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ABSTRACT
In addition to their undisputed success in solving classical opti-
mization problems, neuroevolutionary and population-based al-
gorithms have become an alternative to standard reinforcement
learning methods. However, evolutionary methods often lack the
sample efficiency of standard value-based methods that leverage
gathered state and value experience. If reinforcement learning for
real-world problems with significant resource cost is considered,
sample efficiency is essential. The enhancement of evolutionary
algorithms with experience exploiting methods is thus desired and
promises valuable insights. This work presents a hybrid algorithm
that combines topology-changing neuroevolutionary optimization
with value-based reinforcement learning. We illustrate how the be-
havior of policies can be used to create distance and loss functions,
which benefit from stored experiences and calculated state values.
They allow us to model behavior and perform a directed search in
the behavior space by gradient-free evolutionary algorithms and
surrogate-based optimization. For this purpose, we consolidate dif-
ferent methods to generate and optimize agent policies, creating a
diverse population. We exemplify the performance of our algorithm
on standard benchmarks and a purpose-built real-world problem.
Our results indicate that combining methods can enhance the sam-
ple efficiency and learning speed for evolutionary approaches.

CCS CONCEPTS
•Theory of computation→ Evolutionary algorithms; •Com-
puting methodologies → Neural networks; Reinforcement
learning.

KEYWORDS
Neuroevolution, Reinforcement Learning, Neural Networks, Evolu-
tionary Algorithms, Surrogate Optimization
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1 INTRODUCTION
In the last years, neuroevolution (NE) and population-based meth-
ods have shown to be a valuable and scalable alternative to classic
approaches in reinforcement learning (RL), as they have shown
promising performance on several problems [11, 13, 15, 23]. In par-
ticular, they are computationally efficient if the problem itself is
fast to evaluate and a large number of parallel evaluations are pos-
sible. Evolutionary algorithms (EAs) applied to RL often rely on an
episode-to-episode fitness evaluation, considering an RL episode’s
final cumulative reward for selection and updating. Further, they
do not take advantage of the details of individual behavioral in-
teractions and do not leverage from the gathered experiences of
state information. Thus, they often require a significant amount of
fitness evaluations to evolve well-performing agents. In particular,
if artificial neural networks (ANNs) with changing topologies are
considered, which employ a large search space [28]. The resulting
low sample efficiency is a challenge in real-world problems due to
their high costs, as each action can have a considerable duration.

This paper’s primary goal is to combine a topology-changing
neuroevolutionary algorithm with behavior-based search compo-
nents to improve the sample efficiency.

Standard value-based and actor-critic policy gradient methods
exhaust behavioral information for their updates and are remark-
ably successful in many different domains [30]. The combination
of evolutionary methods with value-based methods has recently
become an active area of research. Recent methods include hybrid
approaches, which collect experiences by an evolutionary part, then
apply value-based learning, such as policy-gradients, to selected
population members [14, 15]. The use of experience-based mutation
operators, e.g., which perform gradient updates, is also promising
to improve evolutionary methods [6].

Another approach for improving the sample efficiency is to re-
place the actual problem function with a surrogate, as employed in
surrogate model-based optimization (SMBO). The implementation
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of surrogates in neuroevolutionary algorithms for reinforcement
learning has been of increased interest [8, 28]. The difficulty in
modeling agents is the definition of an adequate distance between
their policies. In the case of changing topologies, the definition of
genotypic differences (i.e., differences of the encoding) is algorithm-
dependent and not necessarily helpful [8, 27]. One method is to uti-
lize behavior-based distances, in this context defined as the actions
of an agent taken in pre-defined states. Behavioral embeddings are
also used to maintain diversity in a population, which is essential
to avoid overfitting to certain behaviors [21].

In this paper, we seize these ideas and implement a hybrid frame-
work for behavior-based neuroevolutionary training (BNET), which
combines the evolution of a population of agents with topology-
changing neuroevolution, employed by cartesian genetic program-
ming (CGP) [16, 31]. Our contributions are as follows:

(1) We introduce the new algorithm where the population’s
agents are optimized in parallel by fitness-based search, behavior-
based search, and surrogate-based search. As a critical challenge in
RL is exploration, our implementation is focused on maintaining a
diverse set of agents, each contributing to the fitness search and
sharing experiences. Different approaches to leverage from a shared
experience set exist [25]; we employ a selection method to create an
archive of experiences from high-performing yet diverse policies.

