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ABSTRACT
Currently, there is a considerable variety of Evolutionary Algo-
rithms (EAs) and due to their performances some of them become
more popular. EAs can be implemented in different ways, such as
the Island Model (IM). However, despite the good performance of
some EAs and the possibilities of varying their implementations,
they can converge to a local optimum mainly because of the loss
of diversity in the population. This work proposes an operation
for a dynamic hybrid IM (D-IM), aiming to promote diversity to
the population if it is converging to a certain portion of the search
space. Thus, the D-IM reacts to the possible local convergence of
its population, in addition to adjust the topology according to the
EAs in the islands. The results demonstrated that the proposed
operation can improve the efficiency of the D-IM search process
and be competitive for solving bounded constrained optimization
problems.
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1 INTRODUCTION
Several EAs have been proposed in the last decades. They are very
attractive alternatives to solve complex optimization problems.
Some of them become more popular due to their reported per-
formances. However, even these EAs can converge to local optima
and do not find the global optimum of the problem.
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One of the possible causes for local convergence of EAs is the
reduction of exploration of new regions in the search space with the
merging of a great number of the candidate solutions to few regions
already found. These regions may be good, but may be distant from
the global optimum. This type of evolutionary behavior can also
cause premature convergence. The intensification starts early and
the population is kept in the same region for a considerable part of
the computational cost defined for the EA execution. In short, an
EA tends to be more robust and efficient if it establishes a balance
between the exploration of the search space and the exploitation of
the best regions identified in the search process.

Different strategies have already been proposed to control the
diversity of the EAs population along the search process. Most
of them are focused on the selection of solutions to be involved
in the operations and the adjustment of the parameters of those
operations [23]. Another alternative adopted to promote diversity
in the population of EAs is the implementation through the IM.
In this case, the population is divided into sub-populations called
islands, which evolve individually by their own algorithms and
communicate periodically through the migration process. In this
case, despite the possibility of local convergence in each island,
it can occur in different regions of the search space [12, 15]. In
addition, the immigrant solutions can indicate new regions to be
explored.

In a hybrid IM, different EAs are applied in the islands. Given the
considerable number of proposed EAs and the difficulty to choose
just one, this alternative may be very important in solving the
problem. In addition, the IM structure may be dynamic and adaptive,
as is the case of the D-IM. In D-IM, the topology and distribution of
solutions between islands is dynamically adjusted over migrations.
Such adjustment is defined according to the attractiveness of each
island, calculated from characteristics of its algorithm.

In general, the strategies proposed to control the diversity of
the IM population are also focused on the selection operation. In
this case, in the selection of migrant solutions and the respective
islands of destination.

This work proposes the operation DIV-OP for the D-IM with the
objective to promote diversity to its population if it is converging
to a small region of the search space, even using different EAs. In
addition to D-IM adjusting its topology and distributing solutions
according to the EAs in its islands, the DIV-OP restarts part of
its population if a possible local convergence is identified. In the
experiments, DIV-OP was evaluated through an D-IM based on
intensifying EAs. The obtained results demonstrated that the pro-
posed intervention can improve the efficiency of the D-IM search
process.
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2 ADAPTIVE DYNAMIC ISLAND MODEL
The IM is an alternative to implement EAs to run in parallel com-
putational environments. In IM, the population is divided in sub-
populations called islands. Each island evolves in parallel with
others by its own EA. They are connected by a topology and peri-
odically they exchange solutions through the migration operation.

In a hybrid IM, different EAs are applied in the islands. The imple-
mentation of IM also requires decisions on [1, 13, 16, 18]: Number
of islands (𝐼 ), Migration topology, Migration rate (𝜉), Migration fre-
quency (𝐹𝑚𝑖𝑔) and Migration policy.

In [7], it was proposed a dynamic hybrid IM identified in this
work as D-IM. Initially, the islands in D-IM are fully connected
by weighted uni-directional connections. At each migration, the
weight of each connection is dynamically adjusted in [0, 1] accord-
ing to the attractiveness of the destination island to the source
island, based on its EA features.

In D-IM proposed in [7], the islands attractiveness are defined
according to the convergence rate of their EAs. In [8], it was pro-
posed a strategy to evaluate the islands attractiveness according to
the quality of solutions produced by their EAs.

In D-IM, the solutions are actually moved from an island to
another in migration. In this case, the number of solutions directed
to each island may be different. The idea is that the islands with
more suitable EAs maintain larger numbers of candidate solutions.

3 OPERATION PROPOSED FOR DYNAMIC
ISLAND MODEL

Generally, the IM produces better solutions than the individual EAs
applied in its islands. One of the reasons is the diversity that it
can promote by the distribution of the population, accompanied
by the migration of the solutions . Even so, the IM may converge
prematurely to a local optimum. Works such as [12], [2] and [11]
proposed mechanisms to promote diversity to the IM population,
in general, based on the selection of migrant solutions and their
respective destination islands.

This section presents the DIV-OP, an additional operation for D-
IM. The DIV-OP aims to promote diversity to the D-IM population
through the inclusion of new regions of the search space in the
evolutionary process by replacing/restarting some solutions. This
intervention will be performed only if it is identified that the current
population covers less than a certain portion of the total search
space.

By the DIV-OP, after each D-IMmigration, the worst solutions in
each island are replaced by new random ones, limited to the portion
𝜒 ∈ (0, 1] of its population, where 𝜒 is defined by the user. The
solutions restart is performed only if 𝑑𝑖𝑣 < 𝑠𝑝𝑐 , where 𝑠𝑝𝑐 ∈ (0, 1],
where 𝑠𝑝𝑐 is also defined by the user. The 𝑠𝑝𝑐 is the minimum
portion of the search space to be covered by the D-IM population,
even divided in islands, to classify its diversity as satisfactory. The
𝑑𝑖𝑣 value is given by

