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ABSTRACT
Population-basedmeta-heuristics such asGenetic Algorithms (GA)
are ideal for exploiting multiple processor cores. With parallel ar-
chitectures now standard computationally intensive methods need
to harness them to best effect. A synchronous globally parallel GA
creates and evaluates population members in parallel at each gen-
eration resulting in considerable processor time spent waiting for
threads. An asynchronous approach whereby parallel threads con-
tinue evolution without waiting addresses this issue but can re-
sult in memory conflicts. This paper introduces an asynchronous
global GA model for shared memory CPUs without memory con-
flicts. Experiments demonstrate performance gains of 1.35 to 12
fold dependant on problem and population sizes. However, an asyn-
chronousmodel leads to non-uniform evolution reducing accuracy.
Consequently, this paper demonstrates that combining synchro-
nous and asynchronousmethods into a partially asynchronousmodel
retains a speed advantage whilst improving solution accuracy.
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1 INTRODUCTION
In recent years microprocessor manufacturers have been unable
to keep pace with Moores Law for increasing processor speeds via
nano-scale manufacturing. Consequently, manufacturers have mi-
grated to a parallel methodology with multiple processor cores
operating in parallel. Central Processing Units (CPUs) can now
have up to 64 processor cores and even lightweight processors
such as ARM CPUs have four processor cores. Graphics Process-
ing Units (GPUs) have thousands of processor cores enabling sig-
nificant speedups. It is key for computationally intensive optimisa-
tion methods to harness this processing power to maximum effect.
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Evolutionary algorithms are a particular optimisation method-
ology ideally suited to parallel architectures. Genetic Algorithms
(GAs) [14], Ant ColonyOptimisation (ACO) [8] and Particle Swarm
Optimisation (PSO) [9] are all population-based methods and nat-
urally parallel as population members can be generated and evalu-
ated using differing parallel processes. Indeed, the parallel nature
of GAs was quickly recognised and exploited but managing paral-
lel implementations can be problematic and as such considerable
work has been performed on methods to improve GA parallelism.
Key is ensuring that processor occupancy remains high, all pro-
cessor cores are used to maximum ability. A simple parallel GA
approach is a generational synchronous model whereby at each
generation population members are created and evaluated by par-
allel threads before the next generation. This can be inefficient if
the time to create and evaluate solutions is low or non-uniform.
An asynchronous approach avoids this by parallel threads creating
and evaluating population members continuously without waiting
for other threads but can be unsafe parallelisation. Thus, the popu-
lar asynchronous method is to use independent sub-populations
on each processor core with occasional migration between sub-
populations. However, if a new processor is faster with double the
number of cores this speedup will not be reflected by the parallel
GA as further sub-populations are necessary. With CPUs now hav-
ing up to 64 cores a parallel standard global GA may be preferable.

The paper is laid out as follows. Section 2 will discuss prior par-
allelisation strategies for GAs. Section 3 will demonstrate synchro-
nous parallisation of GAs and an alternative novel methodology
for asynchronous parallisation. Both will be compared in terms of
speed and accuracy using a permutation type problem in Section 4.
To obtain the best from both models Section 5 will introduce a par-
tially asynchronous approach. Finally, Section 6 will draw conclu-
sions from the approaches and highlight scope for improvement.

2 BACKGROUND
Evolutionary algorithms (EAs) are typically population-based con-
sisting of a set of chromosomes, a colony of ants or a swarm of
insects. Each member represents a potential solution and new so-
lutions in the population can normally be generated and evaluated
independently from others. Therefore, in the context of parallel
computation, evolutionary algorithms are an ideal technique.

The earliest EA was the GA [14] using the principles of Dar-
winian evolution to create populations of chromosomes that rep-
resent solutions to a given problem. Naturally parallel by being
population-based the first parallel implementations of a GA were
investigated by Grefenstette [11] who considered four differing de-
signs; the synchronous master-slave model, the semi-synchronous
master-slave, the asynchronous concurrentmodel and the network
model. Synchronous refers to parallel threads matching each other
such as operating on the same generation. Asynchronous refers
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to parallel threads being not required to match to other threads.
The synchronous master-slave only evaluates a single generation
of solutions in parallel which wastes time by waiting for threads
to complete tasks each generation. The semi-synchronous master-
slave addresses this issue with the master thread adding new solu-
tions as the slave processes work. With the asynchronous concur-
rent model each slave thread both creates and evaluates solutions
using a shared memory population. The downside is that threads
can read and update the same memory location, amemory conflict.

The networkmodel is the dominantmethodology for parallelisa-
tion of GAs with independent GAs operating on separate proces-
sors as sub-populations. Their only collaboration is to broadcast
their best solutions to other sub-populations. The advantage is full
utilisation of a parallel processor, but in the case of many cores, a
large overall population. This methodology is known as the Par-
allel Genetic Algorithm (PGA). Tanese [22] expanded this concept
into an island approach with each sub-population referred to as
a deme or island and periodic migration between these islands, a
broadcast. A four dimensional hypercube computer was used with
migration occurring uniformly in time with neighbouring popula-
tions along a given dimension. Two additional parameters are re-
quired, the migration interval, the number of generations between
migration, and the migration rate, a percentage of sub-population
individuals to migrate. Cohoon et. al. [5] used a similar approach
with a fully connected sub-population. However, Mühlenbein [18]
considered other topologies such as a ring so solutions take time
to percolate to all sub-populations. Alternatively, sub-populations
can be placed in a 2D plane such that migration can only occur
between direct neighbours known as a cellular GA (cGA) [16].