(2) We define a set of new advantage-weighted behavior loss
functions to conduct the behavior-based search, leveraging on prin-
ciples from standard actor-critic policy algorithms and behavior-
based distances [27, 30]. In combination, they are part of a gradient-
free learning process for the agent policies. For the surrogate-based
search, we employ the surrogate model-based optimization for neu-
roevolution (SMB-NE) algorithm, first introduced in [28].

(3)We define a method for robust candidate selection to increase
learning stability. Our fitness-based search focuses on keeping a
stable elitist solution, referred to as champion, which is of central
importance considering real-world environments. As these envi-
ronments frequently provide stochastic rewards, e.g., caused by
random starting conditions, we employ a robust selection method,
which compares mean estimates of their actual performance and
reduces the probability of choosing an inferior candidate.

(4)We implement a prototype of the framework and test it on
common synthetic benchmark problems against standard value-
based RL methods to prove our concept. We also analyze the per-
formance of each search method in BNET. Finally, we introduce
a new adaptable real-world problem featuring a robot-controlled
maze environment as a benchmark for RL algorithms.

2 METHODS
2.1 Reinforcement Learning and Value-based

Methods
In RL, we train agents’ policies πn ,n = 1, ...,N to solve instances
of an environment: for each environment step t the agent observes
an environment state st and the policy decides, which action at
is conducted. The agent receives a reward r (st ,at , st+1) for each
observed state during its learning episode. This leads to a trajectory
with T steps. The cumulative reward Rt =

∑T
k=0 γ

krt+k+1 at the
end of an episode, discounted by factor γ , is typically utilized as a

target function of the policy optimization process. We refer to Rt
of a full episode as fitness of a policy.

Advantage-based actor-critic methods [30] have a policy actor
and estimate the advantage of an action at in state st by a critic.
The critic Vφ (st ), with φ being its parameters, approximates the
estimated value of a state st , given by the value function V (s) =
Eπ {Rt |st = s}. For a full-episode learner, i.e., considering the com-
plete per-state reward information Rt at the end of an RL episode,
a typical approach is to compute the advantage by a Monte-Carlo
(MC) estimate Aφ (st ,at ) = Rt (st ,at ) −Vφ (st ), where Vφ (st ) is ap-
proximated by the critic. Further, the actor is updated with help of
a gradient function ∇θ J (θ ) =

∑
t ∇θ loдπθ (st ,at )Aφ (st ,at ) Here θ

are the ANN parameters, and πθ is the policy associated with these
parameters. We refer to the experience of an agent, considering the
(st ,at , rt+1) triplets an agent observes during (multiple) interaction
episodes in a RL environment.

2.2 Neuroevolution by Cartesian Genetic
Programming

CGP [16] is a genetic programming method relying on grid-based
encodings to realize graph representations. If applied to ANNs [31],
it allows to create topologies with different transfer functions and
free node-to-node connections, i.e., the generated topologies do
not follow the typical layered structure. CGP, in its basic version,
does not allow the direct use of back-propagation or gradients for
ANN optimization, mainly due to the topology-changing neuroevo-
lution process. Certain CGP implementations allow the utilization
of gradient information [10]. However, these learn topologies and
weights sequentially, not simultaneously. The genotype-behavior
mapping is complicated as distances on the genotype-level are
barely related to their distance in behavior space [27]. We optimize
the CGP-ANNs with a gradient-free (µ + λ)-EA with rank-based fit-
ness selection [4] for the optimization of neuroevolution candidates,
utilizing behavior-based loss functions, as described in Section 2.3.

2.3 Optimization in the Behavior Space
Each policy computes the probability p(at |st ) of taking an action
at for an input state st . Formally, we denote behavior as the set of
probabilities corresponding to K states S = {s1, ..., sK }. Further, B
is denoted as the behavior space, i.e., the set of all possible behaviors,
with πn ∈ B and n = 1, ...,N . In the behavior space, two agents can
be directly compared on the state set S by calculating their mean
behavior distance [27, 28], denoted by

db (π ,π ′, S) =
1
T

T∑
t=1

|π (st ) − π ′(st )| (1)

For the case of experience-based policy optimization, we defined
the advantage-weighted behavior distance:

dwb (π ,π
′, S,A) =

( 1
T ∗

∑T ∗

t=1 |π (st ) − π ′(st )| ×Aφ (st ,at )

1
T ∗

∑T ∗

t=1 |Aφ (st ,at )|

)
(2)

Here, S are sampled states from environment interactions with a
trajectory ofT ∗ time-steps, whileA are the respective actions taken
during this trajectory. Further,Aφ is the precomputed approximated
advantage for each of the stored actions, see sec. 2.1. As a second
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method, we utilize the advantage-weighted cross-entropy. The cross-
entropy is defined by:

