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ABSTRACT
This work presents how the Evolutionary eXploration of Augment-
ing Memory Models (EXAMM) neuroevolution algorithm is incor-
porated into Microbeam Technologies’ condition-based monitoring
power plant optimization software using a work�ow that inte-
grates coal-�red power plant data collection, evolved RNN predic-
tions and analytic performance indices predictions. To the authors’
knowledge, it is the �rst use of a neuroevolution strategy to evolve
recurrent neural networks (RNNs) for forecasting of power plant pa-
rameters where the evolved networks have been incorporated into
production software used at a coal-�red power plant. A preliminary
exploration of the plant’s performance shows that after incorporat-
ing this software, the amount of revenue lost due to power plant
derates and outages decreased by $7.3 million, a savings of 42%,
and increased e�ciency under medium and low load conditions. A
further investigation of the e�ect of training sequence length and
time series data normalization methods on evolving and training
RNNs for this system is given, providing practical results useful for
real world time series forecasting. It is shown that dividing long
time series sequences up into shortened training sequences can dra-
matically speed up training, and that using di�erent normalization
methods (min-max vs. z-score) can provide statistically signi�cant
results, dependent on the data sets.

CCS CONCEPTS
• Computing methodologies!Neural networks; Genetic al-
gorithms; • Applied computing! Forecasting.
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1 INTRODUCTION
A coal �red power plant consists of di�erent subsystems, such as
the fuel system, water system, steam system, electrical system, and
exhaust gas system. Each of these systems have multiple sensors
which generate time series data which can be used to monitor the
plant’s performance, but can also be used to develop models which
can predict future performance. Being able to predict operational
parameters of coal �red power plants is an area of signi�cant inter-
est as accurate estimates can be used to improve plant e�ciency,
reduce emissions or inform plant operators about conditions within
the system.

In particular, when conditions in the burners or other systems
become poor due to coal quality or other e�ects, the operator may
need to provide supplementary fuel to prevent the burner from
going into shutdown. If these events can be predicted early enough
then plant conditions can be modi�ed to avoid shutdown without
the use of supplementary fuel or other, potentially quite expensive,
reactive methods. Additionally, it is important to perform long-
term projections of the impact of fuel properties on boiler health.
Operators may proactively adjust operations based on the boiler
health projections in order to improve the e�ciency of the boiler.

With these goals in mind, arti�cial neural networks (ANNs), and
especially recurrent neural networks (RNNs), which specialize in
temporal or sequential data, have seen signi�cant use in predict-
ing parameters of interest in coal-�red power plant data [1, 2, 14,
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22, 27, 27, 29]. Due to the challenges of training RNNs, which suf-
fer from vanishing and exploding gradients [25], other work has
investigated using evolutionary strategies in place of the backprop-
agation through time (BPTT) algorithm [17, 19, 20, 35]. However,
the automated design of RNNs for forecasting parameters of inter-
est in power systems through neuroevolution has not yet begun to
be examined, as to our knowledge neuroevolution has only seen
some related use in power systems to design controllers for a fuel
cell turbine hybrid energy system [6] and a hybrid power plant
simulator [12].

To the authors’ knowledge, this paper investigates the �rst use
of neuroevolution to evolve RNNs for coal-�red power plant time
series forecasting. The evolved RNNs were incorporated into Mi-
crobeam’s Combustion System Performance Indices - Coal Tracker
(CSPI-CT) program to assist the prediction of operating parameters,
which is currently seeing production use in a coal-�red power plant.
A preliminary exploration of the plant’s performance from before
the year before the installation of the production software and the
last year of use with the software shows the amount of revenue lost
due to power plant derates and outages decreased by $7.3 million,
a savings of 42%, and increased e�ciency under medium and low
load conditions.

In addition, this work investigates practical performance en-
hancements for evolving and training RNNs by examining the
e�ect of di�erent normalization strategies for time series data as
well as the e�ect of training sequence length on the accuracy and
performance of neuroevolution and RNN training.

Main features of this work:
• The �rst use of neuroevolution to evolve RNNs for coal-�red
power plant operating parameters forecasting, which have
further been incorporated into software seeing production
use.

• An exploration of how the use of di�erent time series se-
quence lengths during training and the choice of di�erent
normalization methods a�ect the forecasting performance.