Regarding synchronous or asynchronous implementations, Alba
and Troya [1] perform an anaylsis of synchronous migration when
sub-populations wait for migrants and asynchronous migration
whereby they are inserted on arrival. The authors found an asyn-
chronous approach executed considerably faster due to no time
spent waiting thereby maximising processor use. Mühlenbein [17]
considered a fully asynchronous approach for a cGAwhereby each
population individual acts independently and mates with a neigh-
bouring individual on a 2D grid with the result replacing the cur-
rent solution if an improvement. However, there is no discussion of
avoiding threads simultaneously reading and writing to the same
memory location. Luque et. al. [15] implemented an asynchronous
cGA with each processor evolving a portion of the 2D grid and
at each iteration solutions are sent along processor edges to their
neighbour processors. This is migration at every generation but
enables processors to evolve their assigned population members
asynchronously. Performance similar to an island model was re-
ported. Pinel et. al. [19] also implemented an asynchronous parallel
cGA and address the issue of two threads simultaneously reading
and writing to the same memory location by using thread locking.

The second Grefenstette model, the asynchronous concurrent
model for a standard or global GA is less popular. However, Rasheed
andDavison [21] implemented a versionwhereby themaster thread
immediately gives slaves new solutions when they complete eval-
uations, a form of centralised control. Golub and Budin [10] con-
sidered an asynchronous implementation of a global GA by im-
plementing an asynchronous master-slave. An elimination tourna-
ment selection was used with three individuals selected and the

weakest discarded. The authors note differing threads can perform
invalid iterations requiring increased generations. Depolli et. al.
[7] consider a queue-based approach for problems with compu-
tationally expensive evaluation whereby the master sends solu-
tions to be evaluated and generates new solutions to be evaluated
asynchronously. However, the authors note a selection lagwhereby
a good solution could take longer to evaluate than other less fit
solutions which then get selected for reproduction. Harada and
Takadama [13] consider a semi-asynchronousmodelwhereby slaves
pause before generating new solutions until a minimum number of
current generation solutions are evaluated. Results indicated better
performance than synchronous or asynchronous models.

Recently, GPU implementations of parallel GAs have been con-
sidered. A fundamental difference from CPUs is that the cores are
grouped under a few individual multiprocessors under which the
same instruction must be executed simultaneously. Vidal and Alba
[23] implemented a cGA on a GPU reporting a speedup of up to 25
foldwhen using very large population sizes in the order of 25k. The
approach is synonymous with a synchronous master-slave model
in that the CPU acts as the master and waits at each generation
for the GPU to create and evaluate solutions. Chen et. al. [3] imple-
mented a GA using a GPU but required significant synchronisation
for crossover resulting in minimal speedup. Pospichal et. al. [20]
implemented an island GA on aGPUwith asynchronousmigration
reporting speedups of up to 8000 fold for numerical optimisation.

3 PARALLEL GENETIC ALGORITHMMODELS
There are two methods for implementing a global GA in parallel
using a multi-core CPU, synchronously or asynchronously. This
section will profile the synchronous approach and present a simple
method to achieve memory conflict free asynchronous execution.

3.1 A Synchronous Parallel GA Model
A GA is population-based using the Darwinian principles of nat-
ural selection, genetic crossover and mutation to create new gen-
erations. This enables evolution to occur with fitter solutions for
the given problem under consideration being combined to poten-
tially generate better solutions in subsequent generations. Popula-
tion members are independent from the others and can be created
and evaluated in isolation and in parallel. The previous generation
is sampled with natural selection to choose parents and offspring
for the next generation created using crossover and mutation.

To implement a synchronous parallel GA at each generation a
set of parallel threads create and evaluate new population mem-
bers for the next generation. Synchronisation requires each thread
to complete its creation and evaluation of population members be-
fore the next generation can start. This is in effect the master-slave
model as defined by Grefenstette [11]. Algorithm 1 provides an
overview of a synchronous parallel global GA and Algorithm 2 the
work that threads perform on their designated population mem-
bers. With t parallel threads available each creates Population Size

t
members. The advantage of a synchronous method is identical op-
eration to a sequential version. A disadvantage is considerable cre-
ation of parallel threads and time spent waiting for threads to com-
plete. Note the two nested for loops on lines 2 and 3 of Algorithm
1 whereby the outer loop needs to wait for the threads generated
in the inner loop to complete their assigned tasks.
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Algorithm 1 Synchronous Parallel GA
1: Generate initial population and evaluate
2: for each generation do
3: for each parallel thread t do
4: Create parallel slave thread with ID t to generate

Population Size
Thread Count solutions

5: end for
6: Wait for all threads to finish generating their solutions
7: end for

Algorithm 2 Synchronous Parallel GA Slave Thread

1: for each population member in set defined by thread ID t do
2: Select two parents from whole population
3: Generate two new solutions using parent chromosomes
4: Apply mutation with random probability
5: Evaluate new solutions
6: end for

3.2 An Asynchronous Parallel GA Model
To address the issue of repeated thread creation and waiting an
alternative approach is to have each thread begin creating popu-
lation members for the following generation as soon as they fin-
ish their current generation. Threads do not wait for others to
complete, they operate as an asynchronous concurrent model [11].
However, a problem is that when combining chromosomes with
crossover a parent chromosome could be being updated concur-
rently by another thread especially when chromosomes are long.
This can cause incorrect solutions for permutation type problems
such as the Travelling Salesman Problem (TSP), Vehicle Routing
Problem (VRP) or sorting problems. With a permutation type prob-
lem a given value such as a city to visit must occur once only in
a solution. If one thread is reading a chromosome whilst another
is updating it a value could be read twice and placed in the new
solution with another missing entirely, an invalid solution.