H (π ,π ′, st ) = −

I∑
i=1

[
πi (st ) ln

(
π ′
i (st )

) ]
(3)

πi (st ) is the i-th element of the probability output of the policy π
given the input state st . The cross-entropy distance (dc ) is further
weighted by the advantage estimation A+φ (at , st ) and computed
over a set of stored states S and actions A:

dc (π ,π
′, S,A) =

1
T ∗

T ∗∑
t=1

[
H (π ,π ′, st ) ×A+φ (st ,at )

]
(4)

Instead of the complete estimated advantage, we only consider the
set of positive advantages:

A+φ (st ,at ) =

{
Aφ (at , st ), if Aφ (st ,at ) ≥ 0
0, otherwise

(5)

The positive advantages drive the search towards estimated
beneficial behavior, while negative advantages will not affect the
weighted cross-entropy distance dc . We define our loss function
for NE-EA during the behavior-based optimization as the sum of
distances (dwb or dc ) between the target policy π and several stored
reference behaviors πm withm = 1, ...,M . Furthermore, their sam-
pled trajectories with states Sm and actions Am are:

L(π ) =
M∑

m=1

[
d(π ,πm , Sm ,Am )

]
. (6)

For the loss functions, the probability distribution of the stored
behaviors is priorly adapted to maximize the performed action’s
probability. The optimization in the behavior space B is similar to
imitation learning, i.e., fitting a network to replicate a stored behav-
ior. However, instead of replicating a single reference behavior, we
optimize the target policy to minimize the distance to an advantage-
weighted set of multiple reference behaviors from different policies.
The EA for the optimization is outlined in algorithm 2.1.

Algorithm 2.1: Neuroevolution EA
1 INPUT: Memory ofM stored reference policies π∗

m , states
and actions S∗m ,A∗

m ;
2 optional: pre-defined candidates π
3 preset: mutation rate, NE candidate parameters
4 begin
5 initialize new polices as candidates
6 evaluate initial candidates with loss function L(π )

7 select µ parents from initial candidates
8 while not termination-condition do
9 mutate parents to get λ offspring

10 evaluate offspring with loss function L(π )

11 select µ next iteration’s parents with minimum loss
from parents and offspring

12 optional: update mutation rate
13 end
14 end
15 OUTPUT: best found policies

2.4 Optimization by Behavior Surrogates
The definition of the behavior distance between policies also allows
us to create approximation models, so-called surrogates, which
predict a policy’s fitness during optimization. The surrogates allow
searching in the behavior space without any additional environ-
ment interactions, which are substituted by the surrogate. Surrogate
model-based optimization (SMBO) is frequently applied for costly
processes with high resource-demand for each function evalua-
tion [5]. Our SMBO is based on the surrogate model-based opti-
mization for the neuroevolution (SMB-NE) algorithm [28], which
utilizes a Kriging [5] regression model. The model measures the
similarity of samples by a kernel, utilizing distance and correla-
tion matrices of observations. If applied to real-valued samples,
the exponential kernel k(x ,x ′) = exp(−θ | |x − x ′ | |2) is a typical
choice. The essential kernel parameter θ influences how fast the
correlation decays to zero if the Euclidean distance between two
samples | |x − x ′ | |2 increases. In our work, we follow the idea of
kernel-based models for combinatorial search spaces [20, 35]. We
replace the Euclidean distance | |x − x ′ | |2 by the behavior distance,
resulting into the kernel:

k(π ,π ′, S) = exp(−θ d(π (S),π ′(S))) (7)

Here, one challenge is the appropriate definition of the state set
S, as it has a considerable influence on the distance. We rely on a
selection approach presented in [29], where both policies’ stored
states are combined for each pairwise distance calculation. If a new
target network’s fitness without stored states needs to be predicted,
the reference policies’ stored states are applied as reference input.
The Kriging model parameters are fitted by maximum likelihood
estimation and optimized with DIRECT-L [7], further utilizing the
nugget effect [32]. Kriging combines relatively accurate mean pre-
dictions with the ability to provide uncertainty estimates of each
prediction. The combination of mean and uncertainty are used to
compute infill functions, which predict the desirability of a solu-
tion. A frequently applied infill-criterion is Expected Improvement
(EI) [12, 19], which integrates the uncertainty estimate to explore
new solutions, which may be farther away from observed solutions.
In [22], the benefits and downsides of using EI for different opti-
mization problems are discussed. For high-dimensional cases, it is
recommended to use the predicted mean instead of EI since the
increase in dimensionality leads to an inherent increase in uncer-
tainty (see also: [33]). In the case of neuroevolution, the behavior
space is high-dimensional. Thus, we use the predicted mean of the
Kriging surrogate as an infill function. The R package CEGO [34, 35]
is used to train the Kriging surrogates, while the NE-EA is utilized
to optimize the target network.