• Presents Microbeam’s work�ow of integrating data collec-
tion and operation decisionswith the neuroevolution evolved
RNNs in their CSPI-CT software.

2 RELATEDWORK
Arti�cial neural networks (ANNs) have been widely used in predict-
ing parameters of interest in coal-�red power plant data, such as
excess air coe�cients and emissions. Zhou et al. utilized ANNs to
predict the nitrogen oxide (#$G ) emission characteristics of a large
capacity pulverized coal �red boiler, showing a more convenient
and direct approach compared to other modeling techniques, such
as computational �uid dynamics [34]. Teruel et al. used ANNs to
predict ash deposits in coal-�red boilers, having developed their
model with the aid of a case study where a furnace was fouled
as detected by heat �ux meters [30]. Yao et al. used ANNs to pre-
dict the hydrogen content in coal in power station boilers from
proximate analysis [32]. Smrekar et al. used two integrated ANNs,
representing a turbine and boiler, to predict the power output of
a coal �red power plant [28]. Kumari et al. predicted the �reside
corrosion rate of super heater tubes in a coal-�re boiler using an
ANN trained with operational data from an Indian thermal power

plant [13]. Cheng et al. used ANNs to predict the maximum burning
rate and �xed carbon burnout e�ciency of 16 typical Chinese coals
and 48 of their blends [3], as well as the ignition temperature and
activation energy in another work [4]. Onat et al. have used an
ANN system to predict the excess air coe�cient (_) on coal burners
equipped with a CCD camera [22]. Adams et al. developed a deep
neural network with a modi�ed early stopping algorithm and least
square support vector machine to predict ($G and #$G emissions
during coal conversion process [1].

RNNs and memory cells such as LSTM [10] have seen more
recent use, as they have the potential to perform better on time
series prediction tasks and better capture long term dependen-
cies. Safdarnejad et al. developed a dynamic data-driven model of a
coal-�red utility boiler, using a nonlinear auto regressive neural net-
work with external inputs (NARX, a type of RNN), that estimated
#$G and ⇠$ emissions 3 hours into the future simultaneously.
They also observed that a dynamic model estimates #$G and ⇠$
emissions with higher accuracy than a static model [27]. Chen et
al. utilized long short-term memory (LSTM) recurrent neural net-
works (RNNs) to predict #$G emissions from a catalytic reduction
process [2]. Tan et al. have used dynamic modeling to predict #$-
emission in a 660 MW coal-�red boiler with their work showing
that LSTMs out perform support vector machines (SVMs) in time
series prediction[29]. Laubscher has also used an RNN encoder
decoder network to predict coal-�red power plant reheater metal
temperatures using plant operational data [14].

3 METHODOLOGY
This work utilizes the Evolutionary eXploration of Augmenting
Memory Models (EXAMM) algorithm [23] to drive the neuroevo-
lution process. EXAMM has a multi-threaded implementation for
multi-core CPUs as well as an MPI [21] implementation that allows
EXAMM to readily leverage high performance computing resources
using an asynchronous, island based distributed computing strategy
which allows the workers to complete the training of the generated
RNNs at whatever speed they are capable of, yielding an algorithm
that is naturally load-balanced. A master process maintains the
populations for each island and generates new RNN candidate mod-
els from the islands in a round-robin manner. Workers receive
candidate models and locally train them with back-propagation
through time (BPTT), making EXAMM a memetic algorithm. When
a worker completes the training of an RNN, that RNN is inserted
back into the island that it originated from. Then, if the number of
RNNs in an island exceeds the island’s maximum population size,
the RNN with the worst �tness score, validation set mean squared
error (MSE), is deleted.

EXAMM evolves progressively larger candidate models (RNNs)
in response to worker requests through a series of mutation and
crossover (reproduction) operations. Mutations can be edge-based:
split edge, add edge, enable edge, add recurrent edge, and disable edge
operations, or work as higher-level node-based mutations: disable
node, enable node, add node, split node and merge node. The type
of node to be added is selected uniformly at random from a suite
of simple neurons and complex memory cells: �-RNN units [24],
gated recurrent units (GRUs) [5], long short-term memory cells
(LSTMs) [10], minimal gated units (MGUs) [33], and update-gate
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Figure 1: Integration of EXAMM’s evolved neural networks
into Microbeam’s power plant optimization software