𝑑𝑖𝑣 = 𝐷𝐼𝑉 /𝑆𝑃𝐶, (1)

where 𝐷𝐼𝑉 is

𝐷𝐼𝑉 =

∑𝐼
𝑘=1𝑀𝑑𝑖𝑠𝑡𝑘

𝐼
, (2)

where𝑀𝑑𝑖𝑠𝑡𝑘 is the mean distance between solutions in the island
𝑘 , given by

𝑀𝑑𝑖𝑠𝑡𝑘 =

∑𝑃𝑆𝑘
𝑖=1

∑𝑃𝑆𝑘
𝑗=1 𝑀𝐷𝑖, 𝑗

𝑃𝑆𝑘 × 𝑃𝑆𝑘
, 𝑘 = 1, 2, ..., 𝐼 , (3)

where 𝑃𝑆𝑘 is the population size of island 𝑘 in the current migration
and 𝑀𝐷𝑖, 𝑗 is the value in row 𝑖 and column 𝑗 of the symmetric
matrix 𝑀𝐷 . Each value 𝑀𝐷𝑖, 𝑗 is the Euclidean distance between
solutions 𝑠𝑖 and 𝑠 𝑗 in the population of island 𝑘 . In this case, each
value𝑀𝐷𝑖, 𝑗 is given by

𝑀𝐷𝑖, 𝑗 = ∥𝑠𝑖 − 𝑠 𝑗 ∥. (4)

The 𝑆𝑃𝐶 value in (1) is given by

𝑆𝑃𝐶 = ∥𝑏𝑢 − 𝑏𝑙 ∥, (5)

where 𝑏𝑢 ∈ R𝐷 and 𝑏𝑙 ∈ R𝐷 are respectively the vectors of upper
and lower bounds of each variable ∈ R𝐷 according to the problem.

In D-IM, an island is removed if its population size is reduced to
0. In such case, 𝐼 in (2) and (3) is the number of islands still present
in the D-IM topology.

Besides the D-IM topology adjustment according to the EAs
applied in its islands, DIV-OP analyzes the evolution of the pop-
ulation as a whole. Then, if is necessary to avoid a possible local
convergence, identified by comparing 𝑑𝑖𝑣 with 𝑠𝑝𝑐 , an opportunity
to search new solutions is created by replacing the portion 𝜒 of the
population.

4 MATERIALS AND METHODS
4.1 Differential Evolution
Differential Evolution (DE) was proposed in [20] and became one
of the most popular EAs. In DE, the population composed by 𝑁𝑃

𝐷-dimensional vectors, where 𝑁𝑃 is defined by the user, is submit-
ted to the operations named mutation, crossover and selection. In
mutation, for each vector 𝑥𝑖 (𝑖 = 1, 2, ..., 𝑁𝑃 ) in the population, a
mutant vector 𝑣𝑖 , is produced and given by

𝑣𝑖 = 𝑥𝑟1 + 𝐹 × (𝑥𝑟2 − 𝑥𝑟3), 𝑖 = 1, 2, ..., 𝑁𝑃, (6)

where 𝑟1, 𝑟2 and 𝑟3 ∈ {1, 2, ..., 𝑁𝑃} are random indexes of vectors
(candidate solutions), mutually different and also different from 𝑖 ,
𝐹 ∈ (0, 2] is a DE parameter, whose value is defined by the user
[20].

In crossover, the solutions 𝑣𝑖 and 𝑥𝑖 are combined to produce the
solution 𝑢𝑖 , given by

𝑢𝑖, 𝑗 =

{
𝑣𝑖, 𝑗 , if rand( 𝑗) ≤ 𝐶𝑅 or 𝑗 = rand(𝑖)
𝑥𝑖, 𝑗 , if rand( 𝑗) > 𝐶𝑅 and 𝑗 ≠ rand(𝑖) , (7)

where 𝑗 = 1, 2, ..., 𝐷 , rand( 𝑗) is the 𝑗-th random real value ∈ [0, 1],
rand(𝑖) is a random integer value ∈ {1, 2, ..., 𝐷}. In (7), 𝐶𝑅 ∈ [0, 1]
is another DE parameter to be defined by the user [20].

The selection operator defines which solution between 𝑢𝑖 and 𝑥𝑖
will compose the DE population. They are compared by their objec-
tive function values 𝑓 (·). For a minimization problem, if 𝑓 (𝑢𝑖 ) <
𝑓 (𝑥𝑖 ), 𝑥𝑖 will be replaced by 𝑢𝑖 , otherwise 𝑥𝑖 will be kept in the
population [20].

In [20], some variants of DE and a scheme to name them were
also proposed. In this way, a DE instance is identified as DE/𝑥/𝑦/𝑧,
where 𝑥 is the strategy adopted to define the vectors involved in
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mutation, 𝑦 is the number of difference operations in mutation and
𝑧 is the crossover scheme.

The popularity of DE is due to its simplicity and reported effi-
ciency. Another feature known about DE and its variants is their
fast convergence, generally due to their intensifying trend.

DE was the basis of many works in the literature, some of them
proposing variants for it. The DE-based algorithms generally take
positions among the winners when participating of competitions as
those for EAs to solve bounded constrained optimization problems,
frequently promoted in the Congress on Evolutionary Computation
(CEC). This is the case of the EAs called L-SHADE, SPS-L-SHADE-
EIG, DEsPA, CCLSHADE, jSO, LSHADE-RSP, DE variants proposed
in [3, 5, 10, 17, 19, 22] respectively, which won or were second
place in competitions occurred in CEC editions from 2014 to 2018.
These EAs were proposed based on JADE and SHADE, DE variants
proposed in [24] and [21] respectively. Basically, these DE variants
applied a scheme to adaptively adjust the parameters 𝐹 and 𝐶𝑅

from JADE and an operation to adaptively change the population
size from L-SHADE.

Due to the mentioned reasons, the DE variants cited in the pre-
vious paragraph were considered in this work for the evaluation of
DIV-OP in D-IM. The values for their respective parameters were
defined according to the recommendations of the authors, except
the population size. Three different implementations of the basic
DE, corresponding to the variants DE/𝑟𝑎𝑛𝑑/1/𝑏𝑖𝑛, DE/𝑏𝑒𝑠𝑡/1/𝑏𝑖𝑛
and DE/𝑏𝑒𝑠𝑡/2/𝑏𝑖𝑛 according to [20], identified in this work as DE-
1, DE-2 and DE-3 respectively, were also used in the experiments,
for which the valures 𝐹 = 0.5 and 𝐶𝑅 = 0.9 were defined.

4.2 D-IM configuration
Besides the definition of EAs to be applied in the D-IM islands,
other parameters values should be defined, such as: (i)𝑀 = 1; (ii)
𝜃 = 0.05, (iii) Migration rate (𝜉) = 10%. Migration frequency (𝐹𝑚𝑖𝑔)
and population size varied in the experiments.

