
Solving QUBO with GPU Parallel MOPSO
Noriyuki Fujimoto

fujimoto@cs.osakafu-u.ac.jp
Osaka Prefecture University

Sakai, Osaka, Japan

Kouki Nanai
sab01101@edu.osakafu-u.ac.jp
Osaka Prefecture University

Sakai, Osaka, Japan

ABSTRACT
TheQuadratic Unconstrained Binary Optimization problem (QUBO)
is an NP-hard optimization problem. QUBO can be reduced from
many other combinatorial optimization problems. Hence, if we can
solve QUBO, we can also solve many other problems. The paper
proposes a novel method to solve QUBO by reducing it into the
Bi-objective Bound-constrained Continuous Optimization problem
(BBCO) and then solving the BBCO with Multi-Objective Particle
Swarm Optimization (MOPSO). Using 45 benchmark problem in-
stances, the paper also shows that a GPU parallel implementation
of the proposed method on the CUDA architecture finds solutions
with low relative errors for the benchmark instances at most 100
variables (76% of the benchmark instances) and runs up to 202 times
faster than the corresponding multi-threaded CPU program on four
physical cores.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies.

KEYWORDS
quadratic unconstrained binary optimization, multi-objective opti-
mization, particle swarm optimization, GPU computing, CUDA

ACM Reference Format:
Noriyuki Fujimoto and Kouki Nanai. 2021. Solving QUBO with GPU Parallel
MOPSO. In 2021 Genetic and Evolutionary Computation Conference Compan-
ion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3449726.3463208

1 INTRODUCTION
TheQuadratic Unconstrained Binary Optimization problem (QUBO)
is an NP-hard optimization problem defined as follows:

min
𝒙

𝒙𝑡𝑄𝒙 (1)

where 𝑄 is a given 𝑛-by-𝑛 matrix, 𝒙 is an 𝑛 dimensional 0-1 vector
(i.e., 𝒙 ∈ {0, 1}𝑛), and 𝒙𝑡 is the transposed vector of 𝒙 . QUBO can
be reduced from the Ising problem and vice versa by a naive change
of variables. The Ising problem is the only problem that Quantum
Annealing machines [14, 15] (QA machines) can solve natively. QA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463208

machines have recently attracted much attention. Therefore, QUBO
is also gathering attention as a target problem for QA machines.
Thus, QUBO has been actively studied these days and it turned out
that many important combinatorial optimization problems includ-
ing the optimization counter parts of the 21 NP-complete problems
shown by Karp can be reduced to QUBO [9, 20]. That is, although
the formal definition of QUBO is very brief, it can represent many
problems. Hence, if we can solve QUBO, then many other important
combinatorial optimization problems also can be solved.

QUBO can be solved by QA machines if we reduce QUBO to the
Ising problem. However, due to the connectivity limitations among
quantum qubits, current QA machines can solve small problem
instances only. For example, QA machines by D-Wave Systems
with 2,048 qubits can solve the traveling salesman problems with at
most eight cities. It is unclear that the limitations can be improved in
the near future. Since QUBO is an important optimization problem,
we should develop new methods to fast solve QUBO on classical
(i.e., non-quantum) computers or devices without waiting for the
development of QA machines.

In November 2006, GPUs that were originally developed as ded-
icated chips to draw images on display monitors became able to
programmable not only for graphics but also for general purpose
computing. The latest GPUs on the CUDA architecture [6] are
many-core processors equipped with 10,496 cores and can run
multi-threaded parallel programs with more than several tens of
millions of threads. They provide 35.7 Tera FP32 FLOPS with rela-
tively low cost. Therefore, GPUs have been gathering attention as
high cost-performance computing platforms and have been applied
to various application problems in various fields in this decade.

Recently, for the single-objective optimization problem classes
of maximizing non-monotone submodular functions without con-
straints, maximizing submodular and approximately monotone
functions with a size constraint, and maximizing monotone and
approximately submodular functions with a size constraint, Qian
et al. proved that multi-objective evolutionary algorithms given
multi-objective optimization problem instances transformed from
original single-objective problem instances can generally achieve
good approximation guarantees for the original problem instances
in polynomial expected time [22]. The above problem classes in-
clude maximum cut [8], maximum facility location [2], variants
of the maximum satisfiability problem [8], sensor placement [18],
sparse regression [7], dictionary selection [17], and Bayesian ex-
perimental design [3].