RNN cells (UGRNNs) [7]. This allows EXAMM to select for the best
performing recurrent memory units. A clone operation also exists
to allow existing networks to continue training without modi�-
cation. EXAMM also allows for deep recurrent connections which
enables the RNNs to directly use information beyond the previous
time step. These deep recurrent connections have proven to o�er
signi�cant improvements in model generalization, even yielding
models that outperform state-of-the-art gated architectures [8].
Child genomes generated by crossover or mutation inherit their
parents’ weights with a Lamarckian weight inheritance strategy,
which can signi�cantly reduce the number of the epochs needed
for training child genomes, improving the performance of the evo-
lutionary process [18].

4 ARCHITECTURE
Figure 1 shows the work�ow of integrating Microbeam’s data col-
lection and operation decisions with EXAMM. As-delivered fuel
properties are accessed through an on-line analyzer. They provide
real-time measurements of fuel properties such as ash content, heat-
ing value, and ash properties. The fuel tracking system tracks the
fuel from delivery from the mine to the burner, maintaining an
inventory of fuel properties and their position in the fuel handling
system. It generates projected fuel properties a number of hours in
advance of �ring based on the inventory of fuel. In order to track
the fuel, measurements of operating parameters such as belt posi-
tions and speeds are obtained online from the plant’s Distributed
Control System (DCS) archive. RNNs evolved by EXAMM make
predictions of key operating parameters such as �ame intensity
based on the operating parameters from the plant and projected fuel
properties from the fuel tracking system. These RNNs predict future
operating parameters for an array of prede�ned time steps into the
future, typically ranging between 1 minute and 8 hours.

Microbeam predicts performance indices for each individual time
step in the future based on projected fuel properties. Performance
indices are derived fromMicrobeam’s understanding of the impacts
of fuel properties on plant performance and are used to predict
key operating parameters in parallel to RNN predictions of those
same operating parameters. These performance indices predictions
supplement the intermittent predictions from the RNNs. Composite
operating parameter predictions are made via a weighted average
of the current operating parameter value, RNN predictions, and
performance indices-derived predictions.

RNNs are evolved by EXAMM using historical data and the best
evolved RNNs are used to make predictions for intermittent time
steps in the future. The performance indices predictions, meanwhile,
have no recurrent connections or input from current operating
parameters and predict the impact of fuel properties on operating
parameters at all time steps into the future. Therefore, the indices-
derived predictions are used as a secondary prediction of plant
performance to determine the impact of short-term �uctuations in
fuel properties on plant performance when neural-network-derived
predictions are unavailable.

The �nal operating parameters predictions are averages of RNN
derived and indices-derived predictions predictions, weighted by
time and prediction type. More recent time steps have heavier
weights than previous time steps, and RNN derived predictions are
assigned heavier weights than indices-derived predictions.

Figure 2 is an example of combining operating parameter predic-
tions from RNN predictions and performance indices. The evolved
RNNs predict the future �ame intensity values at 1, 15, 30, 60,
120, 240, and 720 minutes into the future. The performance indices
predictions show short-term �uctuations in �ame intensity as a
supplement to the RNN-derived predictions.

A screenshot of Microbeam’s CSPI-CT power plant optimiza-
tion program is shown in Figure 3. It can alert the plant operators
and engineers if poor boiler condition occurs based on coal con-
ditions, power plant conditions, and operating parameter values.
Clockwise from bottom left, the small sections are cyclone burners
(coal and air mix and burn to produce �ue gas), water wall (hot
area of the boiler where the �ame radiates heat into water-cooled
walls), secondary superheater, reheater, primary superheater, and
economizer sections (progressively cooler �ue gas passes between
steam or water-�lled tubes, heating the steam inside), and air heater
(warm �ue gas is used to warm incoming air to boost achieve higher
process e�ciency).

In each section, Microbeam uses a combination of current mea-
sured operating parameters and forecasted operating parameter pre-
dictions to estimate the performance of that section. The perfor-
mance of the section is scored by a value from 0 to 100, where
lower values are better. The overall plant performance is also eval-
uated; the overall score is a combination of all individual sections’
performances.

