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ABSTRACT
The Neuroevolution of Convolutional Neural Networks have yield
into highly competitive results in the field of visual recognition in
contemporary years. Some of the most recent advances in this field
have been related to the design of neural encodings to represent
these highly complex Deep Learning structures. Hybrid encodings
have shown potential at distributing the representation of these net-
works into different sub-structures and thus improving the search.
In this paper, we propose a compact hybrid encoding, which is
used in an evolutionary framework called Deep Genetic Algorithm
(DeepGA). We assess the performance of our simple representation
against a hybrid encoding based on DenseBlocks, to evaluate how
certain encodings might bias the search towards larger CNNs, in
both single- and multi-objective scenarios. Our case study is the
classification of lung conditions in chest X-ray images.
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1 INTRODUCTION
For almost a decade, there has been an emergence of Deep Neural
Networks architectures. In particular, Convolutional Neural Net-
works (CNN) have excelled at different tasks, specializing in the
field of visual recognition [20, 21, 27]. Nonetheless, the successful
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application of CNNs has important drawbacks: (1) even when the
practitioner possesses expertise in Deep Learning, the design pro-
cess of CNN structures tends to be iterative and time-consuming
[41], (2) the usage of well-known architectures, as well as their
manual design, oftentimes leads to excessive computational costs
with respect to the area of application.

Neuroevolution (NE) relieves these issues by utilizing Evolution-
ary Computation (EC) techniques for the optimization of Artificial
Neural Networks (ANN) [37]. Primeval methods focused on the
optimization of the weights of the networks [30], while in recent
years, more powerful mechanisms have arisen, able to also evolve
the neural architectures [28, 42, 49]. These advancements have
reached different application domains ranging from learning and
controls [19] to visual classification [46] and image segmentation
[51].

Latterly, Neuroevolution has matured considerably for the auto-
matic design of CNNs. These advancements have lead to converge
into a series of established neural encodings, i.e. the mechanisms
through which CNNs are represented and manipulated by Evolu-
tionary Algorithms (EA) and Swarm Intelligence (SI) algorithms.
As has been discussed by Eiben & Smith [17], the encoding of po-
tential solutions is the first and most important step in any EA or SI
algorithm design. Furthermore, the impact of the neural encoding
in any NE method has been discussed [39], being the large search
spaces an important factor to consider [12].

In this work, we present a new flexible hybrid encoding that can
potentially help discovering competitive CNNswith less complexity,
in comparison with another more modular hybrid encoding.We pay
special attention in controlling the size of the networks, measured
in terms of number of trainable parameters. Our method, DeepGA,
encapsulates a simple Genetic Algorithm-based Neuroevolution
framework, that is able to manipulate hybrid encodings in both
single- and multi-objective settings. It has been found that DeepGA
helps designing highly competent CNNs in terms of accuracy and
complexity, outperforming several hand-crafted state-of-the-art ar-
chitectures.

The rest of this paper is organized as follows. An introduction and
a literature review on encodings for CNNs is presented in Section 2.
The proposed DeepGA framework is introduced in Section 3. The
experimental design and methods are shown in Section 4, while
the results are discussed in Section 5. Conclusions and future work
are in Section 6.
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Figure 1: A DenseBlock composed of five convolutional lay-
ers.

2 NEURAL ENCODINGS
The first part in the design of a Neuroevolution algorithm consists
in defining a neural encoding, which is a computational represen-
tation of an ANN. EAs and SI algorithms manipulate the encodings
to navigate through the search space. Despite their importance,
empirical studies on the effects of different encodings have not
been formally addressed.

Stanley and Miikkulainen presented Neuroevolution of Aug-
mented Topologies (NEAT) [38], which introduced the notions of
direct and indirect encodings. Although these concepts were origi-
nally applied to feed-forward neural networks, they can be easily
extrapolated to CNNs.