For the adaptive adjustment of the D-IM topology, only the
strategy proposed in [8] was used in this work. According to [8],
this strategy performed better than that proposed in [7]. It was
also observed in [8] that this strategy directs a greater number
of solutions to islands with intensifying EAs. This evolutionary
behavior may require more intervention as that proposed by the
DIV-OP.

4.3 Problem Set
For the evaluation of D-IM with DIV-OP, it was used the set of prob-
lems proposed in [14] for the competition on bound constrained
optimization problems in 2015 CEC edition.

The 15 minimization problems, identified in this work as 𝐹𝑖 ,
where 𝑖 = 1, 2, ..., 15, were divided into 4 groups in [14]. Problems
𝐹1 and 𝐹2 are Unimodal Functions, 𝐹3, 𝐹4 and 𝐹5 are Simple Mul-
timodal Functions, 𝐹6, 𝐹7 and 𝐹8 are Hybrid Functions and the
last seven ones are classified as Composition Functions. In this
work, it was used 𝐷 = 10, which implies in the computational
cost𝑀𝐹𝐸 = 100000 according to [14], where𝑀𝐹𝐸 is the maximum
function evaluations.

4.4 Evaluation metrics
To analyze the results, among other resources such as the well-
known statistical metrics and methods, it was used the technique
Performance Profile proposed in [6]. It is applicable in evaluations
with a set of algorithms 𝑆 and a set of problems 𝑃 .

Basically, the Performance Profile indicates the percentage 𝜌𝑠 (𝜏)
of problems 𝑝 ∈ 𝑃 that each algorithm 𝑠 ∈ 𝑆 solve under a given
value 𝜏 defined according to the performance measure. Additionally,
in [4] was pointed that the area under curve 𝜌𝑠 (𝜏) is an indicator
of global performance of each 𝑠 . The bigger area indicates the most
efficient algorithm in 𝑆 .

Performance Profile requires a performance measure to be de-
fined by the user. In this work, it was used the median of the objec-
tive function values of solutions obtained in the independent D-IM
runs.

5 EXPERIMENTS AND RESULTS
This section presents the two experiments carried out in this work
aiming to evaluate the impact of the DIV-OP in the D-IM. The
difference between the experiments was the number of islands
(EAs) applied in the D-IM topology, consequently, its population
size.

5.1 Evaluation with 5 islands
Initially it was verified the effect of DIV-OP in D-IM according to
some values defined for the parameters 𝑠𝑝𝑐 and 𝜒 . In this analysis, it
was used a D-IMwith 5 islands in which it was applied the following
EAs: DE-1, DE-2, DE-3, JADE and SHADE. The population size was
defined as 200 (40 solutions for each island initially).

For the migration frequency, two values were considered: 𝐹𝑚𝑖𝑔 ∈
{50, 100}, which result respectively in 10 and 5 iterations of EAs
between D-IMmigrations. In this case, the effect of DIV-OP in D-IM
was verified under two different conditions for the convergence
of the EAs in the islands, which can impact in their population
diversity.

For the DIV-OP parameters, the defined values were 𝑠𝑝𝑐 ∈
{0.1, 0.3} and 𝜒 ∈ {0.25, 0.5, 0.7}. So, regarding 𝑠𝑝𝑐 , relative fast
(higher value) and slow (lower value) interventions in population
were evaluated. Regarding 𝜒 , at least a quarter of the population
was replaced, if necessary according to the 𝑑𝑖𝑣 value obtained by
(1), and restricted to the worst solutions.

For comparison, it was also included in the analysis a D-IM
instance without the DIV-OP. For identification purpose, each D-
IM instance was named in the form D-IM_𝑠𝑝𝑐_𝜒 in the case of using
DIV-OP or just D-IM otherwise. It was defined 30 independent runs
for all D-IM instances in solving each problem.

Table 1 presents the objective function value of the best solution
obtained for each problem with each D-IM instance considered in
this experiment, under 𝐹𝑚𝑖𝑔 = 50. The results referring to the D-IM
instances with 𝐹𝑚𝑖𝑔 = 100 were not presented in this work. It was
verified that they were similar to those presented in Table 1. In this
case, the reduction in the total iterations of EAs based on DE by
increasing 𝐹𝑚𝑖𝑔 did not compromise their convergence between
D-IM migrations. In this table, the third column also presents the
objective function value of the best solution obtained for each
problem by SPS-L-SHADE-EIG when executed individually with
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the same population size and computational cost adopted in this
analysis for D-IM instances. The SPS-L-SHADE-EIG, winner in the
competition of CEC, edition 2015, was also identified in [9] as the
best algorithm between those used in this work.

Table 1 shows that the D-IM based on DE variants produced
slightly better solutions when applying the DIV-OP under different
adjustments of its parameters 𝑠𝑝𝑐 and 𝜒 . Different D-IM instances
with DIV-OP produced better solution than the D-IM without it for
some problems as 𝐹4, 𝐹7, 𝐹8, 𝐹11 and 𝐹12. For some problems, the
D-IM based on DE did not produce the optimal global solution, even
under application of DIV-OP. In this case, regardless the portion of
the D-IM population that possibly was restarted by DIV-OP, they
did not impact in the EAs convergence trend. On the other hand,
the possible new solutions did not compromise the solution quality
of D-IM.

Regarding the performance of D-IM based on DE variants com-
pared to the individual execution of the respective EAs, in Table 1
note that for all problems, the SPS-L-SHADE-EIG produced the best
solutions found by some D-IM instance. In the case of the problems
𝐹4 and 𝐹8, SPS-L-SHADE-EIG produced a better solution than any
D-IM instance considered in this work, even for problem F8 the
difference was relatively small. Note that SPS-L-SHADE-EIG was
not applied in D-IM with 5 islands, just in the experiment described
in Section 5.2, but it is the best one between all algorithms used
in the work, because it, considered in Table 1. Besides, D-IM with
10 islands produced solutions very similar to those in Table 1, so
equivalent analysis was not performed in Section 5.2.

Among other characteristics, when applying DE variants in D-
IM, their population sizes are changed (reduced), which can impact
in their convergence. In this case, according to the results in Table
1, it is possible to say that run different DE variants in parallel
in D-IM is beneficial for solving the problem. Even the D-IM has
produced a solution similar to that obtained by the best algorithm,
in addition to promoting speedup, it automatically decided which
variants were most interesting to solve the problem and adjusted
the topology.

