, since
many real-world processes are dynamic by nature. For this very
reason, dynamic optimization problems (DOPs) have become an
increasingly important subject of research, e.g. in production and
logistics optimization where scheduling and stacking problems
are well researched, however, dynamic problems, where machine
breakdowns can occur, tasks are not (fully) known beforehand and
conditions like processing times and restrictions change, have not
been explored as much [3, 10].

To gain more insights into the difficulty of problems or better
understand the behavior of optimization algorithms, research has
come up with the concept of fitness landscape analysis. Specific mea-
sures can be taken for various optimization problems, which help to
categorize a set of problems and e.g. provide useful information for
optimization algorithms or even find promising algorithm-problem
pairs (algorithm selection) [1, 16]. However, to the best of our knowl-
edge, FLA has only found very few applications in the domain of
DOPs.

A major issue when applying FLA to DOPs is that the fitness of
a potential solution at a fixed point in time cannot be measured
directly, rather in many real-world problems only the performance
of the whole optimization algorithm over longer periods can be
assessed.While the fitness impact of a single decision can be gauged
by restarting the problem and changing only this decision, this
is often not feasible for real-world problems. Rather it would be
prudent to combine domain-knowledge and information about the
current state of the DOP with those FLA measures that can be
estimated without requiring explicit fitness evaluations.

In this paper, we showcase the use of gray-box landscape anal-
ysis on an open-ended stacking problem. Here, gray-box means
combining domain information (white-box) with “traditional” land-
scape measures where nothing except the evaluation function is
known(black-box). Two academic problem formulations based on
real-world applications are used to create a repeatable experiment.
By calculating statistic measures describing the current problem
state and grouping similar states together, we gain insights into the
dynamics of the problem and the employed algorithm.

The rest of this paper is outlined as follows: Section 2 guides the
reader towards existing literature concerned with the application
of dynamic fitness landscape analysis. The dynamic optimization
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problem is explained in Section 3. In Section 4, the analysis proce-
dure is presented in detail. Conducted experiments and results are
shown in Section 5. The paper concludes with Section 6.

2 LITERATURE REVIEW
For a certain subset of optimization problems, it is not enough to
find a single solution by solving these problems once. Dynamic
optimization problems (DOPs) change over time, which makes it
necessary for optimization algorithms to not only find, but also
track the optimum. Real-world examples of DOPs are dynamic
vehicle routing [20, 22], dynamic scheduling problems [2, 18], dy-
namic container relocation problems [30] and dynamic machine
configuration [12].

Several classifications of DOPs have been proposed [4, 6, 15]. In
[15], the following key properties of DOPs are defined:

• Time-linkage: Whether the solution found by the optimizer
has an influence on how the problem changes.

• Visibility: Whether the optimizer is notified about dynamic
changes; for problems with different dynamic influences,
hybrid visibility levels may exist.

• Periodicity: Whether the problem displays cyclic behavior
and returns to previous states.

• Changing Factors: Objective functions, domain of variables,
number of variables, constraints.

There exist a number of academic benchmarks for DOPs, such as
the moving peaks problem [5], the dynamic XOR generator [29], the
dynamic Knapsack problem [23] and dynamic NK-landscapes [8].
A generic problem generator for dynamic binary optimization prob-
lems which is specifically used for FLA was created by Tinós and
Yang [25].

Most of the academic benchmarks focus on a changing objective
function, while keeping most other factors, e.g. number and domain
of variables, constant. Similar to all examined DOPs in the survey
of [15], most academic problem formulations do not display time-
linkage behavior. Conversely, several of the real-world DOPs listed
above, especially the scheduling problems, exhibit time-linkage and
changing solution encodings, i.e. number and domain of decision
variables also vary over time.

Fitness landscape analysis (FLA) aims to capture significant char-
acteristics of an optimization problem [21]. These may provide in-
sights into the problem itself [17], the behavior of the optimization
algorithm [27] and enable the automated selection of appropriate
algorithms [1]. Well known static FLA measures include:

• Ruggedness measures, including auto-correlation [28], are
often calculated using walks through the fitness landscape.

• In [14], a set of measures trying to describe problem hardness
is reviewed.

• Epistasis [9] describes how strongly decision variables are
connected and is often analyzed in context with NK land-
scapes [11].

• Local optima networks capture the transitions between lo-
cally optimal solutions [17] and several measures can be
calculated using the resulting graph.