In indirect encodings, the characteristics present in a CNN are
not explicitly represented. A set of rules are needed to transform
the encoding (genotype) into an actual CNN (phenotype). In spite of
being compact, these encodings can be less flexible and obscure to
the users. There are two representatives of indirect encodings for
CNNs. First, Binary Encodings [6, 49, 51], that use binary strings
to represent the network’s elements. This encoding excels at de-
scribing connectivity between layers, being 1 an active connection
and 0 an ignored connection. Second, Grammar Encodings [4–6],
which base on formal grammars in Backus-Naur notation. These
approaches have proved to be flexible, although they require the def-
inition of grammar rules in order to automatically build a language
that later is transformed into a working CNN.

In direct encodings, all the characteristics of a CNN are explicitly
represented in the encoding, and the variation operators have direct
access to them. There is no difference between the genotype and
the phenotype. There are two representative encodings that belong
to this family. First, Graph-based Encodings [16, 18, 23, 34], which
utilize graphs or trees to represent the CNNs. Usually, the layers are
used as nodes, while edges define the connectivity between them.
These encodings are highly flexible, yet hard to manipulate, as
cycles must usually be avoided by the variation operators. Second,
there are Block-chained Encodings [25, 40–42], which are based on
a sequence of blocks. A block is an abstract representation of a layer
or a set of layers. A low-level block may represent a convolutional,
pooling or fully-connected layer, containing hyperparameters such
as filter size, kernel size, pooling type, stride, and so on. Some
authors introduced higher-level blocks, which contain more than
one layer. One example is the DenseBlock (see Fig. 1), that inspires
from the well-known DenseNet architecture [21].

In a DenseBlock, the output of each layer connects not only to the
next immediate layer, but also to all the subsequent non-consecutive
layers through skip connections. The condition is that all the outputs
have the same spatial resolution. DenseBlocks have an additional
hyperparameter called growth rate, which relates to how many

Figure 2: The hybrid encoding proposed by Wang et al. [47],
consisting of a sequence of DenseBlocks in the first level,
and binary strings in the second level. Each bit represents
the connectivity from previous layers, from the 3−rd layer
onward.

feature maps result from a convolutional layer. As an example, if
the growth rate has a value of 3, each layer would contain 3 filters
and thus would produce the same number of feature maps. This
means that the 𝑘-th layer would receive 3(𝑘 − 1) feature maps from
the previous layer and from skip connections altogether.

Finally, Hybrid Encodings [28, 47, 50] are more recent represen-
tations that combine two or more of the preceding methods. The
objective of hybrid encodings is to distribute the representation
of CNNs between more than one structure. A remarkable exam-
ple is the encoding presented by Wang et al. [47], that combines
Block-chained and Binary Encodings, and is the only approach that
has explored this configuration. Fig. 2 shows an example of this
representation.

In this hybrid encoding, the first-level comprises a sequence of
DenseBlocks, each represented by their number of convolutional
layers and their growth rate. All the convolutional layers use 3 × 3
filters, with zero padding and stride of 1. Each convolution is fol-
lowed by batch normalization [22] and ReLU. Transition layers are
always used between DenseBlocks, and consist of a convolutional
layer of 3 × 3 as filter size, with a number of filters equal to half
of the growth rate of the previous DenseBlock, and a max pooling
layer with a kernel of size 2 × 2. Transition layers decrease the
spatial resolution of the outputs of a DenseBlock.

On the other hand, the second-level encoding is a binary string
that defines the dense connectivity patterns of a DenseBlock. The
bits of the binary start from the third layer onward, and repre-
sent a skip connection from all the previous, non-immediate layers.
The third layer might receive one skip connection from the first
layer only, the fourth layer can receive a skip connection from the
first and second layers, and so on. This separation in the encoding
allows the authors to use a hybrid between Particle Swarm Opti-
mization and Genetic Algorithm to evolve the CNNs. We refer to
this encoding asWang encoding for the rest of this paper.

In this work, we propose to study a hybrid encoding based on
simpler blocks. For our purposes, a block consists of only one con-
volutional layer of variable number of filters and variable filter sizes.
Stride of 1 and zero padding are fixed and batch normalization and
ReLU are always utilized. Within the same block, the pooling oper-
ation can be enabled or disabled, being max pooling and average
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Table 1: Evolvable hyperparameters for convolutional
blocks and fully-connected blocks.