5 RESULTS
5.1 Datasets
Two datasets were used for our experiments, the �rst one comes
from the coal �red power plant cyclone data, the second one is from
the plant’s boiler. Operational parameters for each dataset were
combinedwith the coal tracking output to produce the �nal datasets.
The Boiler dataset is composed of 42 operational parameters and
16 coal tracking parameters, consisting of over 407 days of hourly
data. We only used the time sequences for training and evaluation
when the coal properties values are available, which means each of
the time sequences �les have di�erent length. There are 11 training
�les with time sequence length of 94, 1592, 361, 544, 64, 168, 1022,
1046, 1212, 184, 337, and 1687. There are 4 validation �les with
time sequence length of 1048, 245, 40, and 159. These �les were
divided by plant shutdowns, resulting in the varying lengths. The
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Figure 2: Microbeam’s plant optimization program showing predicted burner �ame intensity based on EXAMM and perfor-
mance indices. Past measurements of �ame intensity shown in red, predicted �ame intensity shown in yellow

Figure 3: Microbeam’s plant optimization program presents a boiler diagramwith plant performance ratings by boiler section

cyclone dataset contains 15 operational parameters and 8 Coal
Tracker parameters, consisting of over 44 days worth of per-minute
data. The training set has time sequence length of 50687 and the
validation set has a time sequence length of 12673.

The parameters of the most interest for the Boiler dataset were
Net Plant Heat Rate and Secondary Superheater Temperature. These
operating parameters were selected for prediction by EXAMM. Net
Plant Heat Rate is a measure of the plant’s overall e�ciency, so min-
imizing this number means lower carbon emissions and reduced
cost. Accurately predicting this value means operators can adjust
operations as needed if the plant is expected to lose e�ciency. Sec-
ondary Superheater Temperature refers to the temperature of the
steam exiting the secondary superheater section, just before enter-
ing the steam turbine to be converted to electricity. This parameter
is related to overall e�ciency of the plant but is more sensitive
to local changes in performance in the water wall and secondary

superheater region. Therefore the Secondary Superheater Tempera-
ture allows Microbeam to determine performance in the secondary
superheater section of the boiler. An example of the Secondary
Superheater Temperature value is shown in Figure 4.

The parameter of the most interest for the Cyclone dataset is
Main Flame Intensity. An optical pyrometer measures the intensity
of the �ame in the burner. Fuel properties often impact the �ame
intensity through a process known as slagging. If a slagging event
occurs, a costly supplementary fuel additive may be required in
order to restore the �ame. Avoiding a slagging event means both
cost and environmental savings. The plant saves money on the cost
of using supplementary fuel and reduces carbon emissions.

5.2 Hyperparameter Settings
Each EXAMM run used 10 islands, eachwith amaximum capacity of
10 genomes. EXAMM was then allowed to evolve and train 20, 000
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Figure 4: Example of output parameters from boiler and cyclone datasets

genomes (RNNs) through its neuroevolution process. The initial
genome weights are initialized by the Xavier weight initialization
method [9], after which child genomeweights were initialized using
EXAMM’s Lamarckian weight inheritance method [18]. New RNNs
were generated via mutation at a rate of 70%, intra-island crossover
at a rate of 20%, and inter-island crossover at a rate of 10%. 10
out of EXAMM’s 11 mutation operations were utilized (all except
for split edge), and each was chosen with a uniform 10% chance.
EXAMM generated new nodes by selecting from simple neurons,
�-RNN, GRU, LSTM, MGU, and UGRNN memory cells uniformly at
random. Recurrent connections could span any time-skip generated
randomly between U(1, 10). All RNNs were locally trained for
10 epochs via stochastic gradient descent (SGD) and using back
propagation through time (BPTT) [31] to compute gradients with
a learning rate of [ = 0.001 (for net plant heat rate and main �ame
intensity) and [ = 0.0005 (for secondary superheater temperature)
and used Nesterov momentum with ` = 0.9. For the memory cells
with forget gates, the forget gate bias had a value of 1.0 added to
it (motivated by [11]). To prevent exploding gradients, gradient
scaling [25] was used when the norm of the gradient exceeded a
threshold of 1.0. To combat vanishing gradients, gradient boosting
(the opposite of scaling) was used when the gradient norm was
below 0.05. These parameters have been selected by hand-tuning
during the prior experience.

