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ABSTRACT
We propose a novel and effective multi-objective marine predator
algorithm (MOMPA) to solve multi-objective optimization (MOO)
problems.MOMPA incorporates the non-dominated sorting approach
and the reference point strategy to select elite individuals and en-
sures the diversity of the Pareto optimal solution sets. Also, the
Gaussian perturbation mechanism is leveraged to further improve
the population diversity and global search ability in MOMPA. The
performance of MOMPA is evaluated and comprehensively com-
pared with benchmark functions. The results show that MOMPA
is very competitive.
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1 INTRODUCTION
Multi-objective swarm intelligent optimization algorithms (MO-
SIOAs) have been proved to be promising approaches to solvemulti-
objective optimization (MOO) problems since they are capable of
obtaining a set of Pareto optimal solutions in one single simulation
run for quite complicated MOO problems even if they are NP-hard,
discontinuous, non-convex. Considering that the performance of a
MO-SIOA highly depends on the core optimizer (typically is a sin-
gle objective SIOA) and the elites selection (ES) method, this paper
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Figure 1: The flow chart of MOMPA

proposes a novel MO-SIOA, called MOMPA, which takes the ma-
rine predator algorithm (MPA)[5] as the basic optimizer for its out-
standing global searchability and the reference point strategy[3]
as the ES method for the remarkable ability to achieve excellent
solution diversity and distribution. As far as we know, this is the
first MPA-based MOO algorithm. Besides, the Gaussian perturba-
tion mechanism is introduced to MOMPA to further enhance the
population diversity as well as the global searchability. The source
code is available on https://github.com/da-da-chen/MOMPA.

2 METHODOLOGY
Definition 1. Archive (A). The archive A is a set that is used

to store the Na =
(m+p−1

p
)
best solutions obtained in each iteration

wherem is the number of optimization objectives andp is the number
of divisions on each objective in the normalized hyperplane.

Definition 2. File (Q). The file Q is a set that is used to store all
individuals generated in each iteration. Individuals in Q are candi-
dates for elite selection.

The main steps of MOMPA can be summarized as follows.
Step1: Initialize population P0, Q1 ← ∅, A0 ← P0.
Step2: Randomly select an individual from A0 duplicated Na

times to construct predator matrix E (refer to (10) in [5]).
Step3: In the kth iteration, Pk is generated from Pk−1 according

to the three-stage evolution proposed in MPA.
Step4: Generate PFADk from Pk fish aggregating devices (FADs)

elitism effect (refer to (16) in [5]).
Step5: For each individual in PFADk , randomly select a dimension

j and recalculate its value as XGEP
i , j ← X FAD

i , j +
(
Xmax, j − Xmin, j

)
G,

where G ∼ N (0, 1), Xmax, j and Xmin, j are the upper and lower
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Table 1: Comparison results

Algrithm

ZDT1 ZDT2 ZDT3

Avg. Std. Rank Avg. Std. Rank Avg. Std. Rank

NSGAII 4.82E-03 1.75E-04 4 4.86E-03 1.94E-04 4 7.35E-03 7.40E-03 4
NSGAIII 3.91E-03 1.20E-05 2 3.86E-03 2.78E-05 2 7.03E-03 5.23E-03 3
MOEAD 1.19E-02 8.49E-03 6 2.60E-02 2.70E-02 6 3.03E-02 2.10E-02 6
PESAII 1.15E-02 3.44E-03 5 1.14E-02 1.83E-03 5 2.06E-02 1.42E-02 5

CMOPSO 4.19E-03 8.96E-05 3 4.13E-03 8.86E-05 3 4.64E-03 6.08E-05 1
NSLS 2.34E-01 2.42E-02 7 4.05E-01 5.69E-02 7 2.27E-01 3.81E-02 7

MOMPA 3.90E-03 7.58E-05 1 3.80E-03 8.92E-06 1 6.30E-03 3.16E-04 2

Algrithm

ZDT4 ZDT6 WFG4

Avg. Std. Rank Avg. Std. Rank Avg. Std. Rank

NSGAII 5.41E-03 8.81E-04 2 3.72E-03 1.13E-04 4 2.73E-01 9.96E-03 6
NSGAIII 1.28E-02 1.73E-02 3 3.21E-03 2.75E-04 3 2.21E-01 3.05E-05 3
MOEAD 2.09E-02 1.24E-02 5 7.00E-03 1.16E-03 6 2.47E-01 2.09E-03 4
PESAII 1.34E-02 3.10E-03 4 7.43E-03 7.99E-04 7 2.93E-01 1.57E-02 7

CMOPSO 2.60E-01 2.54E-01 6 3.11E-03 2.76E-05 2 2.60E-01 4.05E-03 5
NSLS 8.26E-01 2.35E-01 7 6.23E-03 1.87E-03 5 2.13E-01 2.40E-03 1

MOMPA 3.90E-03 5.87E-05 1 3.00E-03 1.01E-05 1 2.14E-01 8.59E-04 2

Algrithm

WFG5 WFG6 WFG7

Avg. Std. Rank Avg. Std. Rank Avg. Std. Rank

NSGAII 2.80E-01 9.50E-03 7 3.03E-01 1.80E-02 6 2.83E-01 1.16E-02 6
NSGAIII 2.30E-01 9.22E-06 3 2.34E-01 6.99E-03 2 2.21E-01 1.67E-05 2
MOEAD 2.47E-01 1.76E-03 4 2.68E-01 1.11E-02 4 2.44E-01 1.61E-03 4
PESAII 2.78E-01 9.47E-03 6 3.11E-01 1.58E-02 7 2.87E-01 1.36E-02 7