Hyperparameter Values

Convolutional
Block

Conv. Filter Sizes {2, 3, 4, 5, 6, 7, 8}
No. of Conv. Filters {2, 4, 8, 16, 32}

Pooling Types {Max, Avg, Off}
Pooling Kernel Sizes {2, 3, 4, 5}

FC Block No. of Neurons {4, 8, 16, 32, 64, 128}

Figure 3: The proposed encoding based on simpler convo-
lutional blocks. A single binary string determines the skip
connections received from the third block onward. Each bit
represents the connectivity from previous layers, from the
3−rd layer onward.

pooling the two enabled possible options. The stride value is always
2 and the kernel size is a searched hyperparameter.

Finally, the feature extraction section is followed by fully-connected
(FC) blocks, which consist of fully-connected layers characterized
by their number of neurons, with ReLU as the fixed option. Table 1
summarizes the evolvable hyperparameters of this encoding.

In this encoding, only one binary string per individual is required,
unlike Wang encoding, where each DenseBlock is associated to an
array of bits. Fig. 3 illustrates the proposed representation.

As convolutional layers can have different filter sizes, and the
pooling operations can also differ in their spatial resolution, an
adjustment mechanism needs to be used to avoid feature maps
concatenation incompatibilities. Max pooling or zero padding are
applied to adjust the feature maps to be concatenated depending
on their sizes. Fig. 4 presents this procedure in detail.

The rationale behind proposing a hybrid encoding with simpler
blocks lies in the abstraction of the encoding. A single DenseBlock
might contain more convolutional layers than the total number of
convolutional blocks inside the proposed encoding. It is therefore
intuitively expected that the search process using the former en-
coding, would be biased towards deeper, more expensive CNNs in
comparison to the latter approach. This assumption is here evalu-
ated to provide for more empirical evidence on the impact of the
modularity of neural encoding.

Figure 4: Spatial resolution adjustment for skip connections.
a) When the incoming feature maps 𝑥𝑘 exceed the current
output 𝑥 , max pooling with stride of 1 is applied. The kernel
size is calculated so as to fit the result to 𝑥 . b) When 𝑥𝑘 is
smaller than the current output 𝑥 , zero padding is used on
𝑥𝑘 until itmatches the size of 𝑥 . c)When both 𝑥𝑘 and 𝑥 match
in their spatial resolution, no operation is applied.

3 DEEP GENETIC ALGORITHM
We propose the Deep Genetic Algorithm (DeepGA), which is able
to manipulate hybrid representations combining block-chained
and binary encodings. The Genetic Algorithm is chosen due to its
balance between exploitation (through crossover) and exploration
(through mutation). Different operators are designed to work with
the proposed hybrid encoding and the Wang encoding.

3.1 Parent Selection
Parent selection is the process of choosing the best individuals of
the population (based on fitness) for recombination. The selection
of parents is performed in such a way that the crossover of such
parents promotes the improvement of the population.

Tournament is a common approach for parent selection. A sim-
ple approach consists on selecting the individual with the highest
fitness from a randomly selected group of individuals (tournament).
As discussed in [29], a larger tournament generates more selection
pressure on the contestants.

In DeepGA, an stochastic Tournament Selection is slightly mod-
ified for exploration purposes. The individual with highest fitness
might be the best option towards an improvement in the offspring.
Nonetheless, the possibility of another individual being the best
option for recombination should not be discarded. For this reason,
a probability of choosing the best individual as a parent is set to
0.8. If a random uniform number does not exceed this probability,
an individual will be chosen at random. The expectation is that
80% percent of the selections are based on fitness, meanwhile the
remaining selections explore using other potential solutions. This
parameter was chosen to set a significant margin to explore other
solutions. Furthermore, a moderate selection pressure is maintained
by using a tournament of five individuals.