Tables 2 and 3 show the area under curve 𝜌𝑠 (𝜏) of Performance
Profile obtained for each evaluatedD-IM,with 𝐹𝑚𝑖𝑔 = 50 and 𝐹𝑚𝑖𝑔 =

100 respectively, in decreasing order. The metric applied in the
Performance Profile in this work represents the variety of solutions
obtained by D-IM instances in their runs. Tables 2 and 3 indicate
that DIV-OP can contribute positively to the D-IM convergence.
Some D-IM instances with DIV-OP outperformed that without it,
using both 𝐹𝑚𝑖𝑔 = 50 and 𝐹𝑚𝑖𝑔 = 100.

Tables 2 and 3 also indicate that it is not interesting to restart
more than half of the D-IM population by DIV-OP, mainly under
relatively high 𝐹𝑚𝑖𝑔 value. D-IM_0.1_0.7 andD-IM_0.3_0.7, inwhich
𝜒 = 0.7, the highest one evaluated here, were less efficient than
D-IM for both 𝐹𝑚𝑖𝑔 = 50 and 𝐹𝑚𝑖𝑔 = 100. For 𝐹𝑚𝑖𝑔 = 100 in
particular, according to Table 3, just D-IM_0.1_0.7 and D-IM_0.3_0.7
were less efficient than D-IM. A possible reason for this result is
that with high 𝜒 , if the DIV-OP replace solutions in islands with
not so good new random ones, the next EAs iterations may be
insufficient to evolve them from those solutions maintained in the
population. Additionally, in a D-IM based on DE variants, given the
fast convergence of these EAs, many of the maintained solutions
in some islands may be equals. In this case, other possible good

solutions/regions have been replaced by random ones through
DIV-OP, which may compromise the D-IM convergence. With a
moderate value assigned to parameter 𝜒 (≤ 0.5 according to this
analysis), the D-IM with DIV-OP explores new regions in the space,
while keeps a diverse convergence history.

According to Tables 2 and 3, the D-IM_0.3_0.25 was the most
efficient D-IM for both 𝐹𝑚𝑖𝑔 = 50 and 𝐹𝑚𝑖𝑔 = 100. Besides, for
𝐹𝑚𝑖𝑔 = 100, the two most efficient D-IMs were those with 𝑠𝑝𝑐 = 0.3,
except if 𝜒 = 0.7, value already commented. In this case, maintain-
ing reasonable coverage of the search space was positive for the
D-IM convergence with DIV-OP.

Regarding the main intervention of DIV-OP in the D-IM, Fig. 1
illustrates the variation of the mean value of 𝑑𝑖𝑣 over migrations,
before and after replacing solutions by new random ones. For each
migration, the values in Fig. 1 were calculated considering the set of
𝑑𝑖𝑣 values obtained in the 30 runs to solve the 15 problems, which
represents the complete experiment. Fig. 1 presents only the data
referring to the D-IM instances with 𝐹𝑚𝑖𝑔 = 100. The result was
similar with 𝐹𝑚𝑖𝑔 = 50.

Fig. 1(a) shows that the 5 iterations of EAs between D-IM mi-
grations, value when 𝐹𝑚𝑖𝑔 = 100, were enough to converge the
population to less than 30% of the search space. The DIV-OP re-
placed solutions in almost 100% of the D-IM migrations, even under
𝑠𝑝𝑐 = 0.1, the lower value evaluated in this work for DIV-OP pa-
rameter 𝑠𝑝𝑐 .

Fig. 1(b) illustrates that the mean 𝑑𝑖𝑣 increased around 2 to
4 times when some solutions were replaced/restarted by DIV-OP,
even in the D-IM instances with 𝜒 = 0.7, the highest one considered
in the experiment. In these D-IM instances the mean 𝑑𝑖𝑣 is kept
relatively high due to the number of new random solutions to
evolve. Even so, they reach the coverage threshold of the search
space defined by the 𝑠𝑝𝑐 parameter.

According to the results presented until this point, D-IM_0.3_0.25
is considered the best one between those evaluated here with DIV-
OP. So, it was the D-IM instance considered in the following analy-
ses.

Fig. 2 presents the variation of the standard deviation of the
objective function values in the population in each island, over
D-IM_0.3_0.25 migrations, before and after run iterations of EAs in
its islands, to solve problem 𝐹2. Note that the values after run EAs
precede each migration. On the other hand, the values before run
EAs reflect the effect of the previous migration in the respective
population. Fig. 3 shows equivalent values, however, referring to
the resolution of problem 𝐹15. Problems 𝐹2 and 𝐹15 were chosen
because they are in different groups in the problem set according
to their complexities [14]. Besides, their curves in Fig. 2 and 3
are representative for the obtained results in the experiment with
D-IM_0.3_0.25.

Taking the standard deviation as a measure of population diver-
sity from the view point of objective function, comparing each pair
of graphs in Fig. 2 and 3, it is possible to observe that independent
of the problem complexity, the population diversity in each island
was affected by DIV-OP in D-IM_0.3_0.25 migrations. In all cases,
the impact was the increase in the respective value.

Comparing Fig. 2(b) with 2(a) and 3(b) with 3(a), it is possible to
observe that the standard deviation increased considerably due to
the new random solutions created by DIV-OP over D-IMmigrations.
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Table 1: Objective function value of solution obtained for each problem by each D-IM instance with 5 islands, population
size = 200 and 𝐹𝑚𝑖𝑔 = 50 and the SPS-L-SHADE-EIG, when executed individually. The best value obtained for each problem is
highlighted in boldface. Column 𝐹 ∗ presents the optimum objective function value for the respective problem according to
[14].