3 BEHAVIOR-BASED NEUROEVOLUTIONARY
TRAINING

In this section, we introduce our new algorithm for population-
based neuroevolution for the training of RL policies (BNET). The
population consists of CGP-ANNs, which are utilized as RL poli-
cies π . We refer to each network instance as a candidate. BNET is
similar to a population-based evolutionary algorithm with elitism.
Nevertheless, new candidates are not merely created employing a
variation of previous candidates. Instead, new candidates are also
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Figure 1: BNET algorithm cycle. Quadratic boxes are methods or algorithms, and rounded edges illustrate observed data. The
candidate generation methods are based on extracted data from the environment interactions during the fitness evaluation:
The fitness-based search selects a champion with the best overall fitness (violet). The behavior-based search utilizes a selected
set of experiences, and advantage-criticmodel, and the defined behavior-distance and cross-entropy loss-functions to optimize
networks and use as new candidates (yellow). Further, a surrogate model is fitted to all candidates’ archives and generates a
candidate in a surrogate-model-based search (light-blue).

generated by behavior learning and by exploiting behavior-based
surrogates. The algorithm outlined in Fig. 1 is essentially divided
into three parts, which employ different ways to search for new
candidates: fitness-based, behavior-based, and surrogate-based. In
summary, the fitness-based search selects a champion with the best
overall fitness by robust selection and creates direct mutations of
this champion. The behavior-based search utilizes a selected set of
experiences, a value-based critic model, and the loss function from
Eq. 6 to generate new candidates. Further, a surrogate model is fitted
to an archive of all candidates and searched for new candidates.

3.1 Initialization and Evaluation
The first population is either initialized by NE or by optimizing a
population to fit previously evaluated policies’ behavior. We refer to
the second method as offline initialization, as it does not require any
new (online) environment interactions. If we initialize NE policies
offline, the behavior search (as explained below) is applied, where
a previously-stored experience set is required as a reference.

The candidates are then evaluated in the RL environment with
two goals: First, evaluate the current population’s policies to acquire
their fitness; Second, to gather new environment experiences from
these policies. The policies can be evaluated either fully determin-
istic, stochastic, or stochastic with exploration. The deterministic
policy evaluation chooses the action with the highest probability,
whereas the stochastic evaluation samples actions based on the
probabilities. Deterministic policies have equal behavior if evalu-
ated repeatedly, but the achieved fitness still may differ, e.g., if the
environment itself is stochastic. Deterministic policies are most

suitable for exploitation or testing. As stochastic policies depend
on probabilities, they allow for a certain level of exploration. Ad-
ditional exploration can be enforced by taking random actions or
adding a random factor to any policy behavior.

3.2 Fitness Search and Robust Selection
The fitness search, visualized as the leftmost, violet path in Fig.
1, focuses on selecting a fitness champion, i.e., the candidate of
the population with the best overall fitness. Moreover, a mutation
candidate is generated by applying a small direct mutation to the
champion’s policy network and used as a second new candidate,
the mutated champion. However, RL environments, such as control
tasks, typically have different starting conditions or even stochastic
state transitions, i.e., an action in a specific state may transition to
different states in the next time step. Thus, the measured fitness
will be noisy, and even a deterministic policy produces different
results when evaluated repeatedly.

Therefore, we employ a robust fitness selection, including the re-
evaluation of candidates and comparing their fitness distributions.
The robust selection shall ensure that the champion is a reasonable
estimate of the best policy discovered so far, even in the presence
of noisy fitness. In the first iteration, the fitness champion, denoted
as π∗, is selected as the candidate with the highest sampled fitness
so far and re-evaluated in the second iteration. Its fitness is then
set to the mean of all evaluations. Starting with the second and all
future iterations, we use the concept of challengers: A challenger
is a candidate π that has a one-time evaluated fitness better than
the mean champion fitness, i.e., if f (π ) > 1

n∗

∑n∗

1 f (π∗), where n∗
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is the number of samples of champions performance f (π∗). If a
new population contains at least one challenger, this challenger is
re-evaluated to get a more robust fitness estimate and the mean
fitness values are utilized as a measure for selection. A challenger is
accepted as champion, if 1

n
∑n
1 f (π ) > 1

n∗

∑n∗

1 f (π∗), where n is a
parameter of the selection, either set to match n∗ or a desired num-
ber of repeats r , by n = max(n∗, r ). The value of r should be chosen
according to the task and estimated noise of the environment. If a
champion was re-evaluated less than r , it is also re-evaluated.

