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ABSTRACT

Neural Architecture Search (NAS) is the process of automating
architecture engineering, searching for the best deep learning con-
figuration. One of the main NAS approaches proposed in the litera-
ture, Progressive Neural Architecture Search (PNAS), seeks for the
architectures with a sequential model-based optimization strategy:
it defines a common recursive structure to generate the networks,
whose number of building blocks rises through iterations. However,
NAS algorithms are generally designed for an ideal setting without
considering the needs and the technical constraints imposed by
practical applications. In this paper, we propose a new architec-
ture search named Pareto-Optimal Progressive Neural Architecture
Search (POPNAS) that combines the benefits of PNAS to a time-
accuracy Pareto optimization problem. POPNAS adds a new time
predictor to the existing approach to carry out a joint prediction
of time and accuracy for each candidate neural network, search-
ing through the Pareto front. This allows us to reach a trade-off
between accuracy and training time, identifying neural network
architectures with competitive accuracy in the face of a drastically
reduced training time.
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1 INTRODUCTION

In the last years, the contribution of machine learning has risen
in many fields, increasing the request for intelligent and dynamic
solutions. In particular, through the study and development of con-
volutional neural networks (CNNs), deep learning applications have
achieved significant results in image classification and other com-
puter vision tasks [12], [22], [29], [8], [26]. One of the most relevant
limitations is the process of designing and building deep neural
networks; in fact, the handcrafted design remains the primary con-
straint in terms of time taken and resources spent, and there is
no guideline which grants a good intuition into the best network
design.

Automatic machine learning (autoML) leads to a considerable
acceleration in this sense: it makes it feasible to approach big data
problems related to new fields by using black-box models that users
can exploit even without being specialized data scientists. The me-
chanical design of an artificial neural network is a well-known task
already addressed in the literature [32], [4], [33], [15]. These works
successfully presented several strategies to build networks that
achieved and overcame state-of-the-art accuracy on image classifi-
cation tasks. While early works leveraged upon massive computa-
tional resources [32], recent works try to relax these requirements
and proposed methods working even on a single GPU [15].

Despite the progress achieved, the computation times of these
techniques remain, in most cases, too expensive. In many scenarios,
indeed, it is necessary to frequently update deep learning archi-
tecture, and the required time can become a fundamental discrim-
inating factor. In this work, we propose Pareto-Optimal Progres-
sive Neural Architecture Search (POPNAS), a Neural Architecture
Search (NAS) method that, starting from the Progressive Neural
Architecture Search (PNAS) technique [15], manages the trade-off
between time and accuracy via Pareto efficiency. Thanks to the pro-
posed approach, it is possible to obtain competitive performance
results and massive reductions in model search time with respect to
PNAS. To the best of our knowledge, this is the first work propos-
ing a NAS technique that considers time as a constraint for the
optimization problem.

The paper is organized as follows: Section 2 shows an overview
of the existing NAS techniques and discusses how these works re-
late to PNAS. Section 3 presents POPNAS and the new performance
and search strategy to include time constraints. Section 4 describes
the conducted experiments and their results. It also includes the ab-
lation study and the comparison with the PNAS technique. Finally,
Section 5 discusses the novelty of the approach and the possible
improvements of this research.
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Figure 1: Schemas of PNAS (left) and POPNAS (right) architectures. With respect to the first one, the latter estimates the
training time of the predicted architectures and then cuts out the most time expensive ones just before the top-K selection.

2 RELATED WORKS
Most NAS techniques are based on three fundamental steps:

e The definition of a search space, intended as the set of all
admissible neural networks we want to build;

o The search strategy: an algorithm to explore the search space;

e The evaluation strategy: a way to evaluate and rank the
explored models, such that the approach can address the
development of the most promising ones.

While both the search space and the evaluation strategy have es-
sential importance in the performance and computational costs of
auto-generated models, the literature is often divided according
to the most appropriate exploration strategy to be adopted, i.e.,
reinforcement learning, gradient-based optimization, evolutionary
algorithm, and bayesian optimization.