𝐹 ∗ SPS-L-SHADE-EIG D-IM D-IM_0.1_0.25 D-IM_0.1_0.5 D-IM_0.1_0.7 D-IM_0.3_0.25 D-IM_0.3_0.5 D-IM_0.3_0.7

F1 100 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0029
F2 200 200.0000 200.0000 200.0000 200.0000 200.0004 200.0000 200.0000 200.0006
F3 300 300.0000 300.0000 300.0000 300.0000 300.0000 300.0000 300.0000 301.1552
F4 400 400.0000 402.9849 401.9899 400.9950 402.9849 401.9899 402.9849 403.9798
F5 500 500.0001 500.0001 500.0001 500.0001 500.0001 500.0001 500.0001 500.0054
F6 600 600.0000 600.0000 600.0000 600.0000 600.0000 600.0000 600.0000 600.0000
F7 700 700.0000 700.0291 700.0074 700.0074 700.0099 700.0197 700.0000 700.0075
F8 800 800.0000 800.0004 800.0001 800.0001 800.0001 800.0063 800.0001 800.0001
F9 900 1516.2448 1516.2448 1516.7886 1516.9261 1516.3839 1516.2448 1517.4152 1518.4931
F10 1000 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04
F11 1100 1200.0018 1200.0019 1200.0018 1200.0019 1200.0019 1200.0019 1200.0019 1200.0019
F12 1200 1244.1087 1245.6969 1244.1087 1244.1087 1244.1181 1244.1087 1244.1087 1244.1087
F13 1300 1737.0983 1737.1482 1737.1482 1737.1482 1737.1482 1737.0983 1737.1482 1737.0983
F14 1400 1565.9420 1565.9420 1649.7911 1649.7911 1649.7911 1565.9420 1649.7911 1565.9420
F15 1500 1750.1468 1750.1468 1750.1468 1750.8190 1750.1468 1751.3871 1751.3871 1750.1468

Table 2: Areas under 𝜌𝑠 (𝜏)
(Performance Profile) for
the D-IM variants with 5 is-
lands and 𝐹𝑚𝑖𝑔 = 50.

Area

D-IM_0.3_0.25 1.000000
D-IM_0.1_0.5 0.999422
D-IM 0.986033
D-IM_0.1_0.7 0.946416
D-IM_0.3_0.7 0.885776
D-IM_0.1_0.25 0.880430
D-IM_0.3_0.5 0.853888

Table 3: Areas under 𝜌𝑠 (𝜏)
(Performance Profile) for
the D-IM variants with 5 is-
lands and 𝐹𝑚𝑖𝑔 = 100.

Area

D-IM_0.3_0.25 1.000000
D-IM_0.3_0.5 0.986578
D-IM_0.1_0.5 0.977681
D-IM_0.1_0.25 0.970209
D-IM 0.969727
D-IM_0.1_0.7 0.942425
D-IM_0.3_0.7 0.910537

On the other hand, by comparing the pairs of graphs in Fig. 2 and
3 in the opposite direction, it is possible to verify that the EAs
iterations were enough to reduce again the population diversity
in islands, even their reduction rate were different. For example,
graphs in Fig. 2 and 3 indicate that JADE and SHADE tend to
maintain their population more diverse than others used EAs when
they are stimulated to do this.

Fig. 4 presents data equivalent to those in Fig. 3 for problem 𝐹15,
however, related to the D-IM without DIV-OP. Note that, despite
the migration, the dispersion of solutions from the view point of
objective function values is decreasing over all migrations, even in
the islands with JADE and SHADE, the EAs identified as the most
exploratory ones. This result reinforce the information that the DIV-
OP promoted a significant impact in diversity of the populations in
islands when necessary, according to the 𝑑𝑖𝑣 value.

Fig. 5 illustrates the variation of the mean population size in
each island over D-IM migrations, applying or not the DIV-OP
according to Fig. 5(b) and 5(a) respectively. Due to the fact that D-IM
presents behavioral tendencies regarding the dynamic adjustment
of topology and distribution of solutions [7, 8], for each migration

in Fig. 5(b) and 5(a), the value in the vertical axis was calculated
considering the values in the 30 runs to solve the 15 problems,
which represents the complete experiment.

In [8], it was verified that the strategy used in this work to
adjust the D-IM topology directs a greater number of solutions to
islands with intensifying EAs. Among EAs used in this experiment,
JADE and SHADE are the most exploratory ones, as previously
mentioned and illustrated in Fig. 2 and 3. Fig. 5, demonstrates that
the D-IM based on DE variants also sent more solutions to islands
with intensifying EAs, using or not the DIV-OP.

Fig. 5 also indicates that the DIV-OP stimulated the exploratory
ability of the EAs in D-IM islands. Comparing Fig. 5(b) with 5(a) it
is possible to observe that the D-IM_0.3_0.25 directed less solutions
to islands with JADE and SHADE than D-IM. Consequently, the
population directed to islands with intensifying EAs was increased
in D-IM_0.3_0.25, if compared to the D-IM. This behavior is relevant,
because when creating new random solutions by DIV-OP, the D-IM
simultaneously establishes condition to evolve them with quality,
directing even more solutions to the islands with EAs identified as
the best ones. Clarifying, in the context of the dynamic adjustment
of the topology in D-IM, the islands with the best EAs are those
with increasing population sizes over migrations. According Fig. 5,
in this experiment, the islands with DE-1, DE-2 and DE-3.

5.2 Evaluation with 10 islands
As an additional experiment, the number of islands in D-IM was
increased to 10. It aims to verify the D-IM convergence according
to the initial population size in its islands, mainly using the DIV-OP.
The EAs DE-1, DE-2, JADE, SHADE, SPS-L-SHADE-EIG, DEsPA,
L-SHADE, LSHADE-RSP, jSO and CCLSHADE were used in the
islands, which maintains the D-IM based on DE and intensification
behavior. Like in [9], the EAs which change the population size
along their iterations had such operation disabled in D-IM. Their
population sizes were controlled just by the D-IM migrations.
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(a) Before New Solutions

(b) After New Solutions

Figure 1: Variation of the mean diversity of population of D-
IM with 5 islands and 𝐹𝑚𝑖𝑔 = 100, before and after insertion
of new random solutions by DIV-OP.

In this experiment, the D-IM population size was defined as 300,
which results in 30 candidate solutions in each island initially, 25%
lower than that in the previous experiment. The DIV-OP were also
evaluated with 𝑠𝑝𝑐 ∈ {0.1, 0.3}, 𝜒 ∈ {0.25, 0.5, 0.7} and 𝐹𝑚𝑖𝑔 ∈
{50, 100}. For comparison purpose, the D-IM was again performed
without the DIV-OP. The D-IM instances were named in the same
scheme adopted in the previous experiment.