3.2 Crossover
The crossover operator combines two parent solutions to generate
offspring. Offspring solutions should inherit information from their
parents only in order to exploit around the currently visited area
of the search space. In the proposed encoding, the crossover is
accomplished in two parts: (1) first-level encoding crossover, where
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Table 2: Evolvable hyperparameters for DenseBlocks and
fully-connected blocks in the Wang encoding.

Hyperparameter Values

DenseBlock No. of Conv. Layers [3, 5]
Growth Rate [3, 12]

FC Block No. of Neurons {4, 8, 16, 32, 64, 128}

a number of blocks are exchanged between parents, and (2) second-
level encoding crossover, where a portion of the binary strings are
exchanged between parents.

In the first-level crossover the smallest parent is identified;𝑚 is
the floor function of half the number of convolutional blocks, and
𝑛 is the floor function of half the number of fully-connected blocks.
The crossover exchanges the last𝑚 convolutional blocks of both
parents, as well as their last 𝑛 fully-connected blocks.

In the second-level crossover, 𝑐 is the floor function of half of
the bits in the smallest parent’s binary string. The last 𝑐 bits of both
parents are therefore exchanged. Fig. 5 presents an example of the
entire crossover.

The same kind of operation is applied when using the Wang
encoding. However, when a DenseBlock exchange is performed,
the binary strings are also exchanged between parents. It can be
seen that encodings that are more modular can also involve higher-
level operations.

3.3 Mutation
The mutation operation promotes exploration through the search
space. Unlike crossover, where the changes are applied to many of
the best individuals, the mutation performs unbiased alterations to
the offspring.

In DeepGA, two mutations are applied: (1) the first-level mu-
tation, which affects the blocks, and (2) the second-level muta-
tion, which affects the connections. The second mutation selects
a random bit and flips its value. Given a random uniform number
𝑈1 (0, 1), the first mutation can have two possible forms: (a) restart-
ing a block (𝑈1 ≤ 0.5), or (b) adding a new block (𝑈1 > 0.5). If
a random number 𝑈2 (0, 1) exceeds the threshold of 0.5, mutation
(b) adds a fully-connected block. Otherwise, a convolutional block
is added. When the proposed encoding is used, the addition of a
convolutional block also carries the insertion of new bits in the
second-level encoding. The new bits’ positions depend on where
the new block was randomly inserted (see Fig. 6). The addition of a
fully-connected block requires no further changes.

Restarting a block, which is the first possible mutation, consists
in randomly resetting the hyperparameters (see Table 1).

When using the Wang encoding, these mutations are used on
a more modular basis. When adding a new block, no additional
bits need to be added, as each DenseBlock contains its own binary
string. A DenseBlock or a fully-connected block could be added
based on the same stochastic approach. The second possible muta-
tion resets the block’s configuration. Table 2 shows the evolvable
hyperparameters for the Wang encoding.

3.4 Fitness Function
Disregarding of the chosen encoding, DeepGA seeks to maximize
the classification performance of the CNNs while reducing their
computational complexity. Here, the computational cost of a CNN
is measured with respect to the number of trainable parameters,
i.e., weights and bias values. To handle the fulfillment of these
requirements, we propose two different fitness mechanisms.

First, a linear weighted fitness function that takes classification
accuracy and a proportion of parameters has been designed. This
fitness function has the advantage of being configurable for the
needs of the problem. Eq. 1 introduces the fitness function:

𝑓 (𝑐𝑛𝑛) = (1 −𝑤) ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑐𝑛𝑛) +𝑤 ∗ 𝑀𝑃 − 𝑁𝑃

𝑀𝑃
(1)

where 𝑐𝑛𝑛 is a CNN architecture, 𝑤 is the complexity weight in
[0, 1], 𝑀𝑃 is a user-defined maximum number of parameters al-
lowed in the networks, and 𝑁𝑃 is the current number of parameters
in 𝑐𝑛𝑛. As𝑤 grows, more importance will be given to the network’s
complexity. A series of preliminary experiments aided to define
𝑤 = 0.3, for having a good performance in dealing with both objec-
tives. The smallest model against out method is compared has 1.164
[32], thus 𝑀𝑃 is set to 2 million parameters, expecting networks
around this value.