CMOPSO 2.50E-01 5.05E-03 5 2.37E-01 4.58E-03 3 2.33E-01 4.65E-03 3
NSLS 2.16E-01 2.24E-03 1 2.15E-01 3.04E-03 1 2.70E-01 7.57E-03 5

MOMPA 2.21E-01 3.50E-03 2 2.70E-01 6.02E-02 5 2.14E-01 7.35E-04 1

Algrithm

WFG8 WFG9 DTLZ1

Avg. Std. Rank Avg. Std. Rank Avg. Std. Rank

NSGAII 3.74E-01 1.04E-02 6 2.76E-01 1.39E-02 7 2.74E-02 1.34E-03 6
NSGAIII 2.78E-01 3.42E-03 1 2.21E-01 5.77E-04 3 2.06E-02 2.71E-06 2
MOEAD 2.97E-01 2.00E-03 4 2.48E-01 2.03E-02 5 2.06E-02 6.79E-07 1
PESAII 3.78E-01 1.61E-02 7 2.76E-01 2.69E-02 6 2.47E-02 1.43E-03 5

CMOPSO 3.31E-01 5.59E-03 5 2.19E-01 3.35E-03 2 2.07E-02 3.74E-04 3
NSLS 2.84E-01 4.49E-03 2 2.40E-01 5.68E-03 4 2.39E-01 1.69E-01 7

MOMPA 2.87E-01 4.10E-03 3 2.12E-01 5.32E-04 1 2.09E-02 8.83E-04 4

Algrithm

DTLZ2 DTLZ3 DTLZ4

Avg. Std. Rank Avg. Std. Rank Avg. Std. Rank

NSGAII 6.94E-02 2.62E-03 7 6.83E-02 2.90E-03 3 6.82E-02 2.58E-03 3
NSGAIII 5.45E-02 7.63E-07 3 5.45E-02 8.71E-06 1 1.20E-01 1.68E-01 5
MOEAD 5.45E-02 5.07E-08 3 5.45E-02 1.50E-05 2 5.45E-02 7.92E-06 2
PESAII 6.73E-02 3.70E-03 6 7.18E-02 9.97E-03 4 9.44E-02 1.61E-01 4

CMOPSO 5.76E-02 9.24E-04 5 3.66E+00 3.92E+00 7 2.09E-01 3.35E-01 7
NSLS 5.42E-02 7.03E-04 2 2.63E+00 1.21E+00 5 1.54E-01 1.09E-01 6

MOMPA 5.25E-02 2.32E-05 1 2.80E+00 9.99E-01 6 5.25E-02 3.64E-05 1

bounds of the j-dimensional variables, respectively. The new pop-
ulation is denoted as PFADk .

Step6: Generate Qk ← Ak−1 ∪ Pk ∪ PFADk ∪ PGEPk .
Step7: Generate Ak on the basis of Qk by the non-dominated

sorting approach [4] and the reference point strategy [3].
Step8: Repeat from step 3 to 7 until the maximum number of

iterations is reached.
Figure.1 shows the flow chart of MOMPA.
Next, we analyze the computational complexity of MOMPA.We

use n to represent the size of the population, d to represent the di-
mension of the decision variable, and m to represent the number
of objectives. In Step3, the three-stage evolutionary complexity of
the population is O(n · d). In Step4, the complexity of the FADs ef-
fect is O(n · d). In Step5, Gaussian disturbance complexity is O(n).
In Step7, the complexity of the non-dominated sorting and the ref-
erence point-based elites selecting are O(m · n2). We use co f1 to
represent the computational complexity of the fitness function, so
the computational complexity of MOMPA is O(kmax (n · d + n +
co f1 · n +m · n2)).

Table 2: Score ranking and Wilcoxon signed-rank results

Algorithms MOMPA NSGAII NSGAIII MOEAD PESAII CMOPSO NSLS

Score 32 75 38 62 85 60 67
Ranking 1 6 2 4 7 3 5
Wilcoxon signed-rank test(+\=\-) 13\1\1 11\2\2 13\2\0 14\1\0 11\3\1 10\2\3

3 NUMERICAL RESULTS
We compared MOMPA with NSGA-II [4], NSGA-III [3], MOEA/D
[7], PESA-II [2], CMOPSO [8], NSLS [1]. The parameters of the
comparison algorithms follow the default settings in [6]. All the
algorithms were implemented in MATLAB 2019b and the perfor-
mance evaluations were conducted on a server with an Intel Xeon
E5-2620 3.0 GHz CPU, 64 GB RAM, and aWindows Server 2019 op-
erating system. The population size is 100, the maximum number
of iterations for the ZDT suite is 300, and that for the other suites is
3000. Table 1 shows the comparison results on the inverted gener-
ational distance (IGD). Table 2 summarizes the results on the total
scores, the final ranking, and the Wilcoxon signed-rank test, re-
spectively. An algorithmś score is derived from its ranking on each
benchmark function. In the results of the Wilcoxon signed-rank
test, the number of plus signs, minus signs, and equal signs repre-
sent the number of benchmark functions in which MOMPA is su-
perior to, inferior to, and non-significantly different from the coun-
terpart MO-SIOAs, respectively. It can be observed that MOMPA
outperforms all the others.
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