This work is an extension of the paper Progressive Neural Archi-
tecture Search (PNAS) [15], which extended and improved the ideas
contained in Neural Architecture Search (NAS) [32]. NAS was the
first attempt to successfully exploit a reinforcement-learning-based
algorithm to build up deep learning architectures to overcome hu-
man design models in the image classification task through agent
training, which is itself a neural network. The agent, also named
controller, was a two-layer LSTM [9] that generated the network
specification, up to a pre-defined depth, in terms of a sequence
of discrete value vectors. The learning process involved Proximal
Policy Optimization, [20] or the Reinforce algorithm [28], where
the reward signal was the accuracy of the controller sampled net-
works over a validation set. For this work, the authors conducted
their experiments over the CIFAR-10 dataset [11]. They also modi-
fied the procedure to learn recurrent network structures using the
Penn Treebank dataset [17], a well-known benchmark for language
modelling.

The main drawback of NAS was its computational cost since it re-
quired training and evaluating all the sampled set of child networks
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each time it updated the controller weights. Subsequent works
tried to optimize learning by reducing the search space of network
configurations or looking for less intensive candidate networks
evaluation procedures.

In Efficient architecture search by network transformation (EAS) [4],
authors proposed to avoid training from scratch the children net-
works each time, but to enlarge and to modify an already ex-
plored solution adding function-preserving transformations, as
in Net2net [5]. In Learning transferable architectures for scalable
image recognition (NASNet) [33], instead of training the controller
to generate a whole network, the authors reduced the research
space to generate basic cells and then stack any of them to compose
a network, similar to human-designed ResNet [8], [29] and Incep-
tionNet [25], [26], [27]. Their auto-generated network trained on
CIFAR-10 was also able to achieve state-of-the-art accuracy over Im-
ageNet [7] without much inner modification. BlockQNN model [31]
operated similarly, only using a Meta-Q-learning algorithm instead
of the classic reinforce, as done in MetaQNN [2].

The authors of PNAS proposed a cell-based approach too. Follow-
ing a sequential model-based optimization approach (SMBO) [10],
at each step of the learning procedure, their method tried to expand
the structure of an existing cell made of a certain amount of blocks
by adding a new operation. Then, the algorithm selected the top k
cells according to a trained predictor able to anticipate the designed
cells scores without actually evaluating them. PNAS predictor is
aimed to foretell the accuracy of children networks. The authors
tested different predictors and created a network that reached state-
of-the-art performance on CIFAR-10, stacking the best-performing
found cells. Training the predictor still required to train a subset
of neural networks to use their encoding and accuracies as PNAS
training set, this time with a gradient-based approach.

The mentioned method is close to other approaches, such as Sto-
chastic Neural Architecture Search (SNAS) [30], that consisted in an
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Figure 2: Summary diagrams of the transition from blocks to network topologies. Each block is composed of five parameters
(left). After the inner structure is defined, each block is linked to other blocks to define a structure containing B blocks that
we refer to as a cell (right). In this chain-structured architecture, each cell receives as input only the previous cell output.

all-in-one gradient-based optimization method to update the con-
troller parameters and the child networks, building an end-to-end
trainable architecture. To obtain the same end-to-end optimization
process, authors of Differential Architecture Search (DARTS) [1]
introduced a continuous relaxation of the architecture definition
to allow the controller direct optimization over the validation set
performance using gradient descent. The work has been further
extended in DARTS+ [14] with an early stopping procedure that
prevents generated networks achieving poor performance.

There have been attempts also in using evolutionary algorithms
to explore the search space, such as Hierarchical Neural Architec-
ture Search (HNAS) [16]. Authors restricted the search space by
imposing a hierarchical network structure; they also used an evo-
lutionary algorithm based on tournament selection similar to [19].
They built complex architectures using different kinds of previously
learned blocks, achieving good results even with random search
exploration approaches. Other evolutionary methods specified a
neural network structure and interconnection as a connectivity
constraint matrix mapped into a bit-string genotype [18], [24].

Lastly, NAS-based bayesian optimization methods built a prob-
abilistic model based on the objective function to find the most
promising neural networks to train [21], [23], [3].

3 PROPOSED METHOD

The proposed method, named Pareto-Optimal Progressive Neural
Architecture Search (POPNAS), is intended to keep all the PNAS
algorithm advantages while dealing with time constraints to speed
up the whole research and achieving similar accuracy performance.
In order to do that, a new time regressor is required, which jointly
works with the controller. As shown in Figure 1, at each iteration,
after models expansion, one predictor, named controller, has to
evaluate the accuracy of children architectures, as it is done in
PNAS, while another predictor, named regressor, has to predict their
training time to achieve the Pareto efficiency simultaneously.