The second fitness mechanism is Multi-Objective Optimization
(MOO). Unlike the linear aggregation fitness function, where ac-
curacy and complexity are mixed in a single objective, the Multi-
Objective DeepGA (MODeepGA) handles both functions (classifica-
tion error and number of parameters) independently. MOO consists
of finding a good approximation of the optimal Pareto Front, i.e., a
set of competitive trade-offs between objectives.

The Pareto Optimal Front is composed by a set of non-dominated
solutions. Let a multi-objective minimization problem be composed
of𝑚 objective functions. A solution 𝑥 is said to dominate a solution
𝑦 (denoted as 𝑥 ≺ 𝑦), if and only if, 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑦) for all 𝑖 ∈ [1, ...,𝑚]
and 𝑓𝑖 (𝑥) < 𝑓𝑖 for at least one 𝑖 ∈ [1, ...𝑚]. Thus, a solution 𝑥∗ is
part of the Pareto Optimal Set 𝑃∗ if there does not exist other
solution 𝑥 such that 𝑥 ≺ 𝑥∗. The Pareto Optimal Front is then
𝑃𝐹 ∗ = {𝑓 (𝑥) |𝑥 ∈ 𝑃∗}.

In MODeepGA, the solutions are sorted based on Pareto domi-
nance. Non-dominance sorting [15] is used to distinguish between
dominated and non-dominated solutions. All the non-dominated
CNNs are clustered together in the first Pareto Front. The remain-
ing networks are again sorted with respect to non-dominance to
extract the second Pareto Front. The procedure is repeated until all
the solutions are grouped and sorted into their respective fronts. At
the end of the optimization, a set of trade-off solutions is expected
to be produced. Backpropagation is always required for fitness
evaluation, which occurs by training two individuals at the same
time on two NVIDIA Titan RTX GPUs, meanwhile all the genetic
operators take place in series on the CPU.

3.5 General Framework
DeepGA is built using the previously mentioned components, fol-
lowing the architecture of an standard Genetic Algorithm. Algo-
rithm 1 elaborates on the complete DeepGA framework.
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Figure 5: Crossover operation in DeepGA for the proposed encoding. Convolutional blocks are in green and yellow,meanwhile
fully-connected (FC) blocks are in blue and pink. a) Is the exchange of blocks in the first-level encoding, and b) is the exchange
of bits in the second-level encoding.

Figure 6: The second mutation operation in DeepGA for the
proposed encoding. The adjusting bits for displaced convolu-
tional block 𝑘 are always placed at the end of the 𝑘-th binary
sub-string.

MODeepGA differs only in the fitness evaluation. Instead of us-
ing Eq. 1, the classification error (instead of accuracy) and the num-
ber of parameters are stored independently. The non-dominance
sorting is used on the union of the population and offspring, to
select the first 𝑁 individuals.

The following section defines the experimental settings to eval-
uate DeepGA and MODeepGA with both hybrid encodings.

4 EXPERIMENTAL SETTING
Our case study is motivated by the emergence of the Coronavirus
Disease 2019 (COVID-19). The standard test bases on the Reverse-
Transcription Polymerase Chain Reaction (RT-PCR) [2], which has
proven to be hampered and ineffective in several instances [8]. In
our approach, we utilize Chest X-ray (CXR) images as an alternative
and complementary test to classify between this and other lung
conditions, as CNNs have demonstrated to be highly competent
with these kind of imagery [7]. The scarcity of abundant data in this
kind of niche problems makes necessary to utilize Neuroevolution

Algorithm 1: DeepGA
Input: A population 𝑃 of 𝑁 individuals. The number of

generations 𝑇 , crossover rate 𝐶𝑋𝑃𝐵, mutation rate
𝑀𝑈𝑃𝐵, tournament size 𝑇𝑆𝐼𝑍𝐸.