Table 4 presents the objective function value of the best solution
obtained for each problem with each D-IM instance considered in
this experiment, under 𝐹𝑚𝑖𝑔 = 50 and SPS-L-SHADE-EIG, the best
EA between those used in this work. The results obtained with
D-IM instances with 𝐹𝑚𝑖𝑔 = 100 were similar to those presented in
Table 4.

Comparing Table 1 with Table 4, it is possible to observe that the
increase in the number of islands in the D-IM caused a variation
in the quality of the solution produced by it. However, the change
also involves a reduction of 25% in the initial population size of the
islands and a greater variety of EAs. For this reason, the difference
in results in relation to the best solution is considered small. It is

(a) Before Run EAs

(b) After Run EAs

Figure 2: Variation of standard deviation of objective func-
tion of solutions in each island, over migrations of D-
IM_0.3_0.25, before and after executions of iterations of EAs
for problem 𝐹2. In figure, Obj. Func. = Objective Function,
Std. = Standard deviation.

(a) Before Run EAs

(b) After Run EAs

Figure 3: Variation of standard deviation of objective func-
tion of solutions in each island, over migrations of D-
IM_0.3_0.25, before and after executions of iterations of EAs
for problem 𝐹15. In figure, Obj. Func. = Objective Function,
Std. = Standard deviation.

important to consider the set of solutions, verified in the following
analysis through the Performance Profile.

Tables 5 and 6 show the area under curve 𝜌𝑠 (𝜏) of Performance
Profile obtained for each evaluated D-IM, with 𝐹𝑚𝑖𝑔 = 50 and
𝐹𝑚𝑖𝑔100 respectively, in decreasing order. Those tables indicate that
this experiment also pointed that is not interesting to restart more
than half of the D-IM population by DIV-OP. As in the previous
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Table 4: Objective function value of solution obtained for each problem by each D-IM instance with 10 islands, population
size = 300 and 𝐹𝑚𝑖𝑔 = 50 and the SPS-L-SHADE-EIG, when executed individually. The best value obtained for each problem is
highlighted in boldface. Column 𝐹 ∗ presents the optimum objective function value for the respective problem according to
[14].

𝐹 ∗ SPS-L-SHADE-EIG D-IM D-IM_0.1_0.25 D-IM_0.1_0.5 D-IM_0.1_0.7 D-IM_0.3_0.25 D-IM_0.3_0.5 D-IM_0.3_0.7

F1 100 100.0000 100.0000 100.0000 100.0000 100.0003 100.0000 100.0128 100.1504
F2 200 200.0000 200.0000 200.0000 200.0172 200.2818 200.0000 200.0261 237.8832
F3 300 300.0000 300.0024 300.0005 300.0000 300.0002 300.0014 301.7289 302.3562
F4 400 400.0000 400.9950 401.9899 401.9899 403.9798 401.9899 401.9899 403.9810
F5 500 500.0001 500.0001 500.0001 500.0001 500.0001 500.0001 500.0038 500.0681
F6 600 600.0000 600.0000 600.0000 600.0000 600.0000 600.0000 600.0000 600.0000
F7 700 700.0000 700.0094 700.0365 700.0268 700.0292 700.0074 700.0115 700.1434
F8 800 800.0000 800.0003 800.0019 800.0002 800.0477 800.0051 800.0082 800.0315
F9 900 1516.2448 1516.2448 1516.2448 1516.9261 1517.4152 1516.2448 1516.2448 1517.8997
F10 1000 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04 1.1281e+04
F11 1100 1200.0018 1200.0018 1200.0020 1200.0019 1200.0020 1200.0020 1200.0020 1200.0021
F12 1200 1244.1087 1245.4617 1244.1087 1244.1087 1244.1087 1240.8806 1244.2053 1244.1100
F13 1300 1737.0983 1737.1482 1737.1188 1737.0983 1737.1482 1737.0741 1737.0634 1737.1404
F14 1400 1565.9420 1565.9420 1565.9420 1565.9420 1565.9420 1565.9420 1565.9420 1565.9421
F15 1500 1750.1468 1750.1464 1750.1468 1750.1468 1750.1468 1750.1468 1750.1466 1751.2418

(a) Before Run EAs.

(b) After Run EAs.

Figure 4: Variation of standard deviation of objective func-
tion of solutions in each island, over migrations of D-IM, be-
fore and after executions of iterations of EAs for problem
𝐹15. In figure, Obj. Func. = Objective Function, Std. = Stan-
dard deviation.

experiment, instances with 𝜒 = 0.7 performed less than D-IM, for
all 𝑠𝑝𝑐 values.

Comparing Tables 5 and 6 with Tables 2 and 3, it is possible to
observe that after increasing the number of islands and reducing
their initial population sizes, D-IM without DIV-OP performed
better than those with it. In this case, from the view point of the
convergence of the EAs in the D-IM islands, when applying the
DIV-OP, it is important to define a reasonable initial population
size to them.

Fig. 6 presents the variation of the mean value of 𝑑𝑖𝑣 over D-IM
migrations in this experiment, before and after replacing solutions

(a) D-IM

(b) D-IM_0.3_0.25

Figure 5: Variation of the mean population size in islands
over migrations of D-IM and D-IM_0.3_0.25.

by new random ones through DIV-OP. For each migration, the
values in Fig. 6 were calculated considering the set of 𝑑𝑖𝑣 values
obtained in the 30 runs to solve the 15 problems, which represents
the complete experiment.

Comparing Fig. 6 with Fig. 1, it is possible to observe that the
frequency of restarting solutions did not change after increasing
the number of islands in D-IM. Besides, the difference between
considered D-IM instances was similar in the two experiments for
both before and after restarting some solutions by the DIV-OP.

Comparing Fig. 6(a) with 1(a), it is possible to verify that in
the second experiment, for most D-IM instances, the reduction in
the population diversity was smaller and slower than in the first
one. Considering that this difference is observed since initial D-IM
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Table 5: Areas under 𝜌𝑠 (𝜏)
(Performance Profile) for
the D-IM variants with 10
islands and 𝐹𝑚𝑖𝑔 = 50.

Area

D-IM_0.1_0.25 1.000000
D-IM 0.999791
D-IM_0.1_0.5 0.998926
D-IM_0.3_0.25 0.998808
D-IM_0.3_0.5 0.996187
D-IM_0.1_0.7 0.994522
D-IM_0.3_0.7 0.927784

Table 6: Areas under 𝜌𝑠 (𝜏)
(Performance Profile) for
the D-IM variants with 10
islands and 𝐹𝑚𝑖𝑔 = 100.