PSO can be easily implemented with asynchronous paralleli-
sation as solutions simply fly towards others rather than copy-
ing chromosomes. ACO is less easy to implement in parallel asyn-
chronously as a pheromone matrix requires updating after each
iteration but population-based ACO can operate asynchronously
as other solutions merely recommend paths to take [4, 12]. In that
respect a GA is unique in directly copying part of other parent solu-
tion chromosomes which have the potential to be updated by other
threads in an asynchronous implementation, a memory conflict.

One option is to detect and ignore invalid solutions generated
by these memory conflicts but this requires computational time
and loss of evolutionary steps by ignoring. Alternatively, a form
of thread locking could be used such that only one thread has pri-
ority but this is similar to the synchronous approach with parallel
threads waiting to be unlocked. A popular method, as discussed
in Section 2, to avoid this issue but ensure an asynchronous im-
plementation is an island model with multiple sub-populations on
differing parallel threads. A parallel thread only selects individual
solutions from its own island avoiding threads reading and writ-
ing to the same chromosome simultaneously. However, with this

Figure 1: A population member’s working memory.

model each thread requires aminimum population size for sensible
evolution to occur. For instance, if there are 32 parallel threads or
cores and 20 population members then an overall population size
of 640 members is required. Moreover, since CPU manufacturers
increase speed by increasing processor cores if the next processor
has 64 processor cores a population size of 1280 will be necessary
and no speed advantage from the new processor will be achieved.

Therefore, if a speedup is desired an alternative methodology is
required which can operate asynchronously with a fixed size pop-
ulation using CPUs with potentially hundreds of processor cores.
As noted, the problem is parallel threads reading and writing from
the same chromosome or not being able to sample from the en-
tire population. A solution is to utilise the shared memory avail-
able on modern computing systems. A simple method could be to
have every single chromosome stored throughout the evolution-
ary process. Parallel threads then sample from the latest completed
chromosomes across thewhole population. However, for a chromo-
some of size 1000, a population size of 100 and evolution of 50,000
generations 18.6GB of memory would be required.

An alterative approach is to provide each population member
a small working or short term memory, it can store the n last solu-
tions and associated fitness. As evolution progresses a population
member fills up its working memory with solutions. When it be-
comes full it returns to the beginning overwriting the oldest stored
chromosomes. Each population member has a counter indicating
which chromosome in the working memory is the latest to be com-
pleted. Other parallel threads of execution when sampling from
the population use the latest chromosomes and fitness to be gen-
erated by each population member stored in the memory. Given it
could be some time before these chromosomes are overwritten it
avoids the problem of memory conflicts. If a working memory of
100 historical chromosomes is used then memory consumption for
a chromosome of size 1000, a population size of 100 and evolution
of 50,000 iterations would now only require 0.04GB memory, a 500
fold reduction. Figure 1 depicts this chromosomeworking memory.

Algorithm 3 provides a high level overview of the asynchronous
master thread operation whilst Algorithm 4 demonstrates the sim-
ple parallel slave step. Note that Algorithm 3 has only one loop
now and the wait for threads to complete outside this loop and
the slave thread in Algorithm 4 now has two nested loops. The
approach significantly reduces the degree of waiting at every gen-
eration used by the synchronous model. To avoid problems with
reading and writing to the same chromosome by parallel threads
working memory chromosomes of each parent are used as shown
on line 4. When solutions are generated they are written into the
working memory for each population member and their memory
counters incremented as described by line 7.
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Algorithm 3 Asynchronous Parallel GA
1: Generate initial population and evaluate
2: Create working memory sizem for each population member
3: for each parallel thread t do
4: Create parallel slave thread with ID t to generate

Population Size
Thread Count solutions for the requisite generations

5: end for
6: Wait for threads to complete evolution, output best solution

Algorithm 4 Asynchronous Parallel GA Slave Thread

1: for each generation do
2: for each pop. member in set defined by thread ID t do
3: Select two parents from population
4: Generate two new solutions using latest chromosomes

from parents working memory
5: Apply mutation with random probability
6: Evaluate new solutions
7: Store in member working memories pointed to by coun-

ters and increment
8: end for
9: end for

4 EXPERIMENTAL RESULTS
To measure the effectiveness of the proposed asynchronous glob-
ally parallel GA implementation in contrast to a synchronousmodel
both will be tested using a permutation problem. As previously
discussed, when reading a parent chromosome if another thread
updates the chromosome at the same time then invalid solutions
can be generated. The permutation problem used is the Travelling
Salesman Problem (TSP), an NP-Complete combinatorial optimisa-
tion problem with the goal to visit all cities once minimising dis-
tance travelled. The symmetric TSP is represented as a complete
weighted graph G = (V , E,d) where V = {1, 2, ..,n} is a set of ver-
tices defining each city and E = {(i, j)|(i, j) ∈ V ×V } the edges con-
sisting of the distance d between pairs of cities such that di j = dji .
The objective is to find a Hamiltonian cycle inG of minimal length.