5.3 E�ects of Sequence Length
While it is generally assumed that recurrent memory cells su�-
ciently capture long term dependencies, it might be assumed that
the length of training sequences would not have a signi�cant e�ect

on performance and accuracy of training RNNs. However, when
training via BPTT, RNNs are unrolled to generate a feed forward
graph over every time step of the input sequence, and weights are
updated after either a backwards pass over the entire data set or
batch of data sets. Because of this, there is a trade o� – if the time
sequences are short, weight updates will be frequent but there will
be limited temporal information available for learning; however, if
the time sequences are too long, it will signi�cantly increase the
training time because of the additional computation required for
each weight update.

The optimal time sequence length for training RNNs will vary
according to the task’s expected outcome and correlations between
parameters for di�erent datasets. To explore how di�erent lengths
of time sequence a�ect the RNN time series training performance
and prediction results, the training data was divided into varying
time sequence lengths. The time sequence length for validation
data sets were not modi�ed (i.e., they were left as long sequences)
as this would not have an e�ect on training the RNNs. Additionally,
how far in the future the RNNs predict (the prediction time o�set)
can also in�uence the prediction performance. For example, with a
training sequence of length 50, training RNNs with a time o�set 1,
there will be 49 time steps available as input, however for a time
o�set 8, there will only be 42 time steps available. Due to this, larger
time o�sets might require longer input sequences.

To study the e�ects of training sequence length for a variety of
time o�sets, the combination of time o�sets of 1, 2, 4, 8 on training
the data sets with time sequence lengths of 50, 100, 200 and full for
the boiler data set (Net Plant Heat Rate and Secondary Superheater
Steam Outlet Temperature), and time sequence length of 50, 500,
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Figure 5: Main Flame Intensity
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Table 1: Mean Absolute Percentage Error (MAPE) of the overall best and average best evolved RNNs from 20 repeated experi-
ments for predicting net plant heat rate and secondary superheater temperature on the validation dataset

Net Plant Heat Rate Secondary Superheater Temperature
Best Case Average Case Best Case Average Case

Sequence Time Normalization Normalization Mann-W U Normalization Normalization Mann-W U
Length O�set Min-Max Z-Score Min-Max Z-Score P-Values Min-Max Z-Score Min-Max Z-Score P-Values

50

1 0.0196 0.0184 0.0216 0.0198 0.0001 0.0066 0.0067 0.0068 0.0068 0.4196
2 0.0304 0.0299 0.0334 0.0317 0.0017 0.0086 0.0087 0.0089 0.0089 0.1427
4 0.0408 0.0394 0.0429 0.0421 0.1251 0.0102 0.0097 0.0104 0.0102 0.0001
8 0.0451 0.0450 0.0472 0.0481 0.0266 0.0114 0.0111 0.0117 0.0113 0.0000

100

1 0.0217 0.0197 0.0269 0.0231 0.0014 0.0068 0.0068 0.0069 0.0070 0.4516
2 0.0315 0.0301 0.0361 0.0339 0.0036 0.0087 0.0087 0.0091 0.0090 0.0903
4 0.0415 0.0396 0.0442 0.0431 0.0301 0.0102 0.0102 0.0106 0.0104 0.0014
8 0.0443 0.0472 0.0471 0.0487 0.0003 0.0114 0.0110 0.0117 0.0114 0.0000

200

1 0.0252 0.0248 0.0304 0.0309 0.2804 0.0070 0.0070 0.0072 0.0073 0.0568
2 0.0315 0.0356 0.0378 0.0389 0.2285 0.0090 0.0089 0.0092 0.0092 0.4838
4 0.0425 0.0426 0.0447 0.0463 0.0072 0.0104 0.0104 0.0107 0.0106 0.0003
8 0.0426 0.0464 0.0479 0.0495 0.0111 0.0115 0.0112 0.0118 0.0116 0.0339

Full

1 0.0275 0.0382 0.0348 0.0451 0.0000 0.0072 0.0073 0.0077 0.0077 0.3882
2 0.0355 0.0405 0.0406 0.0511 0.0000 0.0091 0.0090 0.0095 0.0095 0.1042
4 0.0428 0.0504 0.0471 0.0543 0.0000 0.0106 0.0105 0.0109 0.0109 0.3882
8 0.0469 0.0517 0.0497 0.0557 0.0000 0.0117 0.0114 0.0119 0.0118 0.0036