3.1 Search Space

The POPNAS search space defines the set of architectures that
the search strategy will take into account. As done in [15], we
define a block as a structure that maps two input tensors to one
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output tensor, considering it as the architecture basic unit. Then
we construct a cell as a combination of up to B blocks. However,
to build cell structures suitable for time prediction, some minor
topology constraints are required.

3.1.1  Cell and Network Topology. A POPNAS cell is a fully convo-
lutional network generated from a graph composed by 1 up to B
blocks. A block is specified by the 5-tuple composed by two inputs,
two operations, and a concatenation (I3, I, O1, Oz, C) as shown
in left column of Figure 2. The considered operator space O con-
tains the same eight PNAS operations, but in POPNAS, the order
in which they appear becomes relevant. Thus, to each operation is
associated an index from 1 up to 8, according to the time required
to perform it in increasing order:

(1) 3x3 average pooling

2) 3x3 max pooling

3) identity

4) 3x3 dilated convolution

5) 3x3 depthwise separable convolution

6) 5x5 depthwise separable convolution

7) 7x7 depthwise separable convolution

(8) 1x7 convolution followed by 7x1 convolution

(
(
(
(
(
(

Only the concatenation is considered as combination operator (C)
to maintain the same size of the PNAS search space. As in the right
column of Figure 2, we encapsulate blocks into cells, where we take
into account only a parallel topology, to further simplify the search
space. Thus, each input of a block is only coming from previous cell
output, and their outputs is concatenated and feed to the successive
cell. Each cell is converted into a CNN stacking it 3N times and
adding 2 extra cells. N is the number of consecutive unrolled cells,
and the extra two 2 cells are simple convolution operations with
stride 2 inserted between the groups of N.

3.2 Search Strategy

The aim of POPNAS is to search for the most accurate cell structure
among those with the lowest training time, pruning out the cells
that take more time but have the same accuracy. We set a maximum
time limit of L for the training time of children networks so that
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Table 1: An example of the sliding blocks mechanism man-
aging two cells with b = 1 and B = 3. After the operators re-
index, a first row with the cell in correspondence of the first
block is added to the observations, then the cell is shifted to
the second block to create the second row and to the third
block to create the third row. At this point, the iteration
restarts with the next cell.

1st block | 2nd block | 3rd block

training time (sec) [op1 op2|op3 op4|op5 op6
63.145701 5 5 0 0 0 0
63.145701 0 0 5 5 0 0
63.145701 0 0 0 0 5 5
63.789210 6 6 0 0 0 0
63.789210 0 0 6 6 0 0
63.789210 0 0 0 0 6 6

the algorithm can automatically exclude all the cells that take too
long.

In the beginning, all the cells with only one block are gener-
ated, commuting all the possible combinations of two inputs. Then,
they are added to a queue. We call the set of those cells b;. Each
cell is now iterated 3N + 2 times to generate the child network
with F initial filters, in case of a convolution operation. It is then
trained for E epochs on a prefixed dataset, split into a train and
a validation sets. We refer to the set of all one block cells as C;
and to the set of just trained networks as M;. It is important to
notice that, once the networks are evaluated on the validation set,
we have gathered information about the training times taken by
each network, collected in the set T, and their accuracies, in the set
Aj. The controller, designed to manage the generated architectures
qualities, is trained based on the networks measured performance.
We refer to the vector of the controller weights after this training
step as .

With reference to Figure 1, for each block dimension b from 2 to B,
the set of previously selected cells are expanded adding all possible
new blocks definitions, generating a search space subset Sy, For
example, for b = 2, the one block cells are expanded adding all the
possible permutations of the second block. For each expanded cell,
the controller determines its accuracy. We call Ay, the set containing
the predicted accuracies of all the cells with b blocks. Besides, we
feed the time regressor R, with all the observations collected so far
(Cp—1> Tp—q, - - - ); in the case b = 2, the architectures of all the one
block cells with the relevant training times. Then, we pass to the
time regressor each cell belonging to S, to predict its training time.
We refer to the set of predicted training times as Tj,. Then, firstly,
the algorithm cuts back all the cells for which the time prediction
is higher than L, if any, generating a subset Sl; of Sp,. Secondly, a
time-accuracy Pareto front P}, is generated from the predictions so
that the most promising K fastest cells under the same accuracy
are picked up and added to the queue (S l,;, ). New child networks are
created stacking them. The networks are trained and evaluated on
the same dataset as before.