Six TSP instances from the TSPLIB library ranging in size are
considered. The crossover operator PMX with be used combining
two parent chromosomes to generate two offspring and swap, in-
version and insertion mutations will also be used. Experiments are
conducted using an AMD Ryzen 2700 processor which has eight
physical processor cores and via hyper-threading, an additional
eight virtual cores. Consequently, the parallel GA implementation
will use 16 threads of execution. Results are averaged over 25 ran-
dom runs with differing seeds for a range of population sizes. The
parameters used with the GA approach are shown in Table 1.

A working memory size of 200 solutions is used as experiments
found memory conflicts still occurred with less working memory
and a population size of 32 for the smallest problem. A processor
can stall waiting for a memory read of a chromosome from main
memory such that the slave owner of the chromosome can perform
several hundred generations of evolution. Unfortunately, the be-
haviour of parallel threads is not under direct control. However, it

Table 1: Genetic Algorithm parameters

Maximum Iterations - 50,000
Mutation Probability - 33%

Elitism Rate - 2 population members
Tournament Size - 10% of population

was found that the working memory size is inversely proportional
to the ratio of population members to threads and problem size.

Table 2 provides the experimental results in terms of relative
error to the best known solution, runtime and also the measured
processor occupancy. In all instances and population sizes the asyn-
chronous GA model is the faster approach. Speedup varies depen-
dant on both population size and problem size. Hence, for a small
population and the smallest problem a 10 fold reduction in execu-
tion speed is achieved. However, for the same problem, raising the
population size to 256 individuals the speedup reduces to only a
two fold gain. The cause is that for the synchronous model the de-
gree of time spent waiting for threads to complete as a proportion
of the parallel workload reduces. Therefore, the advantage of the
asynchronous model reduces as the population and problem size
increase. This hypothesis is borne out by the processor occupancy
rates which for the synchronous model increase considerably as
population and problem size increase. For the largest problem and
256 individuals the processor occupancy is only slightly less than
the asynchronous model resulting in only a 35% speed advantage.

Regarding accuracy, note that in a majority of cases the synchro-
nous model has a small advantage. This is due to the asynchronous
model having non-uniform or non-synchronised evolution. Popula-
tion members being generated and evaluated on differing proces-
sor threads can be several generations apart in evolutionary terms,
a generational gap. In fact, observations during experimental runs
noted this could be hundreds of generations of difference especially
for the smaller population sizes. Overall accuracy is poor due to no
local search being utilised. This adds a further aspect to comparing
synchronous and asynchronous globally parallel GAs. Given the
computational cost of local search it is used sparingly and conse-
quently can lead to further unbalanced evolution and, for the syn-
chronous parallel GA model, significantly greater waiting time.

Therefore, the experiments from Table 2 are repeated using a
1% probability of the 2-opt local search operator [6] being used.
This operator is computationally expensive as it attempts to ex-
change every combination of two edges and retain the swap if an
improvement. This process repeats until no single improvement
can be found. Results are shown in Table 3 whereby it can be ob-
served that the speedups achieved by the asynchronous parallel
GA model are larger in this instance compared to the results in Ta-
ble 2. The cause can be found by analysing processor occupancy.
For the asynchronous model the processor occupancies have in-
creased slightly. However, for the synchronous parallel GA model
processor occupancies have reduced considerably, especially with
larger population sizes, to just 17% usage. The reason is that a
single population member can require considerable computational
time being improved by 2-opt whilst other threads have finished
their assigned tasks but need to wait. This results in significant
wasted computer processor time. The asynchronous model retains
greater processor occupancy by parallel threads continuing evolu-
tion while a population member undergoes 2-opt improvement.
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Table 2: Average error, runtime and processor occupancy for synchronous and asynchronous parallel genetic algorithms with
varying population sizes applied to a range of TSP instances.

Synchronous Parallel Genetic Algorithm Asynchronous Parallel Genetic Algorithm

TSP Population Error Runtime CPU Error Runtime CPU Speedup
Instance Size (%) (secs) Occupancy (%) (%) (secs) Occupancy (%)

pr1002

32 28.13 ± 1.52 41.09 ± 0.91 22.13 ± 0.33 31.65 ± 2.75 4.32 ± 0.25 59.61 ± 2.79 9.51x
64 20.58 ± 1.67 42.41 ± 0.08 25.87 ± 0.30 20.50 ± 1.43 7.25 ± 0.17 62.62 ± 1.47 5.85x
128 13.83 ± 1.26 44.71 ± 0.12 30.67 ± 0.26 14.77 ± 1.88 13.64 ± 0.23 63.70 ± 0.68 3.28x
256 10.07 ± 1.10 55.43 ± 0.47 39.81 ± 0.51 10.35 ± 1.06 26.35 ± 0.31 64.87 ± 0.52 2.10x

pcb1173

32 32.36 ± 1.48 43.59 ± 1.18 22.28 ± 0.35 37.87 ± 3.11 4.83 ± 0.19 62.93 ± 2.04 9.02x
64 25.60 ± 1.41 42.63 ± 0.22 27.75 ± 0.73 25.70 ± 1.65 8.28 ± 0.24 65.38 ± 1.27 5.15x
128 18.50 ± 1.48 47.14 ± 0.14 32.09 ± 0.32 18.79 ± 1.66 15.40 ± 0.41 66.16 ± 1.10 3.06x
256 12.71 ± 1.18 55.57 ± 0.30 46.44 ± 0.48 13.79 ± 1.24 29.41 ± 0.28 67.62 ± 0.33 1.89x