Output:
Initialize population (training the networks).
𝑡 ← 1
while 𝑡 ≤ 𝑇 do

Select 𝑁 /2 parents with probabilistic tournament
selection
Offs← {}
while |Offs| < 𝑁 /2 do

Select two random parents 𝑝1 and 𝑝2.
if random(0,1) ≤ 𝐶𝑋𝑃𝐵 then

𝑂1, 𝑂2← Crossover(𝑝1, 𝑝2) // Crossover
if random(0,1) ≤ 𝑀𝑈𝑃𝐵 then

Mutation(𝑂1, 𝑂2) // Mutation
fitness(𝑂1, 𝑂2) (Eq. 1 //Evaluation

𝑃 ← 𝑃 ∪ Offs
Select the best 𝑁 individuals in 𝑃 as survivals.

end
end

approaches that search for more compact architectures. Further-
more, computational resources in many healthcare centers might
be limited, which hampers the deployment of large models.

A total of 2754 CXR images were collected from different reposi-
tories [14, 43, 48]. The images are evenly distributed in COVID-19,
bacterial/viral pneumonia, and healthy patients (918 images each).
As suggested in [31], the images went through the following pre-
processing: (1) transformation to grayscale, (2) casting to float32, (3)
histogram equalization, (4) gamma correction (𝛾 = 0.5), (5) resizing
to 256× 256 pixels, and (6) normalization within [0, 1]. Fig. 7 shows
an example of three classes of images.

The training of the CNNs during the Neuroevolution consisted
in only 10 epochs (as suggested by [42]), using the Adam opti-
mizer [26] with a learning rate of 1 × 10−4. The training utilized
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Figure 7: Chest X-ray images of a) a patient with COVID-19,
b) a patient with viral/bacterial pneumonia, and c) a healthy
patient.

Table 3: Parameters of DeepGA andMODeepGA: population
size (𝑁 ), number of generations (𝑇 ), crossover rate (CXPB),
mutation rate (MUPB), and tournament size (𝑆).

N T CXPB MUPB S
DeepGA 20 50 0.7 0.5 4MODeepGA 20

70% of the image dataset, meanwhile the accuracy/error was com-
puted using the remaining 30% for testing. The parameters of
DeepGA (see Table 3) were manually tuned after a series of exper-
iments; particularly, the mutation rate (MUPB) and the crossover
rate (CXPB) received special attention. These two parameters were
adjusted until a sufficient diversity through exploration was ob-
served. The computational costs related to Neuroevolution im-
peded the utilization of automatic parameter tuning methods. The
population size and number of generations were set in order to
maintain a practically feasible computation time with the avail-
able resources. The source code of DeepGA and MODeepGA was
developed in Python 3.7 and PyTorch, and is available at https:
//github.com/GustavoVargasHakim/DeepGA.git along with the uti-
lized dataset.

To assess the impact of the proposed neural encoding and the
Wang encoding on the performance of DeepGA, two sets of experi-
ments were carried out. First, 30 executions were run with each of
the two encodings in the single-objective version of DeepGA. At
the end of the 50 generations, the fitness score, the accuracy, and
the number of parameters of the best individual are reported. Addi-
tionally, the best CNN at the end of each execution is independently
trained under 5-fold crossvalidation with a random seed of 0, in
order to compute the specificity and sensitivity of the three classes.
The Kolmogorov-Smirnov Test at 95% is applied to all samples to
discard normality, and afterwards, all these metrics are compared
between the two encodings using the 95%-confidence Wilcoxon
Rank Sum test. Additionally, our results are compared against a
number of hand-crafted CNNs that were used for the same type
and number of classes (see Section 5).

In the second round of experiments, 30 executions of MOD-
eepGA were run using each encoding. The quality of the final
bi-objective (classification error and number of parameters) Pareto
front obtained is measured by using the Hypervolume indicator.
Hypervolume is chosen due to its direct relation with the optimal-
ity of the Pareto fronts as well as to the diversity of its solutions

Table 4: Mean ± std. dev. of the fitness function, the accu-
racy, and the number of parameters (# Params). Based on
the Wilcoxon test, our encoding outperforms Wang encod-
ing (+), or achieves equal results (=).