Compared to static optimization problems, only relatively few
fitness landscape measures have been proposed for dynamic opti-
mization problems. These include change severity, mean optimal

fitness difference, (mean) fitness distance correlation [7, 25] and rank-
based difference [24], which compare solution qualities and the
location of the global optima before and after a discrete dynamic
event. In [13], stationarity of amplitude change, keenness, periodicity
and change degree of average fitness are calculated for static land-
scapes, and the mean difference of these measures before and after
events is used to describe the dynamicity of the problem. Further-
more, the fitness landscape similarity after dynamic time warping
is proposed.

3 OPEN-ENDED STACKING
In the spirit of reproducibility, the stacking problems from the 2021
GECCOCompetition "Dynamic Stacking Optimization in Uncertain
Environments"1 are used as a benchmark for this paper.

3.1 Hot Storage Scenario
Figure 1 (upper) shows a possible state of a hot storage (HS) ware-
house in steel production during optimization/simulation. The de-
picted warehouse consists of one arrival stack on the left, several
buffer stacks in the middle and one handover area on the right.
New blocks spawn at unknown times at the bottom of the arrival
stack, shifting all existing blocks there upwards until a maximum
stack height is reached. If the arrival stack is full, the arrival pro-
cess blocks until blocks are removed – this is undesired, as in the
real world preceding production processes might be blocked as
well. The blocked arrival time is one the five objectives of the opti-
mization problem and should be kept minimal while the number of
delivered blocks should be maximized. Additionally, the operation of
the crane incurs its own cost, so the number of crane manipulations
(moves) should be kept minimal.

All buffer stacks are also limited in height. Once reached, no
blocks can be dropped on the respective stack anymore. Each block
carries its own due date, at which it must be handed over. Overdue
blocks are undesired and constitute the fourth objective. For a suc-
cessful handover, both block and handover stack must be in a ready
state. It is unknown when a block or the handover stack transitions
into the ready state, however, it is guaranteed that a block will
become ready before its due date is reached. The handover stack
becomes unavailable after a successful handover and resets into the
ready state after some time, limiting the rate at which blocks can
leave the system. Only one block can be handed over at a time and
the crane can only carry one block at a time. Once a block has been
put on the handover, it cannot be removed by the crane anymore.

As an additional source of uncertainty and dynamicity, the time
the crane takes to perform any action is stochastic. The crane cannot
be interrupted during a move, it can only be interrupted between
moves, limiting the times at which the optimizer can effectively
react to dynamic changes.

From an optimizer perspective, the problem presents itself as a
stream of world states that have to be answered with a stream of
crane instructions. Crane instructions take the form of lists of moves
(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑏𝑙𝑜𝑐𝑘𝐼𝑑) that the crane processes sequentially. The
crane can be relocated without moving a block by using empty
moves (moves without a 𝑏𝑙𝑜𝑐𝑘𝐼𝑑). If the crane has currently no
instructions, it will idle. This makes the time at which the optimizer
1https://dynstack.adaptop.at/
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Figure 1: The hot storage scenario with a single crane (upper) and the rolling mill scenario with two cranes (lower).

publishes its schedule a decision variable in itself. Sending a new
set of crane instructions overrides the current schedule, except for
the move that is currently carried out.

3.2 Rolling Mill Scenario
The rolling mill scenario (RM) is depicted in Figure 1 (lower) and
differs from the hot storage in a few aspects. The warehouse has
multiple arrival stacks and handover locations. A handover location
belongs to a rolling mill where blocks exiting the warehouse are
processed further. Each rolling mill has a milling program that
dictates which blocks should be delivered and milled next. Multiple
blocks can be dropped off at a handover location. Blocks dropped
in the wrong sequence or on the wrong handover location will
be processed by the rolling mill, but counted as mess-ups. The

number of mess-ups is the last objective should be kept minimal
(The number of mess-ups for the hot storage scenario is inherently
0). Therefore, it is imperative to deliver the blocks to their correct
handover locations in order. The respective milling program of each
block is known. However, the point in time when a block will be
milled is only known minutes before the actual milling process is
started.

Furthermore, in this warehouse two cranes are operated (cf. C1
and C2 in Figure 1). They share a single crane lane, thus making it
necessary to coordinate crane movements as it is impossible for one
crane to overtake the other. No crane can reach all stacks within
the warehouse alone, necessitating transshipments. Both cranes
can access all buffer stacks, however, only the shuffle crane (C1)
can access the arrival stack and only the handover crane (C2) can
access the handover stacks.
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Finally, compared to the hot storage scenario, the cranes in the
rolling mill scenario are able to carry more than one block at a time.