Area

D-IM 1.000000
D-IM_0.1_0.25 1.000000
D-IM_0.1_0.5 1.000000
D-IM_0.1_0.7 0.999989
D-IM_0.3_0.25 0.999986
D-IM_0.3_0.5 0.999964
D-IM_0.3_0.7 0.933306

migrations, this behavior is not only due to the restart of some
solutions by the DIV-OP. It is also due to the increase in the number
of islands and consequent reduction in their initial population sizes.

On the other hand, comparing Fig. 1(b) and 6(b), it is possible
to observe that the effect in the population diversity promoted
by the restart of some solutions through DIV-OP was practically
identical in the two experiments according to the respective 𝑠𝑝𝑐
and 𝜒 values. In this case, the population diversity promoted by
DIV-OP is sensitive to the setting of parameters 𝑠𝑝𝑐 and 𝜒 , not
necessarily to the islands population sizes.

6 CONCLUSION
This work proposed the DIV-OP for the D-IM, aiming to promote
diversity to the population in islands. By DIV-OP, some solutions
are replaced by new random ones if a possible local convergence
is identified according to the population diversity, verified by the
portion of the search space covered by the candidate solutions.

The D-IM with DIV-OP was evaluated through instances based
on DE variants. They were different between themselves according
to the values assigned to the DIV-OP parameters 𝑠𝑐𝑝 and 𝜒 , number
of islands and population size. They were also compared to the
D-IM without DIV-OP.

The experiments indicated that the D-IM based on DE variants
converge quickly to relative small portions of the search space,
which required the replacement of solutions by DIV-OP in almost
all migrations, which increased the population diversity.

Regarding the solution quality, despite the use of DIV-OP, the
D-IM did not find the optimal global solution for some problems.
Besides, different D-IM instances with DIV-OP produced slightly
better solution than the D-IM without it for some problems. In this
case, even the new random solutions/regions did not contribute to
the global convergence, they contributed positively to the evolution-
ary tendencies of the EAs in the islands. Additionally, D-IM, when
applied or not the DIV-OP, produced solutions similar or equal to
that produced by the best DE variant among those applied on its
islands. In this case, applying different DE variants in parallel in
D-IM is a positive strategy to solve the problem. In addition to pro-
moting speedup, the most suitable ones are dynamically identified
to be used more intensively.

On the DIV-OP parameters setting, according to the obtained
results, this work recommends 𝜒 ≤ 0.5. On the 𝑠𝑝𝑐 , between values
evaluated in this work, the results indicated that this parameter

(a) Before New Solutions

(b) After New Solutions

Figure 6: Variation of the mean diversity of population of D-
IM with 10 islands and 𝐹𝑚𝑖𝑔 = 50, before and after insertion
of new random solutions by DIV-OP.

did not impact considerably in the DIV-OP. Even so, the best D-IM
instance with DIV-OP was that in which was applied the high-
est value among those considered for 𝑠𝑝𝑐 . In this case, this work
recommends 𝑠𝑝𝑐 = 0.3.

As future work it is intended to:
• Evaluate the performance of D-IM with the proposed opera-
tion using more distinct EAs in its islands.

• Apply other metrics to evaluate the population diversity.
• Evaluate different strategies to produce new solutions in the
D-IM population.

ACKNOWLEDGMENTS
The authors acknowledge the support of the Brazilian funding agen-
cies CNPq – Conselho Nacional de Desenvolvimento Científico e
Tecnológico (Grant Number 309042/2020-8) and CAPES – Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior (Finance
Code 001). This research was developed with the support of the
Núcleo Avançado de Computação de Alto Desempenho (NACAD)
at COPPE, Federal University of Rio de Janeiro (UFRJ) - Brazil.

1786



An operation to promote diversity in Evolutionary Algorithms in a Dynamic Hybrid Island Model GECCO ’21, July 10–14, 2021, Lille, France

REFERENCES
[1] Enrique Alba. 2005. Parallel Metaheuristics: A New Class of Algorithms. Wiley.
[2] L. Araujo and J. J. Merelo. 2011. Diversity Through Multiculturality: Assessing

Migrant Choice Policies in an Island Model. IEEE Transactions on Evolutionary
Computation 15, 4 (2011), 456–469. https://doi.org/10.1109/TEVC.2010.2064322

[3] N. Awad, M. Z. Ali, and R. G. Reynolds. 2015. A differential evolution algo-
rithm with success-based parameter adaptation for CEC2015 learning-based
optimization. In 2015 IEEE Congress on Evolutionary Computation (CEC). 1098–
1105. https://doi.org/10.1109/CEC.2015.7257012

[4] H.J.C. Barbosa, H.S. Bernardino, and A.M.S. Barreto. 2010. Using performance
profiles to analyze the results of the 2006 CEC constrained optimization compe-
tition. In Evolutionary Computation (CEC), 2010 IEEE Congress on. 1–8. https:
//doi.org/10.1109/CEC.2010.5586105

[5] J. Brest, M. S. Maučec, and B. Bošković. 2017. Single objective real-parameter
optimization: Algorithm jSO. In 2017 IEEE Congress on Evolutionary Computation
(CEC). 1311–1318. https://doi.org/10.1109/CEC.2017.7969456

[6] Elizabeth D. Dolan and Jorge J. More. 2002. Benchmarking optimization software
with performance profiles. Mathematical Programming 91, 2 (2002), 201–213.
https://doi.org/10.1007/s101070100263

[7] G. Duarte, A. Lemonge, and L. Goliatt. 2017. A dynamic migration policy to
the Island Model. In 2017 IEEE Congress on Evolutionary Computation (CEC).
1135–1142. https://doi.org/10.1109/CEC.2017.7969434

[8] G. Duarte, A. Lemonge, and L. Goliatt. 2018. A New Strategy to Evaluate the
Attractiveness in a Dynamic Island Model. In 2018 IEEE Congress on Evolutionary
Computation (CEC). 1–8. https://doi.org/10.1109/CEC.2018.8477706

[9] Grasiele Regina Duarte and Beatriz Souza Leite Pires de Lima. 2020. Differen-
tial Evolution variants combined in a Hybrid Dynamic Island Model. In 2020
IEEE Congress on Evolutionary Computation (CEC). 1–8. https://doi.org/10.1109/
CEC48606.2020.9185579