In case of multiple challengers, they are ordered by their fit-
ness and sequentially evaluated against the champion. If a new
champion is selected during the consecutive comparisons, the next
challenger is only considered if it is still superior in fitness. The
selected champion is then re-evaluated in the next iteration. The
constant re-evaluation of the champion, if not changed, leads to a
stable estimate of the actual fitness value.

3.3 Behavior Search
The behavior-based optimization of the neuroevolutionary policies
builds upon principles from standard RL algorithms, such as policy-
gradients and actor critic. The challenge in neuroevolution is the
absence of any gradient information between NE candidates if a
simultaneous topology optimization is performed. A neuroevolu-
tionary behavior optimization thus requires metrics that allow the
comparison of policies further to establish a search direction in
the behavior space. We employ the behavior optimization with the
advantage-weighted behavior distance from Eq. 2 or the advantage-
weighted cross-entropy Eq. 4 and implement it in our loss function Eq.
6. This loss application requires a defined set of experiences, an ad-
vantage function, and an optimization algorithm. As a reference set,
we collect and store a fixed-sized set of elite experiences. The set con-
sists of experiences and the performance of single evaluations from
different candidates or repeated evaluations of the same candidate.
In the first iterations, the set grows until the maximum size of the
set is reached. After the robust selection, the experience is replaced
with those of higher fitness episodes in each consecutive iteration.
However, the number of replacements in each iteration is limited.
The limitation prevents that the candidate set gets dominated by
the experiences of single candidates. A diverse set is thought to help
avoid overfitting and increase the chance to learn better behavior.
A diverse experience set is the first difference to classic imitation
learning, where a single policy’s behavior is adapted. The second
difference is given by the advantage weighting of each action in
the distances by Eq. 2 and 4. The required advantage function is
predicted by a critic model, which is learned to the complete set
of all discovered experiences. Also, the advantage-weighted cross-
entropy considers only the actions with positive advantage, i.e., the
policy is trained to replicate this behavior. Both loss metrics are
employed in the NE-EA to generate new candidates.

3.4 Surrogate Search
Corresponding to section 2.4, the surrogate search is based on a
Kriging model fitted to an archive of tested candidates with their
connected mean fitness and experiences. The distance kernel in Eq.
7 is applied for modeling the relations between policy behaviors and
their fitnesses, where the state set S of each comparison consists

of the stored experience archive of the associated candidate pair.
The fitted surrogate is then employed to predict the fitness of new
candidates and utilized as loss-function L(π ) = − f̂ (π ) during a
NE-EA optimization process. The fitness values are adapted to
ensure a minimization problem (i.e., negated in the typical reward
maximization case).

4 EXPERIMENTS
The BNET framework is flexible, as the algorithm modules for gen-
erating candidates can be combined in several ways. For example,
it can also be employed as a pure direct neuroevolution approach
by refraining from using the behavior-based or surrogate-based
search, or in contrast, as a pure behavior search algorithm. Thus,
our experiments are two-fold: first, we tested different versions of
the algorithm against a set of open-AI baselines algorithms on the
problems CartPole-V0 and MountainCar-V0. For this experiment,
the focus was to estimate overall performance, how beneficial the
different proposed modules are, and how they affect the search
quality. In a second experiment, we tested our algorithm against
the same baselines on a newly designed real-world problem.

As comparison baselines, we employ Advantage Actor Critic
(A2C) [17] and Proximal Policy Optimization (PPO) [26] from the
stable baselines package [9]. Both do not require full episodes to
learn (i.e., the algorithm is trained after x time steps, not neces-
sarily full episodes), which might give it performance advantages
over BNET. Our performance measure, particularly concerning the
real-world environment, is the number of required time steps un-
til a (stable) solution is found. For all experiments, we implement
a prototype version of the BNET framework using R 3.6.3, an R-
interface to the CGP-ANN Library by Turner [28] and reticulate 1.14,
Keras 2.3, OpenAI gym 0.18.0, and tensorflow 1.15.4 [1–3]. All simu-
lated experiments were conducted on an HPC-Cluster. More than
50,000h of total computation time was spent during development
and experimentation. The BNET prototype was not systematically
tuned for optimal parameter settings due to the high computational
effort. The used parameter setup is based on preliminary tests and
CGP-ANN or SMB-NE related publications [28, 29]. The baseline
algorithms parameter were also improved (from the stable baseline
default settings) based on preliminary results for each problem at
hand, e.g., the reward discount parameter gamma and the learning
rate. One aspect of the BNET setup was kept equal for all tested
problems: The CGP-ANNs have a maximum of 200 active nodes
with arity ten and a function set including tanh, sigmoid, gaussian,
softmax, step, and rectified linear units. The direct, behavior, and
surrogate search’s mutation rates were 1%,5% and 5%, respectively.
The NE-EA uses a (20+2) population with 1000 iterations for the
behavior search and (8+2), 500 for the surrogate. The critic net-
work is a fully-connected feed-forward ANN with two layers and
128/64 tanh units, trained for 1000 steps in each iteration. The pro-
totype code and all experimental results are available in an online
repository: https://github.com/jstork/BNET-GECCO21.