Also in this case, starting from SII;/ , My, is the set of stacked cells
with b blocks, Cj, and T}, are the sets of the cells with b block cells
and their training times, respectively, while Ay, is the set of their
accuracies. Ap is used to update the controller, obtaining a new

1729

Lomurno, Samele et al.

Table 2: An example of the initial performance improve-
ment at the beginning of the first iteration. A special net-
work formed only by the global average pooling and the soft-
max classification layer is generated and trained. Then, the
row is added to the observations as a training time belonging
to an empty cell with b = 0.

1st block | 2nd block | 3rd block

training time (sec) | blocks |op1 op2|op3 op4|op5 op6
3.043455 0 0 0 0 0 0 0
63.145701 1 5 5 0 0 0 0
63.145701 1 0 0 5 5 0 0
63.145701 1 0 0 0 0 5 5

vector 7 composed by its new weights. Then, the process restarts
from the K cells expansion into K’ >> K new ones with size b + 1.
At the end of the last step, the best cell in terms of accuracy, among
all the trained ones, is returned by the algorithm.

3.3 Performance Estimation Strategy

The POPNAS estimation strategy consists of the combined work
carried out by two different predictors: for each cell, an LSTM
controller gives the estimated accuracy like in PNAS, while a new
time regressor is added to evaluate the estimated training time.
This new time regressor, selected among many regression models
and representing the main innovation of our work, acts in two
places with different purposes. The first time is during the Pareto
front generation. Here, the regressor has only to grant a proper
models ranking because the algorithm considers only the cells with
lower training time under the same accuracy. The second time is
during the cells pruning phase, when the algorithm discards all the
proposed architectures that exceed the training time limit L.

3.3.1 Sliding blocks mechanism. At each iteration of the algorithm,
the regressor has to predict the training time taken by cells with
b+1 blocks having available only observations of cells up to b blocks.
This scenario implies that it is required to assign weights to features
never seen before. We apply a sliding blocks mechanism to the
cell architecture, sliding it over block to block, as represented in
Table 1. Considering a cell with dimension b, there are B — b empty
blocks: the same training time is passed to the regressor as if the
cell occupies the first b blocks, as if it occupies the blocks from the
second to the (b + 1) and so forth. In this way, each feature is
evenly distributed over the observations.

3.3.2 Initial trust improvement. The time regressor considers as
features the cell architecture and the number of blocks that con-
stitutes it. At the first iteration, the regressor has to predict the
training time of the block 2 having only the block 1 available, but in
the case of multi-branch architecture topology we need to feed the
regressor with the previous two blocks. As for the sliding blocks
mechanism, this issue requires an adeguate technique which must
be applied at each POPNAS execution.

To deal with it, we add to the observations a special row with b
= 0 as an initial thrust, in which the architecture is empty and the
network consists only of the final global average pooling followed
by the softmax classification layer, whose presence is independent
of the b value. After the second iteration, since the predictor will
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Figure 3: On the left, a representation of how the regres-
sor handles the static re-index procedure of a cell with one
block, fixing the overall dimension to B = 3. The two blocks
operators are fixed with value equal to 5, corresponding to
3x3 depthwise separable convolution, while all the empty
blocks operators are set to 0. On the right, a representation
of how the regressor now handles the same one block flat
cell of the static re-index example using the dynamic re-
index procedure.

be able to see observations both with b = 1 and b = 2, the initial row
will be removed.