Metric Our Encoding Wang Encoding p-value Result
Fitness 0.9671 ± 0.0037 0.9619 ± 0.0019 1.47 × 10−7 +

Accuracy 0.9593 ± 0.0056 0.9504 ± 0.0037 1.03 × 10−6 +
# Params 28944.13 ± 8974.11 29770.23 ± 10872.72 0.709 =

Figure 8: Convergence plot of the fitness function of the me-
dian executions using our encoding (blue) and the Wang en-
coding (red).

[36]. To compute this indicator, both objective functions in the final
Pareto Fronts are normalized in order to use the Nadir point [9] as
reference point r = (1, 1). The Hypervolume samples are passed
through the Kolmogorov-Smirnov test in order to compare both
encodings with the 95%-confidence Wilcoxon Rank Sum test.

5 RESULTS AND DISCUSSION
In this section, the obtained results from the two experimental
rounds (single-objective and multi-objective) of DeepGA are pre-
sented and analyzed.

5.1 Single-Objective Results
The Kolmogorov-Smirnov Test was performed on the resulting sam-
ples of fitness function, accuracy, and number of parameters from
DeepGA. In all cases, the 𝑝-values were smaller than 0.05, thus the
samples were considered as not normal. The Wilcoxon Rank Sum
Test is applied to verify statistical differences between analogous
samples of our proposed encoding and the Wang encoding. Table 4
shows fitness function, the accuracy, and the number of parameters
of each encoding.

From Table 4, it is concluded that our encoding aids in finding
CNN architectures with overall higher fitness and accuracy. Inter-
estingly, both representations discovered CNN topologies with an
equivalent number of parameters. The convergence plots of the
fitness function is shown in Fig. 8. The proposed encoding drives
DeepGA to its highest value faster than the Wang encoding.
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Table 5: Specificity and sensitivity comparison between en-
codings across the three classes. The Wilcoxon Rank Sum
Test determined when our encoding surpasses the Wang en-
coding (+), when theWang encoding surpasses our encoding
(-), or when both yield equal results (=).

Our Encoding Wang Encoding Results
COVID-19
Specificity 0.9615 ± 0.0074 0.9642 ± 0.0041 =

COVID-19
Sensitivity 0.965 ± 0.0015 0.9558 ± 0.0096 =

Pneumonia
Specificity 0.9634 ± 0.0143 0.9626 ± 0.0057 =

Pneumonia
Sensitivity 0.9478 ± 0.0198 0.9518 ± 0.0064 =

Healthy
Specificity 0.9646 ± 0.0154 0.9627 ± 0.0052 +

Healthy
Sensitivity 0.8951 ± 0.0206 0.9052 ± 0.0105 -

Albeit the accuracy results are higher with the proposed repre-
sentation, DeepGA obtains equal specificity and sensitivity results
for COVID-19 and pneumonia images, as displayed in Table 5. Our
encoding lies behind the Wang encoding in terms of healthy pa-
tients’ sensitivity, but improves on the specificity.

5.2 Multi-Objective Results
The Hypervolume indicator is computed at the end of each of
the 30 executions of MODeepGA with both encodings. The final
Pareto Fronts are represented by 20 individuals with two objective
functions. After normalizing these functions, the Hypervolume is
calculated using a deterministic implementation [11], which returns
a value in the range [0, 1], where 1 corresponds to an optimal
performance, and 0 corresponds to the opposite.

With the proposed encoding, the resulting mean Hypervolume
is 0.9468 ± 0.1536, meanwhile with the Wang encoding, the means
Hypervolume resulted in 0.9084 ± 0.1289. With p−values of 3.18 ×
10−18 and 3.79 × 10−16, respectively, the Kolmogorov Smirnov Test
probes that the samples do not belong to normal distributions.
Therefore, the Wilcoxon Rank Sum Test is utilized to demonstrate,
with a p−value of 3.79𝑒 − 16, that the proposed encoding surpasses
the Wang encoding in optimality, in terms of this metric. The point
𝑝𝑟𝑒 𝑓 = (0, 0) and an euclidean knee-based selection chose one
CNN from each encoding basing on the median executions. With
our encoding, the selected architecture had 134131 parameters and
95.1632% of accuracy, whilst with the Wang encoding, the CNN
had 163861 parameters and 95.28% of accuracy.

