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ABSTRACT
Many long term robot exploration domains have sparse fitness
functions that make it hard for agents to learn and adapt. This work
introduces Adaptive Multi-Fitness Learning (A-MFL), which aug-
ments the structure of Multi-Fitness Learning (MFL) [7] by injecting
new behaviors into the agents as the environment changes. A-MFL
not only improves system performance in dynamic environments,
but also avoids undesirable, unforeseen side-effects of new behav-
iors. On a multi-robot coordination problem, A-MFL provides up to
90% improvement over MFL and 100% over a one-step evolutionary
approach.

CCS CONCEPTS
• Computer systems organization → Evolutionary robotics;
• Computing methodologies → Evolutionary robotics; Value
iteration; Agent / discrete models;
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1 INTRODUCTION
Coordinating multiple robots in long-term missions is challenging
because the changing environmental dynamics are not known a
priori. Current state-of-the-art algorithms and methods such as evo-
lutionary robotics [2], deep learning methods [6], reward shaping
methods for multiagent cooperation, and multi-task learning [3–5]
are not designed with long-term adaptation in multiagent systems
in mind. Recently, MFL has found success by separating execution
of low-level tasks from the solution to the overall mission [7]. While
promising, MFL is like other state-of-the-art methods as it cannot
adapt to dynamic environments during a deployment. We introduce
A-MFL to address adaptation during deployment by integrating new
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Figure 1: Illustration of the components of A-MFL and the
three phases they operate under: pre-training, hierarchy
training, and deployment adaptation.

behaviors to handle environmental disturbances without expensive
relearning of the agents’ controllers.

The main contribution of this paper is to inject new behaviors
into trained agents to enable them to adapt to unexpected environ-
mental changes, and to integrate those new behaviors via value
iteration over to support a high-level policy that tracks the overall
mission goal.

2 ADAPTIVE MULTI-FITNESS LEARNING
An adaptive learning structure enables agents to change their ac-
tions when they encounter a situation they currently do not know
how to solve. This is distinct from autonomous adaptation, where
the agents are deciding when and how to adapt to new situations.
A-MFL is a learning structure that provides adaptivity to agents
trained with evolutionary algorithms with minimal re-training.

The basis for adaptive learning in this work is behaviors, which
define A-MFL’s tiered structure and value-iteration populations.
Adaptive Multi-Fitness Learning (A-MFL) is able to adapt to the
changing environment by extending the behavior-focused hierar-
chy of MFL. This work formalizes behaviors as the pair of the policy
and the fitness used to train the policy. Identifying and exploiting
the differences between behaviors is the main challenge facing
agent teams.

Adaptive Multi-Fitness Learning (A-MFL) learning uses a
two-tier hierarchy to take actions, where at the top level a neural
network evolves to optimize the sparse global fitness, and low level
actions are generated as a result of learned behavior policies.
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As A-MFL adapts agents while deployed, three different phases
are used throughout the life-cycle of the robot: pre-training, hi-
erarchy training, and deployment adaptation (Figure 1).

In pre-training, numerous discrete behaviors are trained inde-
pendent of one-another. In hierarchy training the top level policy
is trained via neuroevolution to select between behavior pools. By
modeling the population as a multi-armed bandit, a single behavior
is picked from the population via 𝜖-greedy selection on the behavior
values and the selected behavior is used to physically execute low-
level actions. The global fitness updates the value of each behavior,
with 𝐺 = 1 increasing the value and 𝐺 = 0 decreasing it.

During deployment a single behavior population has new be-
haviors added and value-iteration is resumed. Adaptation to the
environment happens without needing to re-train the top level policy,
and without impacting the selected behaviors in other populations.

3 EXPERIMENTS AND RESULTS
A-MFL is tested on a modified version of the Continuous Rover
Problem [1]. The goal for the team of rovers is to observe point of
interest (POI) scattered around a two-dimensional plane.

Two modifications are made from this domain. First, POI are
heterogeneous andmust be observed in a specific order (Equation 1).
Second, some POI will become “sticky” and change how rovers
move around the environment. The fitness in Equation 1 measures
if the POI have been observed in the correct order, where 𝐼𝐴 is a
Boolean function reporting if the team observed a type A POI, 𝑡𝐴 is
the time at which the team observed a type A POI, and the others
as follows. Critically, the observation order is not known to the
rover team when they enter the world.

𝐺 = 𝐼𝐴 · 𝐼𝐵 · 𝐼𝐶 · (𝑡𝐴 < 𝑡𝐵 < 𝑡𝐶 ) (1)

A-MFL is compared against a neural-evolved controller and MFL.
To equalize the knowledge given to A-MFL andMFL, every behavior
in A-MFL’s populations is an independent selection for MFL.

Figure 2 shows the first requirement for our rover team; A-MFL
is able to learn the general solution to the sequential observation
problem in the same way as MFL when both are presented with
the same behaviors. In this situation, both MFL and A-MFL have
access to every behavior; the earlier convergence of A-MFL comes
from the bundling of behaviors by similarity.

Figure 2: Contrasting performance of direct control of the
rover, providing every single behavior policy as an indepen-
dent selection for MFL, and A-MFL.

Next, agents were trained on the standard environment with
the global fitness (Equation 1). Then agents are deployed into an
environment where Type A POI are “sticky” and will stop agents if
they move at a speed less than two if they move within 3 units of
the POI. New behaviors that can move through the sticky area are
injected into A-MFL at epoch five, A-MFL quickly integrates these
policies and increases the score to 1 (Figure 3).

Figure 3:MFL andA-MFLperformance on the sticky domain.
When new behaviors are added to deal with the sticky POI,
A-MFL quickly resumes achieving high scores while MFL
cannot incorporate the new behaviors.

4 DISCUSSION
This paper introduces Adaptive Multi-Fitness Learning, a learning
structure for multiagent teams which learns to select behaviors
grouped by similarity. By grouping behaviors by similarity, a gen-
eral solution to the problem can be learned by the agent team using
whichever behaviors it learns to use. Then during deployment, sim-
ilar behaviors can be selectively changed to adapt to unforeseen
changes in the environment.
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