3.3.3  Performance Prediction. Different prediction methods have
been compared in order to find the best one for POPNAS. In par-
ticular, we consider two linear regression methods, a tree boosting
system and a heuristic algorithm. At each POPNAS iteration, the
chosen regressor has to handle cell architectures from 1 up to b
blocks, so it is necessary to have a uniform data dimension, regard-
less of the number of blocks. Since a row considers the operations
and the blocks of a cell, POPNAS extends all the cells encoding
to B blocks, considering unused the empty ones and setting their
features to default values to standardize the observation length.
The selected time prediction methods are Ridge regression, linear
regression with non-negative least squares (NNLS), XGBoost and a
heuristic method based on the sum of single block training times.
Atthe (b + 1)”’ iteration, for each architecture, sum-block predicts
the training time as the sum of the time taken by the cell without
the (b +1) block, i.e. the one obtained in the previous iteration, and
the training time of the (b + 1)th block, seen as a one-block-cell.
The process by which we chose the best regressor for POPNAS is
shown in the subsection dedicated to ablation studies in Section 4.

3.3.4 Operators Re-index. Since the operators have categorical val-
ues, it becomes essential to find an efficient way to encode cell
architecture as a set of observation features to feed the time regres-
sor.

To solve this problem, we propose two different solutions, i.e.
static and dynamic re-index techniques. In the first case, each oper-
ator is associated to an integer value ranging from 1 to the size of
the operator set. In the latter case, we consider a heuristic re-index
method that takes into account the distance between indices. To do
that, after training the same cells as in the static re-index case, we
normalize each value dividing it by the highest observed training
time and then we multiply it by the size of the operator set. The
formula we apply can be written as follows:

time;
max(Ty)
where Tj is the training time set of the symmetric flat cells with
b =1 and i ranges from 1 to size(T1). These methods allow to treat

index; = - size(Tq)
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Table 3: Average relative error of the four regressors, evalu-
ated both for each block size and in a progressive way.

Proper Progressive
B=2 B=3 B=4|B=2 B=3 B=4
Block sum | 0.1821 0.2758 0.2390 | 0.1821 0.2290 0.2323
Ridge 0.3465 0.0524 0.0353|0.3465 0.1995 0.1444
NNLS 0.3660 0.0524 0.0355|0.3660 0.2092 0.1510
XGBoost | 0.5778 0.4849 0.3893|0.5778 0.5314 0.4838

an empty block as a normal block with operators indices equal to 0,
i.e. empty operation, as shown in Figure 3. The process by which
we chose to apply or not a re-index technique for POPNAS is shown
in the subsection dedicated to ablation studies in Section 4.

4 EXPERIMENTS & RESULTS

The first part of the experiments conducted for this work is an
ablation study to determine which is the best regressor to estimate
cells training time. Since the method we have proposed in the
previous section heavily leverages a time limit L, pruning cells with
a higher training time, we would like to have a time regressor able
to estimate it with high accuracy. The following section directly
compares PNAS and POPNAS methodologies in terms of accuracy
and training time.

4.1 Ablation Study

POPNAS method selects the Pareto-optimal solutions with respect
to time and accuracy, making the process of evaluating the time
regressor performance dependent from POPNAS itself. Thus, we
conducted the experiments using PNAS method, where, besides
training the accuracy controller we also trained and evaluated the
time regressor. We have investigated different models through the
use of the a-MLLibrary [13]. It is a library for the generation of
regression models that allows building the best predictor among a
wide range of regression types given a set of observations, using a
black-box approach. We conducted our experiments on a subset of
CIFAR-10. In particular, since CIFAR-10 has five batches of 10,000
images each, we used a randomly selected single batch, splitting
it into a training set of 9,000 images and a validation set of 1,000
images. For the accuracy predictor, i.e., the controller, we used an
LSTM as in the PNAS algorithm, with a learning rate fixed to 0.002.
For the child networks, we adopted the same learning rate as in the
original paper, i.e., 0.01. We evaluated K = 256 networks out of the
generated ones at each stage during the search. We used a maximum
cell depth B equal to 4 to speed up the process. We always used 32
as the initial number of filters, in case of convolutions, iterating the
cells for N = 2 times, and training each child network with E = 20,
as it is in PNAS.

Experiments were performed on an NVIDIA Tesla V100 SXM2,
with 16GB VRAM. As time regressor models, we chose Ridge Re-
gression, XGBoost [6], and NNLS (Non-negative least square). Ridge
regressor was trained with « set to 0.1. For NNLS, we experimented
both with and without the fit_intercept set to True. For XGBoost, we
considered 1 and 3 as child-weight thresholds to stop the tree split-
ting if exceeded; gamma, that regularizes the information across
the trees, allowing the node addition only if the associated gain
is larger or equal to the given value, equal to 0 and 1; numbers
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Table 4: Average relative error of Ridge and NNLS regression before and after each transformation, evaluated both for each

block size and in a progressive way.