fl1400

32 28.88 ± 2.43 42.49 ± 0.51 22.93 ± 0.23 29.49 ± 3.83 5.68 ± 0.34 62.33 ± 2.62 7.48x
64 23.19 ± 2.08 45.12 ± 0.32 27.32 ± 0.28 23.53 ± 3.38 9.32 ± 0.21 65.76 ± 0.86 4.84x
128 17.42 ± 2.32 49.56 ± 0.09 34.28 ± 0.34 16.63 ± 3.10 17.37 ± 0.24 67.70 ± 0.78 2.85x
256 11.89 ± 1.48 56.34 ± 0.29 51.91 ± 1.07 11.75 ± 1.69 33.36 ± 0.37 69.35 ± 0.56 1.69x

u2193

32 44.85 ± 1.47 47.97 ± 0.15 25.60 ± 0.22 47.95 ± 2.11 8.35 ± 0.42 73.06 ± 2.64 5.75x
64 40.49 ± 1.09 49.05 ± 0.37 32.20 ± 0.26 40.93 ± 1.79 13.33 ± 0.57 73.89 ± 2.07 3.68x
128 34.91 ± 1.22 56.52 ± 0.77 41.63 ± 0.38 35.26 ± 1.20 24.20 ± 0.39 75.42 ± 0.89 2.33x
256 27.45 ± 1.13 67.98 ± 0.82 66.06 ± 0.33 28.23 ± 1.01 47.28 ± 2.70 75.25 ± 3.09 1.44x

pr2392

32 42.90 ± 1.31 48.46 ± 0.22 27.20 ± 0.31 44.75 ± 2.23 9.27 ± 0.53 74.17 ± 2.83 5.22x
64 39.53 ± 1.00 50.45 ± 1.78 32.13 ± 0.54 39.17 ± 1.46 14.37 ± 0.43 76.06 ± 1.55 3.51x
128 33.33 ± 0.97 57.25 ± 1.30 44.81 ± 0.66 34.55 ± 1.63 27.08 ± 1.28 75.73 ± 2.86 2.11x
256 26.98 ± 1.17 72.73 ± 0.32 58.96 ± 4.24 27.86 ± 1.43 50.83 ± 2.52 77.13 ± 2.41 1.43x

fl3795

32 56.14 ± 2.39 62.26 ± 1.55 32.21 ± 0.77 56.88 ± 2.24 14.48 ± 0.63 80.01 ± 1.72 4.30x
64 53.08 ± 1.95 59.51 ± 0.60 41.04 ± 0.42 53.67 ± 3.39 21.51 ± 0.85 80.15 ± 1.25 2.77x
128 48.73 ± 2.18 67.37 ± 7.55 60.34 ± 2.67 48.36 ± 2.22 38.77 ± 0.85 80.99 ± 0.83 1.74x
256 42.44 ± 1.48 99.78 ± 0.98 72.21 ± 1.43 43.04 ± 2.50 73.76 ± 2.16 82.22 ± 1.07 1.35x

Table 3: Average error, runtime and processor occupancy for synchronous and asynchronous parallel genetic algorithms with
varying population sizes and a 1% probability of using 2-opt applied to a range of TSP instances.

Synchronous Parallel Genetic Algorithm Asynchronous Parallel Genetic Algorithm

TSP Population Error Runtime CPU Error Runtime CPU Speedup
Instance Size (%) (secs) Occupancy (%) (%) (secs) Occupancy (%)

pr1002

32 3.01 ± 0.28 109.09 ± 1.33 18.26 ± 0.15 4.90 ± 0.68 9.16 ± 0.23 82.03 ± 1.57 11.91x
64 2.42 ± 0.33 167.65 ± 1.74 17.26 ± 0.20 2.85 ± 0.46 17.63 ± 0.33 84.89 ± 1.33 9.51x
128 1.83 ± 0.44 284.86 ± 3.22 17.62 ± 0.10 2.02 ± 0.39 34.34 ± 0.45 86.57 ± 0.71 8.29x
256 1.69 ± 0.42 479.01 ± 4.87 18.51 ± 0.12 1.75 ± 0.41 68.49 ± 0.84 87.02 ± 0.75 6.99x

pcb1173

32 3.78 ± 0.48 127.72 ± 1.57 17.97 ± 0.10 6.25 ± 0.63 11.53 ± 0.29 84.82 ± 1.92 11.07x
64 2.75 ± 0.54 208.59 ± 5.26 16.79 ± 0.71 3.86 ± 0.52 22.03 ± 0.37 87.29 ± 0.93 9.47x
128 2.33 ± 0.45 352.44 ± 3.62 17.38 ± 0.15 2.58 ± 0.44 43.07 ± 0.62 88.87 ± 0.79 8.18x
256 2.13 ± 0.45 598.34 ± 5.77 18.42 ± 0.09 2.13 ± 0.44 85.51 ± 1.17 89.50 ± 0.69 7.00x

fl1400

32 2.29 ± 0.56 143.30 ± 2.08 17.27 ± 0.16 2.95 ± 0.54 13.81 ± 0.32 86.70 ± 1.72 10.38x
64 1.71 ± 0.24 248.76 ± 3.31 16.72 ± 0.18 1.90 ± 0.41 26.07 ± 2.96 88.96 ± 1.73 9.54x
128 1.61 ± 0.44 415.71 ± 6.85 16.74 ± 0.12 1.72 ± 0.49 50.67 ± 8.74 90.40 ± 1.36 8.20x
256 1.36 ± 0.26 729.24 ± 13.69 18.42 ± 0.09 1.41 ± 0.32 105.03 ± 1.96 91.27 ± 0.58 6.94x