4.1 Open AI Gym Benchmark Setup
For comparing the performance of BNET against different baselines,
we chose two basic Open AI Gym standard benchmarks. They
were explicitly chosen because of their different characteristics.
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Figure 2: Results of the CartPole-v0 environment. Please
mind the different scales for the surrogate and mutation
variant. The surrogate variant was only able to finish in 16
out of 20 runs. The best results are achieved by generating
all candidates (Base median=3576, red dashed line) or only
the behavior distance candidate (BDist with median=4111).

Moreover, both should be solvable in less than 20,000 steps. They
present a baseline for a real-world scenario, where typically only a
low number of steps is possible due to the high resource cost.

Cartpole-v1 is a standard benchmark, where the goal is to bal-
ance a pole placed on a cart. The environment has four observable
variables (x position, x velocity, pole angle, angular velocity) and
two discrete actions (drive left or right). The target is to keep the
pole upright in a slight angle range for an average of 195 steps over
100 consecutive episodes. If the pole fails to balance (i.e., the angle
reaches a threshold) or the cart drives out of a certain x-range, an
episode is stopped. For each step, the agent receives a reward of +1.

In MountainCar-v0, a car is located between two mountains
and has to drive to the top of one of them. As the direct acceleration
is not high enough, it has to build up momentum by alternatively
driving up and down the mountains. The environment has two
observable variables (x-position, velocity) and three actions (accel-
erate left/right, do nothing). The target is to drive to a goal position
on the proper mountain in less than average 110 time-steps. Each
step is rewarded by -1, and the environment is stopped if either the
step limit (200) or the goal is reached. The environment requires
considerable exploration to find a solution to reach the goal point.
If the exploration is unsuccessful, it remains with a -200 reward
in each episode and gains no valuable experience. This flat reward
landscape renders the environment as difficult to solve in a small
number of steps. For both environments, the starting state of the
pole or car is randomly set in a small range, leading to different ini-
tial scenarios for each episode. Therefore, each setup was repeated
at least 20 times with random initial seeds. The run was stopped if
a found policy reached the required average target, which was eval-
uated in an extra function to save unnecessary computation time.
The fitness or experiences of these stopping criteria evaluations
were not utilized in any other form (e.g., for the algorithm itself).

The first benchmarks include setup variants of BNET, where se-
lected candidates were generated in each iteration. The elitist was
always kept and repeated (for the robust evaluation). The setups are:

0 10000 20000 30000 40000 50000

20000 40000 60000 80000

0 250000 500000 75000010000001250000

Mut BNET
DQN

Base BNET

BDist*8/20 BNET
Cross*16/20 BNET

Surr*4/20 BNET

timesteps until solved

Figure 3: MountainCar-v0 results. Please mind the different
scales. The Base variant was able to solve the environment
in all cases (median=13457, gold dashed line). The results of
the unfinished runs are not comparable. In their case, the
attached number of finished runs is meaningful.

Base (all proposed modules are active), BDist (behavior distance),
Cross (cross-entropy), Surr (SMBO) and Mut (champion mutation).
For each variant, the population consists of the champion and a
single candidate per active module (e.g., BDist has two candidates
per iteration), and the maximum number of episodes was fixed to
1000, except for the Mut variant, which served as an additional
internal baseline and was run until the environments were solved.
In MountainCar-v0, we always kept the mutation candidate in the
population. Further, we added additional random exploration (30%)
to its policy. Random exploration was also added to the environ-
ment evaluations of the initial candidates. All remaining policies
are always evaluated deterministically. Each run starts with five
initial, random candidates, while the elitist experience set contains
a maximum of ten archived episode results.