Proper (Ridge) Progressive (Ridge) Proper (NNLS) Progressive (NNLS)
B=2 B=3 B=4 | B=2 B=3 B=4| B=2 B=3 B=4| B=2 B=3 B=4
Standard 0.3270 0.0524 0.0353 | 0.3270 0.1897 0.1380 | 0.3483 0.0524 0.0355 | 0.3483 0.2003 0.1451
Reordered 0.3126 0.0613 0.0637 | 0.3126 0.1869 0.1456 | 0.2580 0.0469 0.0625 | 0.2580 0.1524 0.1223
w/o inputs 0.4018 0.0522 0.0388 | 0.4018 0.2270 0.1639 | 0.3483 0.0522 0.0388 | 0.3483 0.2002 0.1461
Reord w/o inp | 0.3028 0.0470 0.0709 | 0.3028 0.1749 0.1401 | 0.2580 0.0469 0.0709 | 0.2580 0.1524 0.1251
Table 5: Average relative error, evaluated with the norm of . )
the absolute error, maximum relative error and minimum -7 e
relative error of NNLS, with static re-index and dynamic re- . < . s
index. 0
‘ Avg rel error Max rel error  Min rel error 3 o 7 ’ =
with abs with abs with abs £ P o
Static 0.237973999  0.60435179 0.017062738 g -7 - ; )
Dynamic | 0.212871771  0.348979024  0.081329244 g o *e:
P G ot ™
100 a1 .1

of tree regressors: 50, 100, 150 and 250. We selected as possible
learning rate 0.01, 0.05, and 0.1. The trees’ maximum depth has
been chosen equal to 1, 2, 3, 5, 9, and 13. The a-MLLib performed
a 5-fold cross-validation to find, through a grid search strategy,
the best hyperparameter settings for each regressor. In our experi-
ments, we trained time-regressors on data available at iteration b,
and evaluated them at iteration b+1, before the updating procedure.
In the ablation study we first compared the selected methods and
then we have progressively pruned the less performing approaches,
assessing the impact of the proposed optimization strategies: input
removal, static re-index, and dynamic re-index.

4.1.1 Time Prediction Performance. In this section, we present the
result of the first plain comparison. It can be deduced from Figure 4
that block sum shows better results only at the first iteration, while
it tends to gradually underestimate the training time from the
second iteration onwards. This consideration allows us to deduce
that the training time increase induced by a block addition is not
entirely linear, but it introduces a bias dependent on the number
of blocks. Table 3 shows that Ridge regression and NNLS are the
two most accurate methods; regressors errors are calculated and
shown both in a progressive way, i.e. using data from the first to
the current block, and in a proper way, i.e., keeping only data from
the current block.

4.1.2  Static Re-index and Input Pruning. This section presents the
impact of the static re-index methodology as explained in Sec-
tion 3.3.4, and input information pruning strategy on the NNLS
and Ridge regression, i.e., the best models of the previous section.
Input information pruning consists on removing the information
I, I, from the feature dimensions regressor input. Table 4 shows
the performance for NNLS and for Ridge regressor. Static re-index
helps the predictor to reduce training time error for NNLS, as we
can see comparing the first two lines, specifically at Step 2 and 3.
Even if error increases slightly at Step 4, the progressive evaluation
shows at the last iteration a general improvement. NNLS is also
scoring the lowest progressive error. Ridge regression instead does
not show improvement concerning the baseline model. Results also
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Figure 4: Performance of time-regressors. The identified
clusters are related to the blocks iterations.

Table 6: Average relative error of NNLS with static re-index
and dynamic re-index, evaluated both for each block size
and in a progressive way.

Proper Progressive
B=2 B=3 B=4 | B=2 B=3 B=4
Static 0.2018 0.2450 0.2642 | 0.2018 0.2248 0.2380
Dynamic | 0.1869 0.1958 0.2547 | 0.1869 0.1916 0.2128

show that inputs information is not affecting the performance and
can thus be removed.