3.3 Problem Characteristics
From a dynamic optimization point of view, the dynamic stacking
problems display different characteristics compared to academic
benchmark functions, such as the moving peaks problem. As most
benchmarks change their fitness landscapes after a certain number
of function evaluations, it is possible to evaluate multiple solutions
for the same fitness landscape. The dynamic optimization problem
presented here requires the optimization process to decide for itself
which potential schedules should be favored over others using only
domain specific knowledge. Furthermore, the dynamic scheduling
problems are time-linked, meaning that the optimization results
themselves change the fitness landscape. Lastly, the qualities of a
single solution computed at different points in time often cannot
be easily compared, because, as the problem changes, solutions
quickly become invalid (i.e. the solution encoding changes over
time). Thus several FLA measures such as fitness correlation that
depend on comparing qualities before and after dynamic changes
cannot be calculated. Similarly, walk-based or sampling-based FLA
measures are difficult to evaluate because of the aforementioned
time-linkage. Finally, assessing the quality of a solution is not an
instant action and punishing or beneficial effects of made moves
are reflected in the cumulative quality indirectly and much later
when the fitness landscape has long changed.

4 STATE LANDSCAPE ANALYSIS
To explore the relevant states of the DOP, a straight forward way
is to apply an optimizer to the problem and record the problem’s
state at defined points in time, e.g. every 𝑛 seconds or whenever
event 𝑒 happens. For the following results, the problem state was
queried every second for one hour of simulated time. In order to
make problem states comparable at different points in time or be-
tween different optimizer runs, states need to be described via their
statistical properties. Table 1 shows a list of features comprising the
state descriptors. Roughly speaking, these features can be grouped
into:

• features that are only dependent on the warehouse geometry
and therefore constant

• features that describe the current state of the warehouse
• features that represent the optimization objectives at the
current time

• features describing how the state has changed in the last 𝑛
seconds (dynamic)

• features that take the view of the optimizer (i.e. the fitness
landscape) into account

Applying static and dynamic fitness landscape measures to the
open-ended stacking problem is not trivial, as most measures re-
quire an explicit mapping between solutions and their associated
performances. However, in the open-ended stacking problem, only
the cumulative performance of the solver over time is explicitly
known.

However, the prominent dynamic fitness landscape measure
named change severity and change frequency can be approximated.
Change severity, as defined in [7], is the difference between the

optimal solutions before and after a dynamic change event, which
is normalized by the maximum achievable distance in the search
space. In the same paper, the difficulty of finding the global op-
timum in real-world problems is acknowledged and the change
severity is approximated by comparing the best solutions of an
evolutionary algorithm before and after the change event. Since
the open-ended stacking problem undergoes continuous change,
rather than discrete change events, change severity must be defined
per-time unit, e.g. on a per second basis. Furthermore, although
the quality of the optimal solution is unknown, the solution the
optimizer deems to be optimal is known, which can be substituted
as the location of the global optimum.

For any given current problem state, a solution is defined as a
set of 𝑛 next moves that are to be executed by the specified crane(s).
Following the problem reduction for static crane scheduling prob-
lems in [19], we consider only the sequence of moves as relevant,
not their specific starting times. Therefore, the change severity for
the open-ended stacking problem can be approximated by

𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑛 =
𝑑 (𝒙𝑛,𝑡 , 𝒙𝑛,𝑡+𝛿 )

𝛿
(1)

where 𝒙𝑛,𝑡 are the next 𝑛 moves emitted by the optimizer at
time 𝑡 and 𝛿 is the time horizon over which the change severity is
measured. For optimizers that provide fewer than 𝑛 next moves,
empty moves are imputed. For simplicity, 𝑑 was chosen to be the
hamming distance. In the following experiments, the change sever-
ity was measured at 1 Hz and the mean change severity over the
last 2 minutes was computed (𝑛 = 1, 5, 10). These three change
severity measures are used in conjunction with the other (domain-
dependent) measures to create statistical descriptors of the current
problem state.

In order to visualize and describe the behavior of a given solver-
problem pair, the transitions between problem states must be taken
into consideration. Therefore, a dynamic state network is proposed.
By assuming that throughout the optimization process, some en-
countered problem states are sufficiently similar, although not nec-
essarily consecutive in time or not even occurring in the same
optimization run, state descriptors can be sub-sampled via cluster-
ing. For this, it is important that all state features are time-invariant
or normalized accordingly. By using the resulting clusters as nodes
and the encountered transitions between clusters as edges, a char-
acteristic, directed graph for further analysis can be created.