u2193

32 6.44 ± 0.60 249.68 ± 3.64 16.97 ± 0.15 9.81 ± 0.74 29.36 ± 0.54 92.44 ± 1.50 8.50x
64 4.84 ± 0.60 449.98 ± 6.74 16.49 ± 0.13 6.94 ± 0.75 56.57 ± 1.10 93.64 ± 1.60 7.95x
128 4.04 ± 0.51 823.34 ± 8.37 16.38 ± 0.16 4.55 ± 0.37 114.21 ± 1.81 94.08 ± 0.92 7.21x
256 3.23 ± 0.32 1482.56 ± 33.67 17.42 ± 0.22 3.55 ± 0.37 223.61 ± 3.68 95.80 ± 0.98 6.63x

pr2392

32 5.62 ± 0.42 306.88 ± 4.30 17.02 ± 0.21 8.55 ± 0.77 34.86 ± 0.92 92.28 ± 1.55 8.80x
64 4.04 ± 0.39 550.77 ± 5.62 16.85 ± 0.20 6.39 ± 0.73 66.65 ± 1.97 94.09 ± 1.56 8.26x
128 3.21 ± 0.32 1003.89 ± 14.45 16.88 ± 0.18 3.72 ± 0.41 130.43 ± 2.27 95.24 ± 1.09 7.70x
256 2.64 ± 0.41 1763.47 ± 16.18 18.20 ± 0.19 2.63 ± 0.29 260.27 ± 2.85 96.23 ± 0.76 6.78x

fl3795

32 2.81 ± 0.70 603.05 ± 14.00 15.76 ± 0.12 4.24 ± 0.86 83.28 ± 1.99 93.72 ± 1.49 7.24x
64 2.03 ± 0.88 1162.34 ± 19.72 15.09 ± 0.08 3.28 ± 0.97 161.89 ± 4.98 95.37 ± 1.23 7.18x
128 1.60 ± 0.41 2180.17 ± 48.19 15.39 ± 0.14 1.73 ± 0.71 327.55 ± 8.07 96.52 ± 0.78 6.66x
256 1.01 ± 0.53 3923.37 ± 98.16 16.64 ± 0.09 1.17 ± 0.31 646.34 ± 12.69 97.78 ± 0.47 6.07x

However, as with the results in Table 2, it should be noted that
the synchronous parallel GAmodel achieves markedly better accu-
racy than the asynchronous methodology. This is especially note-
worthy when using a small population size. Once again. the reason

for this is non-uniform evolution leading to a generational gap oc-
curring to a greater degree through the use of 2-opt local search.
In the time taken to perform 2-opt on a single solution many gen-
erations of evolution of other population members can occur.
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5 A PARTIALLY ASYNCHRONOUS GA MODEL
Evidence from the results shown in the previous section demon-
strated that whilst an asynchronous parallel GA model is 10-12x
faster than a synchronous approach the accuracy deteriorates. It
is hypothesized that this is due to unbalanced evolution occurring
such that a generational gap between slave threads occurs. Indeed,
one thread can be hundreds or thousands of evolutionary gener-
ations ahead of another thread. Consequently, their solutions can
be much more highly evolved and hence dominate the population
reducing the diversity and impacting overall solution quality.

Algorithm 5 Partially-Asynchronous Parallel GA

1: Set synchronous generations as Total Generations
Asynchronous Generations

2: for each synchronous generation do
3: for each parallel thread t do
4: Create parallel slave thread with ID t
5: Wait for all threads to complete asynchronous evolution

of assigned population members
6: end for
7: end for

Algorithm 6 Partially-Asynchronous Parallel GA Slave Thread

1: for each asynchronous generation do
2: for each population member defined by thread ID t do
3: Select two parents from population
4: Generate two new solutions using latest solutions from

parents working memory
5: Apply mutation with random probability
6: Evaluate new solutions
7: Store in solution working memories and update counters
8: end for
9: end for

Given the speed advantage of the asynchronous methodology
via better exploitation of processor resources this model could still
be the preferred option. Moreover, if the generational gap can be
mitigated it could lead to an improved accuracy. Amethod to achieve
this could be to combine both models, in effect a partially asyn-
chronous parallel GA. With this approach the main components
of a purely asynchronous model are retained with slave threads
executing for multiple generations on their given population mem-
bers. Populationmemberswould still require aworkingmemory to
avoid memory conflicts when performing crossover from parents
selected from the global population. However, these slave threads
will only evolve asynchronously for a set number of generations
designated asynchronous generations. In this way the generational
gap can be no greater than the asynchronous generations. The mas-
ter thread waits until each thread has completed its given asyn-
chronous generations before creating new parallel slave threads to
begin the next set of asynchronous generations. This process contin-
ues until the full number of standard generations is achieved. This
is similar in some respect to the implementation by Bozikovic et.al.
[2] although in their case only crossover is performed for multiple
iterations by slave threads and mutation by the master thread.

Table 4: Average error and runtimes for the partially asyn-
chronous parallel GA for a population size of 32, 1% proba-
bility of 2-opt and a range of asynchronous generations.