4.1.3 Dynamic Re-index. This section presents the comparison
between static and dynamic re-indexes on NNLS algorithm; we have
chosen to explore only the most promising algorithm from previous
section experiments. We trained the POPNAS algorithm according
to the previous setup choices. The benefits of dynamic re-index
can be immediately noticed as shown in Table 5. In fact, with this
technique we notice an overall lower average relative error of 0.2129,
compared to static re-index, which instead achieves an error of
0.2380. Moreover, NNLS with static re-index has a limited tendency
to underestimate the training time. In Table 5 we can witness the
better performance of dynamic re-index through iterations, actually
reaching an improvement of 0.05 at the second one, compared
to static re-index. Even if the dynamic re-index did not grant an
almost perfect accuracy, it seems to halve the maximum relative
error, reducing it from 0.6044 to 0.3490, at the expense of a lower
minimum relative error increasing, from 0.0171 to 0.0813 (6).

4.2 POPNAS vs PNAS

In the final PNAS-POPNAS comparison, we use NNLS with dynamic
re-index and input pruning as our time regressor. We consider cells
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Figure 5: On the left, the Pareto front generation (green), after the prediction of all the architectures with B = 2 (blue). On the
right, The top-K selection comparision between PNAS (yellow) and POPNAS (red) with K = 256, above all the architectures

with B = 2 (blue).

with lookback depth equal to 1, the complete operator set B = 5, and
learning rate equal to 0.01 as in the original paper [15]. In this case,
the Pareto front considered at most 256 best architectures in terms of
predicted accuracy and training time. The experiment is performed
on an NVIDIA GeForce GTX 1080Ti, with 11 GB VRAM. The PNAS
model has been taken from the official tensorflow repository. The
architecture has not been modified, but we used the same training
settings for a fair comparison.

From Figure 6, we can make a few considerations about the time
regressor performance. First of all, the dynamic re-index method
confirms that the training time is now less underestimated when
compared with the previous approaches. We have concluded that
the main reason for its prediction improvement is the uneven pres-
ence of the operators in the Pareto front; indeed, we have observed
that the algorithm focuses mainly on a narrow subset of the allow-
able operators, which are considered the best trade-off between a
short training time and a good accuracy: 3x3 depthwise separable
convolution, 3x3 average pooling and 3x3 max pooling. By this way,
time predictions benefit from a smaller operators pool.

We can also observe that a small group of architecture prediction
times is overestimated: it is the subset of cells containing at least a
1x7 followed by 7x1 convolution. Since only a few observations con-
tain that operator, the regressor tends to predict a higher training
time than the real one in the algorithm intermediate steps. Another
essential detail is the absence of widely separated groups of obser-
vations, with the variations of B. This phenomenon happens due
to the increased variance of the training time through the Pareto
front: a neural network entirely made up of pooling layers has a
training time less than half of a network with convolutional layers
only.

On the left of Figure 5, we show the Pareto front generation for
cells with B = 2, at the end of the first iteration of the algorithm.
The right part of Figure 5 illustrates the best 256 architectures in
terms of predicted accuracy as selected from the Pareto front. The
graph highlights the difference between the PNAS and POPNAS
top-K selections: in fact, PNAS takes a total training time for B =
2 of 2 days, 1 hour and 31 minutes, with an average training time
of 11 minutes per network, while POPNAS takes a total training
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Table 7: The POPNAS networks accuracy from B =1to B =5.
The table considers the accuracy of the best cell, the average
of the best 5 cells, the average of the best 25 cells and average
of the all the trained cells with the same block size, for each
step of the algorithm.

Top |B=1 B=2 B=3 B=4 B=5
1 0.694 0.673 0.685 0.701 0.741
5 0.686 0.659 0.672 0.680 0.723
25 0.662 0.457 0.492 0.635 0.675
256 | 0.541 0305 0.380 0.488 0.637
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Figure 6: The NNLS predictions on POPNAS, with dynamic
re-index.

time of 4 hours and 29 minutes, with an average training time of
only 50 seconds per network. On the contrary, the top-K selected
cells average predicted mean accuracy with B = 2 is only minimally
reduced from 0.5009 to 0.4989 in POPNAS.