[10] M. El-Abd. 2016. Cooperative co-evolution using LSHADE with restarts for the
CEC15 benchmarks. In 2016 IEEE Congress on Evolutionary Computation (CEC).
4810–4814. https://doi.org/10.1109/CEC.2016.7744406

[11] Alfian Akbar Gozali and Shigeru Fujimura. 2019. DM-LIMGA: Dual Migration
Localized Island Model Genetic Algorithm—a better diversity preserver island
model. Evolutionary Intelligence 12 (2019), 527–539. https://doi.org/10.1007/
s12065-019-00253-2

[12] Steven Gustafson and Edmund K. Burke. 2006. The Speciating Island Model: An
alternative parallel evolutionary algorithm. J. Parallel and Distrib. Comput. 66,
8 (2006), 1025–1036. https://doi.org/10.1016/j.jpdc.2006.04.017 Special Issue:
Parallel Bioinspired Algorithms.

[13] D. Izzo, M. Rucinski, and C. Ampatzis. 2009. Parallel global optimisation meta-
heuristics using an asynchronous island-model. In 2009 IEEE Congress on Evolu-
tionary Computation. 2301–2308. https://doi.org/10.1109/CEC.2009.4983227

[14] J. J. Liang, B. Y. Qu, P. N. Suganthan, and Q Chen. 2014. Problem Definitions and
Evaluation Criteria for the CEC 2015 Competition on Learning-based Real-Parameter
Single Objective Optimization. Technical Report. Nanyang Technological Univer-
sity.

[15] Rafael Stubs Parpinelli and Heitor Silvério Lopes. 2012. An Ecology-Based
Heterogeneous Approach for Cooperative Search. In Advances in Artificial Intel-
ligence - SBIA 2012, Leliane N. Barros, Marcelo Finger, Aurora T. Pozo, Gustavo A.
Gimenénez-Lugo, and Marcos Castilho (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 212–221.

[16] M. Ruciński, D. Izzo, and F. Biscani. 2010. On the impact of the migration topology
on the Island Model. Parallel Comput. 36, 10–11 (2010), 555–571. https://doi.org/
10.1016/j.parco.2010.04.002 Parallel Architectures and Bioinspired Algorithms.

[17] S.Guo, J. S. Tsai, C. Yang, and P. Hsu. 2015. A self-optimization approach for
L-SHADE incorporated with eigenvector-based crossover and successful-parent-
selecting framework on CEC 2015 benchmark set. In 2015 IEEE Congress on
Evolutionary Computation (CEC). 1003–1010. https://doi.org/10.1109/CEC.2015.
7256999

[18] Zbigniew Maciej Skolicki. 2007. An Analysis of Island Models in Evolutionary
Computation. Ph.D. Dissertation. Fairfax, VA, USA. Advisor(s) Jong, Kenneth A.

[19] V. Stanovov, S. Akhmedova, and E. Semenkin. 2018. LSHADE Algorithm
with Rank-Based Selective Pressure Strategy for Solving CEC 2017 Bench-
mark Problems. In 2018 IEEE Congress on Evolutionary Computation (CEC). 1–8.
https://doi.org/10.1109/CEC.2018.8477977

[20] Rainer Storn and Kenneth Price. 1997. Differential Evolution – A Simple and Effi-
cient Heuristic for global Optimization over Continuous Spaces. Journal of Global
Optimization 11, 4 (1997), 341–359. https://doi.org/10.1023/A:1008202821328

[21] R. Tanabe and A. Fukunaga. 2013. Success-history based parameter adaptation
for Differential Evolution. In 2013 IEEE Congress on Evolutionary Computation.
71–78. https://doi.org/10.1109/CEC.2013.6557555

[22] R. Tanabe and A. S. Fukunaga. 2014. Improving the search performance of SHADE
using linear population size reduction. In 2014 IEEE Congress on Evolutionary
Computation (CEC). 1658–1665. https://doi.org/10.1109/CEC.2014.6900380

[23] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and Ex-
ploitation in Evolutionary Algorithms: A Survey. ACM Comput. Surv. 45, 3 (July

2013), 33 pages. https://doi.org/10.1145/2480741.2480752
[24] Jingqiao Zhang and A. C. Sanderson. 2007. JADE: Self-adaptive differential

evolution with fast and reliable convergence performance. In 2007 IEEE Congress
on Evolutionary Computation. 2251–2258. https://doi.org/10.1109/CEC.2007.
4424751

1787

https://doi.org/10.1109/TEVC.2010.2064322
https://doi.org/10.1109/CEC.2015.7257012
https://doi.org/10.1109/CEC.2010.5586105
https://doi.org/10.1109/CEC.2010.5586105
https://doi.org/10.1109/CEC.2017.7969456
https://doi.org/10.1007/s101070100263
https://doi.org/10.1109/CEC.2017.7969434
https://doi.org/10.1109/CEC.2018.8477706
https://doi.org/10.1109/CEC48606.2020.9185579
https://doi.org/10.1109/CEC48606.2020.9185579
https://doi.org/10.1109/CEC.2016.7744406
https://doi.org/10.1007/s12065-019-00253-2
https://doi.org/10.1007/s12065-019-00253-2
https://doi.org/10.1016/j.jpdc.2006.04.017
https://doi.org/10.1109/CEC.2009.4983227
https://doi.org/10.1016/j.parco.2010.04.002
https://doi.org/10.1016/j.parco.2010.04.002
https://doi.org/10.1109/CEC.2015.7256999
https://doi.org/10.1109/CEC.2015.7256999
https://doi.org/10.1109/CEC.2018.8477977
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/CEC.2013.6557555
https://doi.org/10.1109/CEC.2014.6900380
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1109/CEC.2007.4424751
https://doi.org/10.1109/CEC.2007.4424751

	Abstract
	1 Introduction
	2 Adaptive Dynamic Island Model
	3 Operation Proposed for Dynamic Island Model
	4 Materials and Methods
	4.1 Differential Evolution
	4.2 D-IM configuration
	4.3 Problem Set
	4.4 Evaluation metrics

	5 Experiments and Results
	5.1 Evaluation with 5 islands
	5.2 Evaluation with 10 islands

	6 Conclusion
	References