5 EXPERIMENTS AND RESULTS
To be able to extract the proposed landscape measures, both the hot
storage and rolling mill setups were used with three different ware-
house layouts (number of stacks, maximum stack height, . . . ). For
each rolling mill layout three different dynamic parametrizations
(distribution of arrivals, times until blocks are due, . . . ) and for the
hot storage four parametrizations were tested. This yields a total
of 21 experimental simulation setups used to produce landscape
measures. On each experimental setup, a rule-based optimizer was
allowed to operate for one hour of simulation time. Experiments
were repeated 30 times. In order to achieve more stable landscape
measures, measures were extracted every second and aggregated
into (non-overlapping) bins of 30 seconds via averaging, yielding a
state descriptor consisting of 37 measures for every half a minute
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Figure 3: HS-3 Stacks colored by scenario parametrization

of simulation time. The five objectives themselves accumulate over
time and are therefore not suitable for detecting similar (revisited)
states.

5.1 Result 1: System State Similarities
Figure 2 shows t-SNE [26] projections of the obtained descriptors
(using unweighted Euclidean distance) grouped by warehouse lay-
out. Note that t-SNE is a non-parametric non-linear projection of
the descriptor space that focuses on maintaining neighborhoods.
The rotation and size of the image contain no information and
points in one cluster may be closer to each other than in other clus-
ters. For all layouts a few clearly separated dark clusters containing
mostly descriptors from the very beginning of the optimization are
shown. This indicates that the initial state of the warehouse from
which the optimizer has to start from is (substantially) different
from the later operating states, when the optimizer had a chance
to find a stable working regime. All HS projections further display
a smaller number of less separated, but still identifiable clusters
with no apparent correlation to the amount of time passed. Fig-
ure 3 explains some of these clusters as descriptors pertaining to
different dynamic parameter settings are almost disjoint. However,
for HS-3 Stacks most parameter setting induced sections display
two separated partitions which are neither explained by parameter
setting nor by optimization time. Another prominent feature are
the “string”-like structures appearing around the center cluster in
all RM variations. These strings represent descriptors of problem
states where the algorithm encountered unstable configurations (e.g.
warehouse too full) where barely any moves are executed and the
overall “tardiness” in the system increases. Therefore the state de-
scriptors yield very similar measures, except for those measures
that take tardiness into account and progress linearly with time.

5.2 Result 2: System State Transitions
The analysis of the state descriptors as individual points, can be
enhanced when taking their transition function into account. In

order to analyze which states lead to which, the descriptors need
to be grouped (as descriptors are very rarely exactly the same). In
this paper, the descriptors were clustered via hierarchical cluster-
ing (euclidean distance, ward-linkage and 200 fixed clusters) into
nodes of a directed graph. The edge weight was set by counting
how often descriptors of one cluster lead to descriptors of another
cluster. Figure 4 displays these graphs for all warehouse layouts.
The spring-layout used to plot these graphs positions nodes with
stronger connections (more and heavier edge-weights) closer to-
gether. In contrast to the t-SNE projection which clusters descrip-
tors according to their numeric similarity, this method groups them
by their transitional probability. Reflexive transitions constitute the
majority of transitions and are not plotted for visibility reasons.

For the HS scenario the graphs show two visibly distinct com-
ponents of nodes that are highly connected within each other. As
indicated by the colors, this shows that the operating states for one
set of dynamic parameters are contained in a separate area of the
state space, while the other three settings share a more connected
though divisible area.

The RM graphs display similar shapes as their corresponding
t-SNE plots with a larger well connected group of nodes in the
center and scattered clusters around. No edges lead from these
outer clusters back towards the center, indicating that at least this
algorithm is not able to recover from a degraded state.

6 CONCLUSION
In this paper, a type of gray-box analysis for dynamic stacking
optimization problems, for which no fitness landscape is explicit,
is introduced and demonstrated on two different dynamic stack-
ing/crane scheduling problems with multiple layouts and dynamic
configurations. The proposed method contains multiple state mea-
sures including approximations of the established FLA measures
change severity and change frequency which are calculated parallel
to the execution of any optimization algorithm and do not require
fitness evaluations or interfere with the search. Hence, perform-
ing this state analysis does not decrease the performance of the
employed solver, assuming the overhead in execution time is negli-
gible. Another major advantage is that state landscape analysis can
be applied when fitness values are only obtained in a cumulative
and implicit form and the quality of individual decisions is difficult
to discern. Visual exploration of the traversed state space indicates
that this type of analysis can provide insights into the dynamics of
the problem and the algorithm, for example, how the search process
revisits certain states or fails to recover from specific situations,
which might indicate the need to switch to a different algorithm.