4.2 OpenAI Benchmark Results
(Cartpole-v0) Fig. 2 illustrates our results from the CartPole-V0
environment. For the plot, each algorithmwas repeated 20 times, ex-
cept for the Base and BDist variants, which were repeated 50 times
(in order to make more minor differences visible). The surrogate-
only variant of BNET only succeeded in 16 out of 20 runs to find a
solution in 1000 iterations. Overall, the BDist variant only gener-
ating the behavior-distance optimized candidate (and keeping the
robust champion), and the Base version using all proposed search
methods were the most successful. As expected, the use of only
direct mutation performed slower than all other variants. The over-
all result was surprising for us, as we expected that one variant
beside Base would be the best performing, as it includes a relatively
large sampling overhead by the larger population. However, the
algorithm seems to leverage from a diverse set of candidates, and
each search variant seems to contribute to the overall algorithm’s
performance. To test this assumption, we tracked the candidate type
with the best fitness (mean over 100 iterations) in each iteration of
the BNET Base setup. Fig. 4 shows the results. The underlying data
is from the 50 repeats of the BNET Base runs, with 432 iterations.
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Figure 4: Frequency proportion of each best performing can-
didate in each iteration of Base BNET for CartPole-v0.

The plot shows two insights: first, in 77% of the iterations, one of
the generated candidates was superior to the stored champion, this
implies a reasonable learning rate; second, all candidates of BNET
contribute to the performance, where only the surrogate selected
candidate performs significantly worse. The surrogate candidate’s
inferiority could be due to poor parametrization or due to the low
number of evaluations, which might not be sufficient to create a
proper surrogate model for the complex search space. Interestingly,
the direct mutation also generated the best candidates and thus
added significantly to the overall performance.

(MountainCar-v0) Due to the challenging nature of this prob-
lem, we were not able to find working setups for our baseline
algorithms A2C and PPO. All tested parametrization showed no
learning effect and got stuck at a reward level of -200, even con-
sidering significantly large timestep budgets. We thus tested an
additional algorithm, Deep Q Networks (DQN) [18] in available se-
tups (double-DQN, dueling-DQN, prioritized experience replay) and
were able to solve the environment using prioritized experience
replay [24] and high exploration constants. However, DQN still
took a vast number of steps to solve the environment and performs
even inferior to the BNET mutation variant. Fig. 5 displays the
MountainCar-v0 results. As visible, the BNET Base variant is domi-
nating this benchmark and remains the only variant that solves the
environment in the 100k step limit. Still, the other algorithms’ result
is quite interesting, as they tend to either solve the environment in
a small number of steps or seem to get completely stuck. As Fig. 5
illustrates, the percentage of successful candidates in the Base vari-
ant per iteration is 47%, much less compared to CartPole-v0, with a
clear lead of cross-entropy and mutation. The BDist optimization
clearly falls behind for this environment, visible in both Fig 5 and 5.
We assume this issue is related to the problematic value estimation
due to the flat reward landscape of MountainCar-v0. Again, the
surrogate search does not perform as desired, which is also caused
by the very flat fitness landscape at the beginning, which does not
include much valuable information.

4.3 Real-World Robot Maze Setup
Our robot maze problem was explicitly designed to represent a
costly real-world demonstrator to test RL algorithms on different
setups. We chose a classic maze problem to track and observe an
agent’s progress and performance efficiently.
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Figure 5: Frequency proportion of each best performing can-
didate in each iteration of Base BNET for MountainCar-v0.

The maze consists of a lego brick base plate with 250 x 250
mm, 4x2 black brick walls, and 4x2 white tiles floor, covered by an
acrylic glass cover, where a camera is mounted on top. The camera
is used to track the position of the red marble in the maze. The
system is mounted on a universal robot UR10e 6-axis robotic arm,
allowing to move the maze in all directions. The setup is displayed
in Fig. 6. The target is to move the marble to the upper left position
from the starting point. A central challenge in designing real-world
problems is learning without manual user interaction (i.e., resetting
a robot position). Our demonstrator allows the automatic resetting
by flipping the complete maze and navigating the marble on the
glass window to the start. This reset allows episode-to-episode
learning and further remote control of the environment without
any presence in the lab. The demonstrator is adaptable, i.e., the
maze can be redesigned, and the action and observation space can
be adapted to discrete or continuous values.