TSP Asynchronous Relative Runtime Speedup
Instance Generations Error (%) (secs)

pr1002

5000 5.10 ± 0.64 9.53 ± 0.20 11.45x
1000 4.71 ± 0.75 10.58 ± 0.25 10.31x
500 4.69 ± 0.41 11.59 ± 0.21 9.41x
250 4.04 ± 0.56 13.34 ± 0.26 8.18x
100 3.26 ± 0.42 17.48 ± 0.25 6.24x
50 3.03 ± 0.44 23.36 ± 0.37 4.67x

pcb1173

5000 6.68 ± 0.89 11.93 ± 0.32 10.71x
1000 6.18 ± 0.69 13.45 ± 0.26 9.50x
500 5.95 ± 0.78 14.82 ± 0.28 8.62x
250 5.10 ± 0.61 17.17 ± 0.28 7.44x
100 4.34 ± 0.59 22.71 ± 0.31 5.62x
50 4.09 ± 0.54 30.43 ± 0.67 4.20x

fl1400

5000 2.81 ± 0.47 14.57 ± 0.35 9.83x
1000 2.74 ± 0.48 16.50 ± 0.39 8.69x
500 2.85 ± 0.50 18.61 ± 0.30 7.70x
250 2.40 ± 0.43 21.66 ± 0.48 6.62x
100 2.28 ± 0.50 28.67 ± 0.72 5.00x
50 2.14 ± 0.33 38.37 ± 0.94 3.74x

u2193

5000 9.74 ± 0.73 31.45 ± 0.66 7.94x
1000 9.59 ± 0.81 36.16 ± 0.78 6.90x
500 8.87 ± 0.88 40.42 ± 0.84 6.18x
250 7.91 ± 0.82 47.93 ± 0.82 5.21x
100 7.15 ± 0.76 64.69 ± 1.32 3.86x
50 6.62 ± 0.72 86.14 ± 2.01 2.90x

pr2392

5000 8.62 ± 0.73 36.90 ± 0.85 8.32x
1000 8.05 ± 0.77 42.32 ± 0.98 7.25x
500 7.38 ± 0.79 47.60 ± 0.86 6.45x
250 7.28 ± 0.70 55.84 ± 0.76 5.50x
100 6.41 ± 0.45 75.25 ± 1.44 4.08x
50 5.76 ± 0.56 99.40 ± 2.06 3.09x

fl3795

5000 4.71 ± 0.79 88.44 ± 2.09 6.82x
1000 4.49 ± 0.84 102.35 ± 2.18 5.89x
500 3.66 ± 0.72 114.76 ± 2.13 5.25x
250 3.49 ± 0.71 133.80 ± 3.65 4.51x
100 3.07 ± 0.52 179.97 ± 5.78 3.35x
50 2.95 ± 0.80 237.52 ± 6.41 2.54x

Algorithm 5 provides a high level overview of the master thread.
Note that as with the fully synchronous approach there are two
nested for loops but in this case the outer loop operates for less
generations defined as the total generations divided by the number
of allowable asynchronous generations. This reduces the degree of
time spent waiting for threads to finish their allotted asynchronous
generations. Algorithm 6 provides a high level overview of the par-
tially asynchronous slave thread which is almost the same as the
fully asynchronous slave aside from the outer loop only iterating
over the number of allowable asynchronous generations.

This approach will allow slower threads to catch up enabling
more uniform evolution to occur and reduce the generational gap.
A disadvantage will be that there will be a loss of speed as a re-
sult of increased periodic waiting for slower threads to complete
thereby reducing processor occupancy. To test the effectiveness of
a partially asynchronous parallel GA the experiments from pre-
viously with 2-opt local search will be repeated for the smallest
population size of 32 individuals which had the greatest degree of
non-uniform evolution. A range of asynchronous generation sizes
will be evaluated. Results are shown in Table 4 whereby it can be
observed that as the size of permissible asynchronous generations
reduces the runtime increases reducing achievable speedup. Also,

1776



A Partially Asynchronous Global Parallel Genetic Algorithm GECCO ’21 Companion, July 10–14, 2021, Lille, France

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Execution Time (seconds)

TSPLIB Instance pr1002

Synchronous GA

Asynchronous GA

Partially Asynchronous GA (1000 gens.)

Partially Asynchronous GA (500 gens.)

Partially Asynchronous GA (50 gens.)

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100 110 120 130

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Execution Time (seconds)

TSPLIB Instance pcb1173

Synchronous GA

Asynchronous GA

Partially Asynchronous GA (1000 gens.)

Partially Asynchronous GA (500 gens.)

Partially Asynchronous GA (50 gens.)

1

2

3

4

5

0 25 50 75 100 125 150

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Execution Time (seconds)

TSPLIB Instance fl1400

Synchronous GA

Asynchronous GA

Partially Asynchronous GA (1000 gens.)

Partially Asynchronous GA (500 gens.)

Partially Asynchronous GA (50 gens.)

4

5

6

7

8

9

10

11

12

0 50 100 150 200 250

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Execution Time (seconds)

TSPLIB Instance u2152

Synchronous GA

Asynchronous GA

Partially Asynchronous GA (1000 gens.)

Partially Asynchronous GA (500 gens.)

Partially Asynchronous GA (50 gens.)

3

4

5

6

7

8

9

10

11

0 50 100 150 200 250 300

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Execution Time (seconds)

TSPLIB Instance pr2392

Synchronous GA

Asynchronous GA

Partially Asynchronous GA (1000 gens.)

Partially Asynchronous GA (500 gens.)

Partially Asynchronous GA (50 gens.)

1

2

3

4

5

6

0 100 200 300 400 500 600

R
e
la

ti
v
e
 E

rr
o

r 
(%

)

Execution Time (seconds)

TSPLIB Instance fl3795

Synchronous GA

Asynchronous GA

Partially Asynchronous GA (1000 gens.)