Table 2: Mean Absolute Percentage Error (MAPE) of the
overall best and average best evolvedRNNs from20 repeated
experiments for predicting main �ame intensity on the val-
idation dataset

Main Flame Intensity
Best Case Average Case

Sequence Time Normalization Normalization Mann-W U
Length O�set Min-Max Z-Score Min-Max Z-Score P-Values

50

1 0.0310 0.0297 0.0338 0.0648 0.2124
2 0.0320 0.0317 0.0359 0.0932 0.1488
4 0.0362 0.0339 0.0402 0.1140 0.0206
8 0.0407 0.0379 0.0443 0.0751 0.2989

100

1 0.0320 0.0301 0.0391 0.0601 0.1971
2 0.0336 0.0318 0.0389 0.0807 0.1042
4 0.0356 0.0355 0.0421 0.0787 0.2896
8 0.0413 0.0379 0.0456 0.0603 0.0339

200

1 0.0360 0.0314 0.0514 0.0502 0.0028
2 0.0457 0.0335 0.0528 0.0363 0.0000
4 0.0423 0.0354 0.0538 0.0914 0.1685
8 0.0461 0.0400 0.0560 0.0625 0.0039

Full

1 0.0492 0.0359 0.0575 0.0817 0.0077
2 0.0423 0.0365 0.0552 0.0573 0.0147
4 0.0481 0.0418 0.0564 0.0821 0.0702
8 0.0524 0.0431 0.0617 0.1063 0.1754

5000 and full for the cyclone data set (Main Flame Intensity) were
evaluated. The time sequence length “full” means using the original
training data without slicing it into shorter time sequences (lengths
are provided in Section 5.1).

Figure 5 shows an example of the convergence rate of validation
mean squared error (MSE) of Main Flame Intensity using di�erent
time sequence lengths and with di�erent time o�sets over 20 re-
peated runs. Due to space limit, the convergence rate for Net Plant
Heat Rate and Secondary Superheater Steam Outlet Temperature,
which show similar results, can be found in supplementary materi-
als. Interestingly, and potentially contrary to the recurrent memory
cells being able to retain long term dependencies, for all three data

sets and all time o�sets, using training sequences of length 50 had
both the fastest convergence rates and the reached the lowest val-
idation MSE in both average and best cases. Additionally it was
observed that as the training sequence length increased, the RNNs
trained slower and had worse validation MSE performance.

For the same training dataset, using di�erent time sequence
lengths for training data not only e�ects the convergence rate, but
also the overall prediction performance. While the optimal time
sequence length that can best aid the training and performance
process might vary for di�erent datasets and di�erent tasks, it is
an easy and e�ective way to improve the prediction performance
in practice.

5.4 E�ects of Data Normalization
As another means of improving performance of the evolved RNNs
for usage by Microbeam, two data normalization strategies were
investigated. The most common neural network data normalization
method is to use z-scores:

-=>A<0;8I43 =
- � `

X
(1)

where ` and X are the mean and standard deviation of the features.
Z-scores generally handle outliers well, however if features have
large variances, those normalized features can be very close to zero.
Additionally, the normalized features do not have the same value
ranges, which can lead to challenges in forecasting exact values.

Another commonmethod ismin-max normalizationwhich scales
all features within the range [0,1]:

-=>A<0;8I43 =
- � -<8=

-<0G � -<8=
(2)

where -<8= and -<0G are the minimum and maximum possible
values for the parameter to be normalized. This method can be
particularly e�ective in time series data prediction where these
limits are known a priori, and it retains same scale as the original

1741



GECCO ’21 Companion, July 10–14, 2021, Lille, France Zimeng Lyu, Shuchita Patwardhan, David Stadem, James Langfeld, Steve Benson, Seth Thoelke, and Travis Desell

data which can be bene�cial in time series forecasting. However
this method can su�er from large outliers.

All the experiments discussed in Section 5.3 were performed
using both normalization methods with 20 replications. Figures 6, 7
and 5 show the test results using di�erent data normalization meth-
ods. It should be noted that after min-max normalization, input
data values will range [0,1], while for z-score normalization the
values range is determined by X and is normally larger than [-1,1]
for our datasets, which will result in the z-score results having
larger validation MSE values.