Future work will include:

• the extension of the state descriptors with more measures
• the prediction of future algorithmic performance
• the selection or weighting of state measures based on their
variable impact in these predictionmodels in order to combat
co-linearities and lessen the impact of multiple similar or
less informative features

• the inclusion of proxy fitness-evaluation (e.g. static approxi-
mations of the dynamic problem)
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HS-3 Stacks HS-6 Stacks HS-9 Stacks

RM-6 Stacks RM-8 Stacks RM-10 Stacks

Figure 2: System State Similarities - t-SNE projections of the state descriptors grouped by warehouse geometries and colored by
time. Dark colors indicate early states while light colors indicate later ones.

• the application to scenarios where the environmental circum-
stances (e.g. handover readiness, crane availability) undergo
dynamic changes (concept drifts)

• the analysis of state spaces of different and more complex
optimization algorithms

Finally, we believe open-ended dynamic optimization can benefit
majorly from automated algorithm selection and parametrization
and the information obtained from state space analysis can be used,
similarly to how conventional fitness landscape analysis features
are used in the static case.
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Measure Type Description
StorageSpaces constant Number of storage spaces in the warehouse
Stacks constant Number of stacks
Cranes constant Number of cranes
MaxStackHeight constant Maximum capacity of any stack in the warehouse
MeanPossibleCranes constant How many cranes can reach a stack on average
StoredBlocks current Number of occupied storage spaces
UsedStacks current Number of stacks with at least one stored block
MaxUsedHeight current Maximum height of current stacks
OutOfOrderDegree current Number of block pairs in the same stack stored in reversed handover order
HandoverMissingCount current Number of blocks in the rolling mill program but not in the system
OverdueBlocks current Number of stored blocks that are overdue
WeightedDistanceToHandover current Sum of all distances 𝑑𝑏 from stored blocks 𝑏 ∈ 𝐵 location to the handover

stack, weighted by 1
𝑠𝑏
, where 𝑠𝑏 is the block’s sequence number

AvailableForHandover current Number of blocks that can be put on the handover stack without intermediary
moves (transshipments)

ReadyForHandover current Number of blocks that are ready for handover
ReadyAndAvailableForHandover current Number of blocks that are ready for handover and can be put on the handover

stack without intermediary moves (transshipments)
MeanDueness current Mean time before due date
MaxDueness current Time to latest known due date
MinDueness current Time to earliest known due date
StdDueness current Standard deviation of times to due dates
StoredBlocks_Norm current StoredBlocks / StorageSpaces
UsedStacks_Norm current UsedStacks / Stacks
MaxUsedHeight_Norm current MaxUsedHeight / MaxStackHeight
MeanUsedHeight current StoredBlocks / Stacks
MeanUsedHeight_Norm current MeanUsedHeight / MaxStackHeight
OutOfOrderDegree_Norm current OutOfOrderDegree divided by maximum OutOfOrderDegree given current

StoredBlocks
HandoverMissingCount_Norm current HandoverMissingCount / (HandoverMissingCount + StoredBlocks)
OverdueBlocks_Norm current OverdueBlocks divided by number of blocks for which due date is known
WeightedDistanceToHandover_Norm current WeightedDistanceToHandover divided by the warehouse’s width
AvailableForHandover_Norm current AvailableForHandover / StoredBlocks
ReadyForHandover_Norm current ReadyForHandover / StoredBlocks
ReadyAndAvailableForHandover_Norm current ReadyAndAvailableForHandover / StoredBlocks
BlockedTime objective Time the arrival stack is blocked
DeliveredBlocks objective Number of blocks successfully handed over
CraneManipulations objective Number of executed crane moves
Overdueness objective Cumulative delay of all blocks
Messups objective Number of incorrectly delivered blocks
BlockedTimeRate dynamic Change of BlockedTime in the last 𝑛 seconds, divided by 𝑛
DeliveredBlocksRate dynamic Change of DeliveredBlocks in the last 𝑛 seconds, divided by 𝑛
CraneManipulationsRate dynamic Change of CraneManipulations in the last 𝑛 seconds, divided by 𝑛
OverduenessRate dynamic Change of Overdueness in the last 𝑛 seconds, divided by 𝑛
MessupsRate dynamic Change of Messups in the last 𝑛 seconds, divided by 𝑛
Change Severity dynamic FLA see Section 3.3

Table 1: Features comprising the state descriptors.
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