Figure 7 shows the Pareto front generation at the last iteration of
the algorithm. This time, the predicted architectures are spread over
a smaller time range with higher accuracy. This confirms that the
algorithm has developed a relatively narrow subset of architectures
through the iterations, composed of the same operators with differ-
ent permutations: since all the architectures consist mainly of 3x3
depthwise separable convolution, 3x3 average pooling and 3x3 max
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Figure 7: The Pareto front generation (green), after the pre-
diction of all the architectures with B = 5 (blue).

pooling, the number of columns is lower than in the first iteration.
If we finally compare the time required by the architectures trained
at the last iteration of our first test with the ones of the current
test, the advantages gained with POPNAS are very clear: the total
training time falls from 11 days, 15 hours and 38 minutes, with an
average training time of 1 hour and 5 minutes per network, to 5
days, 23 hours and 36 minutes, with an average training time of
33 minutes per network only. So, reducing by 13.3% the average
accuracy of the 256 trained cells with B = 5, which decreases from
0.770 to 0.637, we obtain a 2x boosting in terms of required training
time.

We summarize the accuracy performance obtained on the val-
idation set at each iteration of the algorithm in Table 7. We can
notice that the average performance accuracy of the 256 selected
cells drastically decreases at the second iteration of the algorithm:
the main reason can be seen in Figure 5, where we can observe
that most of the architectures picked up by both the algorithms
have a much lower predicted accuracy than the remaining part.
The benefits of the POPNAS algorithm are clearly visible from the
fourth iteration, in which the best trained cells exceed both 0.7 in
terms of accuracy. Each row of the last iteration also exceeds the
relevant values of the first one: this means that the Pareto front
converges to a subset of architectures competitive with the one
found by PNAS, but with a much lower execution time of the entire
algorithm.

Due to the computational and time constraints highlighted with
the first CIFAR-10 batch, we have conducted the final experiments
over the second batch of CIFAR-10 instead of on the entire training
set or over different datasets. We are interested in evaluating the
improvements of our approach with respect to PNAS over unseen
data, which means also smaller amounts of samples are reasonable,
given the evidence of such improvements. The results comparison
includes the best cell found by POPNAS, (POPNASNet-5, Figure
8), and the one found by PNAS (PNASNet-5), run over our defined
above search space. The best POPNAS cell is the architecture of the
Pareto front with the best accuracy over the validation set.

The results can be seen in Table 8: with an accuracy reduction
from 0.8223 to 0.7433, POPNASNet-5 halves the time required for
its training, decreasing from 1 hour and 6 minutes to 38 minutes
only. The two values also seem to be consistent with the average
training time observed at the relevant algorithms in the last step.
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Table 8: Performance comparision between PNASNet-5 and
POPNASNet-5.

‘ Accuracy ‘ Training time
0.8223 ‘

1 hour 6 min

POPNASNet-5 0.7433 38 min

PNASNet-5 ‘

Figure 8: The POPNASNet-5 best cell architecture.

According to our expectations, as shown in Figure 5, the accuracy
reduction is due to the pruning of some promising block in favour
of faster ones, especially during the early stages of the algorithms.
From a different point of view, the search for the best solutions over
the Pareto front is strictly connected to the threshold chosen to
prune expensive time blocks and heavily affect the evolution of the
search space. Even if we observed that this effect decreases over
the iterations, it is the main reason for the progressive gap with
PNAS best cell in terms of both the measured performance. While
the proposed approach adopted a greedy pruning step to underline
the effort of the proposed technique, it is still possible to leverage a
relaxation of time constraints. Nevertheless, we have proven that
under strict requests, it is possible to adopt NAS techniques with
virtuous trade-offs that reduce computation time and maintain
competitive accuracy performance.

5 CONCLUSION

In this work, we presented POPNAS, a progressive neural architec-
ture search algorithm that considers the trade-off between accuracy
and time with the Pareto efficiency property. We have achieved
significant computational time improvements by training time re-
gressors over the PNAS starting algorithm while maintaining com-
petitive performance in the found architecture. This paper objective
is dual: on the one hand, to propose an efficient solution to the NAS
tasks that often require enormous computational resources and turn
out to be not feasible without the availability of powerful hardware
tools. On the other hand, providing the intuition of carrying out
autoML tasks by balancing different factors according to different
needs.

With this perspective, there are numerous steps we intend to
explore, such as adding new operations and new layer topologies to
the search space or using other regressors to improve time estimates
further. Another way forward could be studying other trade-offs
with different metrics or tasks different from the classification.
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