Partially Asynchronous GA (500 gens.)

Partially Asynchronous GA (50 gens.)

Figure 2: Convergence rates measured over time for synchronous, asynchronous and partially asynchronous parallel GAmod-
els applied to range of TSP instances using population size of 32 members.
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Figure 3: Relative errors for synchronous, asynchronous and partially asynchronous parallel GA models applied to range of
TSP instances using population sizes of 64, 128 and 256 individuals.

as the size of permissible asynchronous generations reduces the
relative error or accuracy improves. This occurs as parallel threads
that get behind on evolutionary generations, a generational gap,
get more opportunity to catch up leading to more uniform evolu-
tion. This reinforces the hypothesis that non-uniform evolution in
fully asynchronous evolution reduces solution quality. However,
contrasting to the synchronous parallel GA results in Table 3 even
using the smallest number of asynchronous generations relative
error remains slightly worse.

Given that the partially asynchronous parallel GA remains slightly
less accurate even with a just a small number of allowable asyn-
chronous generations it could be considered that speed is a more
important component. If using a high number of asynchronous
generations results in a runtime advantage of five fold over a syn-
chronous model then in effect five times the overall evolutionary
generations can be achieved within the same timescales. This ad-
ditional evolution will improve the accuracy of the partially asyn-
chronous GA, potentially to a greater level than the synchronous
GA. The results in Table 4 show thatwhen the asynchronous gener-
ations fall below 250 accuracy only slightly improves but the speed
advantage reduces considerably. Therefore, the fully asynchronous
and partially asynchronous approaches will be allowed to evolve

solutions for the same timescales as the synchronous approach. As
with Table 4 the smallest population size of 32 will be tested with
the average convergence rates over time shown in Figure 2. These
convergence rates show that whilst the fully asynchronous model
is less accurate over fixed generations its greater speed enables
better results then the fully synchronous approach through greater
evolution over fixed timescales.Moreover, the better partially asyn-
chronous approach is to use 500 asynchronous generations which
achieves the best results for several of the problems especially the
largest instance.When using just 50 asynchronous generations the
reduction in speed reduces the attainable evolutionary steps reduc-
ing accuracy. The reduction in speed outweighs the improved ac-
curacy achieved over a fixed set of generations.

Figure 3 compares the relative errors of the synchronous, asyn-
chronous and partially asynchronous models when executed for
the same degree of time using the larger population sizes. These re-
sults demonstrate that regardless of population size the asynchro-
nous and partially asynchronous models achieve equally better
performance than the synchronous model due to the extra evolu-
tionary steps obtainable. The asynchronousmodel is slightly better
for population sizes of 64 and 128 but the partially asynchronous
approach improves with a population size of 256 individuals.
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6 CONCLUSIONS
With parallel microprocessors now commonplace there is a require-
ment to fully harness the technology with computationally inten-
sive techniques such as evolutionary algorithms. Genetic Algorithms
are naturally parallel and hence ideal to exploit parallel processors.
However, a parallel synchronous approach can spend too much
time waiting for all threads to complete a generation whilst an
asynchronous approach can result in memory conflicts when read-
ing and writing chromosomes especially when longer. This paper
demonstrated that by giving population members a working mem-
ory of their latest solutions an asynchronous global GA can avoid
memory conflicts. Experiments using a permutation type problem
revealed processor occupancy approaches 100% utilisation with
speedups of as much as 12 fold over a synchronous model.

However, asynchronous evolution results in non-uniform evo-
lution with differing threads many generations of evolution apart,
a generational gap. This effect reduces overall solution quality es-
pecially when solution generation is unbalanced. To counter this
runaway evolution population members need to catch up. A mixed
synchronous and asynchronous model, a partially asynchronous
model, can mitigate this generational gap by only allowing a fixed
number of asynchronous generations before threads have to wait
for others to catch up. Over a fixed number of evolutionary gener-
ations accuracy is improved but with a speed penalty.

Indeed, experiments over a fixed time frame rather than genera-
tions demonstrated that fully asynchronous or coarse grained par-
tially asynchronous models can achieve the best overall solution
quality through simply being able to simulate greater evolution by
being faster. Consequently, although a generational gap can occur
causing non-uniform evolution, solution quality degradation can
be overcome given the ability to evolve longer.

It should be noted that the working memory incurs a memory
cost which can be relatively large. Consider a TSP instance with
200k cities, each population chromosome is 200k in size thus with
a population size of 256 and a working memory of just 50 requires
10GB of memory. However, an island model using 32 threads and
sub-populations of 20 individuals would require a similar amount
of memory. An asynchronous global parallel GA though can op-
erate with a small population in contrast to an island GA model.
Therefore, as with any evolutionary algorithm, careful considera-
tion needs to be made as to the choice of population size relative
to the number of processor cores, the evolution time, the working
memory size and the degree of partial asynchronous generations
to reduce the generational gap.

Further work with the partially asynchronous global parallel
GA model will consider methods to reduce the working memory
size such as a steady state implementation. This would reduce the
frequency that population members update their latest chromo-
some. In addition, greater analysis is required regarding the gener-
ational gap from asynchronous evolution in terms of its impact vs.
speed and methods to reduce its effect. Furthermore, a direct com-
parison between an island model and the partially asynchronous
GA is required to ascertain which approach is the more advanta-
geous including scalability to fine grained parallel architectures.
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