Inspired by Qian et al.’s work [22], the paper proposes a novel
method to solve QUBO by reducing it into the Bi-objective Bound-
constrained Continuous Optimization problem (BBCO). Note that
QUBO is a discrete problem and BBCO is a continuous problem.
The proposed method lets one of the two objective function be
the single objective function of QUBO and uses another objective

1788

https://doi.org/10.1145/3449726.3463208
https://doi.org/10.1145/3449726.3463208

GECCO ’21 Companion, July 10–14, 2021, Lille, France Fujimoto and Nanai

function to force the optimal solution of the bi-objective problem
to be integral.

To solve BBCO, the paper uses Multi-Objective Particle Swarm
Optimization (MOPSO). In 2018, the authors developed a GPU pro-
gram [12, 13] to solve BBCO with Multi-Objective Particle Swarm
Optimization (MOPSO). The GPU program solves BBCO up to 182
times faster than the corresponding single-threaded CPU program.
The paper shows an implementation of the proposed method with
an improved version of the GPU program, which is specialized to
QUBO solving.

The remainder of the paper is organized as follows. First, Section
2 briefly reviews our GPU parallel MOPSO method parallelized
on the CUDA architecture. Next, Section 3 describes the proposed
method and its implementation in detail. Then, Section 4 shows sev-
eral experimental results to evaluate the proposed method. Finally,
Section 5 gives some concluding remarks and future works.

The paper does not explain GPU programming. The readers not
familiar with GPU programming are recommended to read [6].

2 A BRIEF REVIEW OF OUR GPU PARALLEL
MOPSO METHOD

MOPSO is an extension of Particle Swarm Optimization (PSO) [16]
to deal with multi-objective optimization problems. PSO is a pop-
ulation based stochastic search method for single-objective opti-
mization problems. The population consists of particles such that
each particle moves in the search space to find a better solution
and maintains the best solution it found so far as its personal best
solution. The best solution among the personal best solutions is
called the global best solution. The velocity 𝒗 (𝑡) and the position
𝒙 (𝑡) of a particle at iteration 𝑡 are updated according to its per-
sonal best solution 𝒙𝑝𝑏𝑒𝑠𝑡 (𝑡) and the global best solution 𝒙𝑔𝑏𝑒𝑠𝑡 (𝑡)
respectively by the following equations where 𝑤 , 𝑐1, and 𝑐2 are
constants and 𝑟1 and 𝑟2 are random real numbers in [0, 1]:

𝒗 (𝑡 + 1) = 𝑤𝒗 + 𝑐1𝑟1 (𝒙𝑝𝑏𝑒𝑠𝑡 (𝑡) − 𝒙 (𝑡)) + 𝑐2𝑟2 (𝒙𝑔𝑏𝑒𝑠𝑡 (𝑡) − 𝒙 (𝑡))
(2)

𝒙 (𝑡 + 1) = 𝒙 (𝑡) + 𝒗 (𝑡 + 1) (3)

In our experiments in Section 4,𝑤 , 𝑐1, and 𝑐2 are respectively fixed
to 0.729, 1.4595, and 1.4595 according to [13]. The final global best
solution is returned as the output of PSO.

Inmulti-objective optimization problems, for given two solutions,
we cannot always say which one is better than another. Therefore,
in general we cannot determine ‘the best’ solution in the multi-
objective settings. Thus, MOPSO requires to extend the notion of
‘the best’ solution in some way. There are several ways to extend
[19, 23].

Our MOPSO method [12, 13] replaces the personal best solution
with a dominant solution each particle newly found and replaces
the global best solution with a solution each particle randomly
selected from the set (called an archive) of solutions non-dominated
by ‘the personal best solution’ of the first particle. After the 𝑡 loop is
stopped, assuming bi-objective optimization problems, our MOPSO
method sorts the solutions in the final archive in terms of one of
the two objectives and then removes solutions dominated by other
solutions from the final archive to generate a Pareto front. In com-
mon MOPSO methods, an archive is defined as the set of solutions

non-dominated each other. However, such an archive is difficult to
fast update in parallel. In contrast, although an archive computed
by our MOPSO method is no more than a rough approximation of
a non-dominated set, its computation can be easily parallelized and
its parallel efficiency is high. That is, our MOPSO method intends
to keep balance between computational time and accuracy of the
computed Pareto front. Regardless of its simplicity and high speed,
our MOPSO method was shown to generate a Pareto front close to
the true Pareto front for some test functions [12, 13].