For a fair comparison, Tables 1 and 2 present the best case and
average case prediction Mean Absolute Percentage Error (MAPE)
when comparing the de-normalized output to the unnormlized data,
respectively. The values marked in bold are the better results of
the two normalization methods. Results for Net Plant Heat Rate
show that using z-score normalization was better with the shorter
sequence lengths of 50 and 100. The performance for both normal-
ization methods are very close for predicting Secondary Superheater
Steam Outlet Temperature, while min-max performs better than z-
score for predicting Main Flame Intensity. Interestingly, the results
show that the z-score and min-max normalization methods can
have di�erent e�ects on predicting di�erent data sets, or even the
same data set but with di�erent output parameters or time o�sets,
in some cases even over 1% MAPE in the best and average cases.
Tables 1 and 2 also show p-values of the Mann–Whitney U test
between using min-max and z-score normalization methods over
20 repeated runs. The values marked in bold means two normaliza-
tion methods are statistically signi�cantly di�erent with signi�cant
level U = 0.05.

5.5 Performance Improvements at the Plant
A full examination of the e�ectiveness of Microbeam’s optimization
software is currently under analysis, however given preliminary
results, signi�cant improvements have already been noted at the
plant. The online fuel analyzer and plant optimization software
were installed in 2018, with several upgrades over time and ongoing
support and maintenance into 2021. Due to this, the years 2017 to
2020 were selected to show operational parameters before installa-
tion and throughout the upgrade process. The amount of revenue
lost due to derates and outages decreased by $7.3 million from
2017 to 2020, a savings of 42%. The net plant heat rate improved
under medium and low load conditions, decreasing about 3% under
medium load and 10% under low load since 2017. Under high load
conditions, the plant heat rate did not signi�cantly change over
time. Other statistics, such as amount of supplementary oil �red,
contribute to further savings and are under further investigation.

6 CONCLUSION
In this work, the Evolutionary eXploration of Augmenting Memory
Models (EXAMM) neuroevolution strategy is used to evolve recur-
rent neural networks with varying memory cells and recurrent
connections of varying time lags to perform time series forecasting
of varying coal �red power plant parameters for varying amounts
of time in the future, which are integrated into Microbeam’s coal-
�red power plant optimization software so that plant operators can
better adjust operations to improve e�ciency and reduce emissions.

While there have been a number of studies utilizing arti�cial neural
networks to perform prediction and classi�cation tasks for power
systems, to the authors’ knowledge, this work presents the �rst
work in which a neuroevolution strategy is used to design neural
networks for use by a power plant, and even further the �rst exam-
ple of evolved neural networks being used in production software
by a power plant. A preliminary investigation of the impact of the
use of this software by the coal-�red power plant show signi�cant
revenue savings due to reduced derates and outages, as well as
other improved e�ciencies.

This work additionally investigates the e�ect of di�erent normal-
ization strategies and training sequence lengths on the convergence
rates and predictive accuracy of the evolved neural networks, areas
which are commonly overlooked in machine learning experiments
on benchmark datasets, but which, as shown in this work, can have
a signi�cant impacts on real world problems. Results show that
training on shorter sequences dramatically improves convergence
rates and predictive ability of the evolved neural networks, some-
what contrary to the common belief that recurrent memory cells
are capable of capturing long term dependencies in temporal data.
Further, results show that there is a “no free lunch” e�ect from the
selection of data normalization rates, that with statistical signi�-
cance the performance of networks potentially varying by over 1%
mean average percent error (MAPE) even within a single data set
with predictions of varying time o�sets. The authors hope these
results can help inform future time series forecasting e�orts using
neural networks for real world applications.

This work also opens up future research directions to further
investigate and enhance the performance of time series forecasting
in practice. 1) EXAMM currently only reads the input data stream
one timestep at a time and predicts one timestep at a time. Future
work could have EXAMM able to read and predict the complete
time sequence. And it might potentially help better capturing the
outliers and abnormal performance in the coal-�red power plant. 2)
We could further investigate the e�ect of other data augmentation
methods for training, such as window slicing, window warping [15],
add noise, scale samples [16]. Finding the e�ective data augmenting
methods could signi�cantly improve the performance. 3) EXAMM
currently use validation MSE as objective function to evaluate the
�tness of a RNN. Other objective functions could also be used to
evaluate RNNs, such as network size, inference time, shape and time
distortion loss. We could use multi-objective optimization methods
to evaluate and choose best RNN candidates.
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