In comparison to the single-objective version of DeepGA, which
uses a weighted linear function to evaluate the individuals, the
MODeepGA takes better advantage of the proposed encoding. This
can be observed as the Hypervolume is higher when using our
proposed representation, meaning a better convergence to more
competitive trade-offs between objectives.

5.3 Architectures
The CNNs from the best and median executions of DeepGA, using
the two encodings, are presented in Fig. 9. With the proposed

Table 6: Comparison of accuracy (%) and number of param-
eters (millions) between the state-of-the-art hand-crafted
CNNs and the architectures of the median execution of
DeepGA with our encoding and the Wang encoding.

Model Accuracy Parameters
DarkCovidNet [32] 87.02 1.164

Bayes SqueezeNet [45] 98.26 1.263
Xception + ResNetv50 [33] 91.4 48.855

ResNet18 [31] 88.9 11
EfficientNet-B0 [3] 95.24 5.3
VGG-16 [10, 13] 82.81 138
Xception [1] 97.41 22.85

MobileNet [44] 99.2 14.174
CNN + LSTM [24] 99.34 99.34
DeepGA (Wang) 95.76 0.0562
DeepGA (Ours) 96 0.0321

encoding, it has been found that skip connections were not required
in none of these two executions. Furthermore, the hyperparameters
in both cases are very similar, which could provide for insights on
the optimality of the problem.

The architectures of the median executions of both encodings
are compared with several state-of-the-art hand-crafted CNNs, as
shown in Table 6. Additionally, these results are plotted together in
Fig. 10, where it can be seen that the architectures found by DeepGA
are highly competitive in terms of accuracy, whilst reducing the
number of parameters by at least two orders of magnitude with
respect to previous works. Our dataset differs in size from those in
previous works, however, the images are obtained from the same
repositories and represent the same classes. In our approach, neither
augmented nor synthetic data were required, and the training only
required 10 epochs as used during the DeepGA.

6 CONCLUSIONS
In this work, a new GA-based Neuroevolution algorithm was pro-
posed; DeepGA. An empirical study was conducted to assess two
hybrid encodings based on simple blocks (our encoding) and Dense-
Blocks (Wang encoding), respectively, and binary strings. Further-
more, single-objective andmulti-objective variants of DeepGAwere
utilized to evaluate the performance based on the chosen encoding.

The testing problem was the classification of lung conditions in
chest X-ray images, which is of timely interest. The fitness evalua-
tion comprised the classification accuracy of the networks, along
with their number of parameters. The experiments demonstrated
that the single-objective DeepGA using our encoding, generally
discovers higher quality networks in terms of accuracy, specificity
and sensitivity, but matching the Wang encoding in terms of num-
ber of parameters. In the multi-objective experiments, MODeepGA
finds Pareto Fronts with better optimality when using our encoding
compared to the Wang encoding, measured with the Hypervolume.

Future work includes: (1) integrating the DeepGA with the pro-
posed hybrid encoding to be tested using benchmark datasets such
as CIFAR-10 and CIFAR-100, in order to extrapolate the results
found in this paper and to explore the scalability of DeepGA with
larger datasets, (2) a more detailed study on multi-objective Neu-
roevolution based on different hybrid encodings, and (3) introducing
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Figure 9: The CNN architectures with our encoding from the a) best and b) median executions with respect to fitness, and the
architectures with the Wang encoding from c) the best and d) median executions.

Figure 10: The benchmarking of DeepGAwith our encoding
(blue star) and the Wang encoding (red star) in terms of ac-
curacy and the number of parameters (millions). The hori-
zontal axis is in 𝑙𝑜𝑔10 scale.

explainability components, such as GradCam [35], to encourage
the evolution of explainable CNNs.
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