For this work, we restricted the action space to the discrete four
cardinal directions and defined designated robot movements, which
tilt the maze by an angle of 24,6° and then move back to its base
position. Each action takes about 10 seconds and lets the marble
roll in a straight line. For the illustrated maze setup, only 23 correct
actions are required to reach the target area. The observation space

Figure 6: Robot maze test environment mounted on a uni-
versal robots UR-10 collaborative robot.
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Figure 7: Maze results. Steps until the correct way is learned;
The target is consequently reached afterwards. All tested al-
gorithms learn fast. Means (top-down) = 1580, 1156, 1013.

is set to a discrete matrix of 15x15, equal to the maze size, where
the marble’s current position is set to one, else zero. The reward
function forces exploration of the maze by rewarding the agent with
0.1 if he drives the marble to a prior unseen position. If run against
a wall, it is penalized by -0.75 and by -0.25 if moved to an already
discovered position. Reaching the goal is worth +10. The setup is
reset if the goal, a number of 75 steps, or a cumulative reward of
-12.5 is reached. The robot maze environment should be fast to learn,
as, for most positions, only a single action is correct. However, it
requires a perfect mixture of exploration and exploitation to find
and learn the correct actions sequentially, as the probability of
getting stuck is high, and only a small number of steps is possible
in each episode. Moreover, the environment fitness is noisy, as
sometimes the marble rolls to a difficult position (i.e., edges of a
brick), or the camera position detections are incorrect.

Due to the natural time constraints (each run took 8-24h) and
several trials to set up the environment, we could not run an exten-
sive experimental design for the benchmark. Thus, we restricted
the final results to the most promising ones for this setup: the be-
havior distance and cross-entropy versions. Each variant was run
five times. Regarding the algorithm setup, we set the fitness value
in BNET to the number of correctly performed steps. The behavior
and cross-entropy distances were weighted by the direct reward
instead of a critic and advantage estimation. The purpose-built
reward function already delivers correct action value information,
and no additional value critic is required. As a baseline, we utilize
PPO that showed very stable results in preliminary runs. We set
gamma=0.5 due to the apparent correlation between correct actions
and rewards and 50 steps per actorbatch for frequent learning.

Fig. 7 illustrates the results. All pre-selected algorithms were
quite fast in solving the problem, with the BDist and BDist+Cross
versions performing best. In Fig. 8 we visualize the learning progress
of the BDist+Cross runs. The algorithm advances quite fast and even
learns to take more reward-giving actions (>23), assumingly by
taking extra detours in the maze. This behavior is similar for PPO
and caused by the definition of the rewarding of previous unvisited
positions. However, the underlying NE-EA with the behavior-based
losses demonstrates to be capable of fitting the CGP-ANN policies
excellently to the collected experience, even given the sizeable
neuroevolutionary search space, and without the use of gradients.
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Figure 8: Learning progress of all runs of BDist+Cross BNET
on robotmaze. Considered solved at fitness>=23 (horizontal
line). BNET shows fast and stable learning process.

5 CONCLUSION AND OUTLOOK
In this work, we investigated methods to combine neuroevolu-
tionary search with standard value-based RL methods. The tar-
get was to leverage from gathered experiences and to create a
sample-efficient RL algorithm applicable to real-world problems.
We evolve CGP-ANNs as our agents’ policies and search for the
best network topologies and optimal weights simultaneously. We
defined a hybrid, population-based algorithm, called BNET, which
utilizes different methods to generate new candidates: direct NE-
based mutation, behavior optimization using gathered experience,
and finally, behavior-surrogate-based learning. We discovered that
the behavior-based search significantly supports the performance.
Combining all methods in a population with shared experience and
fitness pools leads to excellent sample efficiency and extraordinary
explorative abilities. Moreover, even elementary direct neuroevolu-
tionary mutation steps can contribute significantly to the overall
algorithm’s performance. As our real-world experiment demon-
strates, the defined behavior-loss functions seem well suited to
optimize complex networks with changing topologies if the actions’
value is estimated correctly. Furthermore, the robust selection with
an adaptive re-evaluation of candidates significantly improves our
learning progress’ stability, as shown in the experiments with a
real-world setup. They prove the ability to learn fast and adapt the
CGP-ANN policies by solely relying on a gradient-free evolution-
ary algorithm for optimization. In future work, we want to tackle
several open issues:

Framework: We presented an implementation prototype of
BNET. The current version is rather slow due to a single-thread
implementation in R. The underlying ideas need to be transferred
to a faster and computationally more efficient implementation.

Analysis / Tuning: The algorithm structure and parameters
need to be profoundly analyzed, understood, and optimized.

Offline initialization: Real-world problems can benefit consid-
erably from experience from prior runs or human demonstrations.
We want to implement and test offline-initialization methods.

Environments: We focused on discrete action spaces. Extend-
ing benchmarks to continuous action spaces would be interesting.

ModifiedReal-World Experiment: Our real-world experiment
can be adapted to create more challenging RL problems.
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