A pseudo code of our MOPSO method is shown in Algorithm 1.
Our MOPSO solves the following BBCO:

min
𝒙

(𝑓1 (𝒙), 𝑓2 (𝒙)) s.t. ℓ ≤ 𝒙 ≤ 𝒖 (4)

where 𝒙 is an 𝑛 dimensional real vector such that each element is
given a constant lower bound and a constant upper bound respec-
tively by 𝑛 dimensional constant real vectors ℓ and 𝒖. The construct
for...in parallel do represents that iterations in the for loop can
be executed in parallel. There are four for loops in the pseudo code.
The three for loops except the for loop to count 𝑡 in line 4 are exe-
cuted in parallel. Note that using the scan operation [11] Step 10 of
Algorithm 1 is efficiently parallelized [12, 13]. In summary, most
part of our MOPSO is parallelized.

Algorithm 1 A pseudo code of our GPU parallel MOPSO method

Input: objective functions 𝑓1 and 𝑓2 of 𝒙 ∈ R𝑑 , constant vectors
ℓ, 𝒖 ∈ R𝑑 , a number𝑚 of used particles, the maximum number
𝑡𝑚𝑎𝑥 of iterations

Output: a Pareto front for multi-objective optimization problem
min𝒙 (𝑓1 (𝒙), 𝑓2 (𝒙)) s.t. ℓ ≤ 𝒙 ≤ 𝒖

1: for 𝑖 = 1 . . .𝑚 in parallel do
2: Initialize the position vector of the particle 𝑖 randomly.
3: end for
4: for 𝑡 = 1 . . . 𝑡𝑚𝑎𝑥 do
5: for 𝑖 = 1 . . .𝑚 in parallel do
6: Let 𝒙 be the position vector of the particle 𝑖 .
7: Compute 𝑓1 (𝒙) and 𝑓2 (𝒙).
8: Replace the personal best solution of the particle 𝑖 with 𝒙

if the personal best solution is dominated by 𝒙 .
9: end for
10: Let the set of all personal best solutions non-dominated by

the personal best solution of the first particle (i.e., particle 1)
be the current archive.

11: for 𝑖 = 1 . . .𝑚 in parallel do
12: Randomly select a particle in the current archive as a

substitute for the global best of the particle 𝑖 .
13: Update velocities and positions of the particle 𝑖 according

to the velocity update equation (2) and the position update
equation (3), which depends on the current personal best
solutions and the current global best solution.

14: end for
15: end for
16: Sort the current archive in the ascending order of 𝑓2.
17: Construct a Pareto front from the sorted archive.

1789

Solving QUBO with GPU Parallel MOPSO GECCO ’21 Companion, July 10–14, 2021, Lille, France

3 THE PROPOSED METHOD
The proposed method solves a given QUBO instance min𝒙 𝒙𝑡𝑄𝒙
by reducing it into the following BBCO:

min𝒙 (𝑓1 (𝒙), 𝑓2 (𝒙)) s.t. 0 ≤ 𝑥 ≤ 1
𝑓1 (𝒙) = 𝒙𝑡𝑄𝒙

𝑓2 (𝒙) =
∑𝑛
𝑖=1 𝒙𝑖 (1 − 𝒙𝑖)

(5)

where 𝒙 is an 𝑛 dimensional real vector, 𝒙𝑖 is the 𝑖th element of
𝒙 , 0 is an 𝑛 dimensional zero vector, and 1 is an 𝑛 dimensional
vector such that every element is one. Minimizing the objective
function 𝑓2 (𝒙) guarantees that 𝒙 ∈ {0, 1}𝑛 . This follows because
𝑓2 (𝒙) ≥ 0 for 0 ≤ ∀𝒙 ≤ 1 and “𝑓2 (𝒙) = 0 if and only if 𝒙 ∈ {0, 1}𝑛 .”
The basic idea behind the proposed method is that the proposed
method returns as a result a vector with the minimum 𝑓1 value
of vectors with 𝑓2 value zero in the obtained Pareto front. If we
can always obtain the true Pareto front of a given BBCO, the basic
idea goes well. However, it is not realistic. Therefore, the actual
implementation shown in the following takes measures to address
this problem.

BBCO is solved with an improved version of our GPU parallel
MOPSO described in Section 2. We specialized our MOPSO to solve
QUBO.Whenwe naively apply ourMOPSO toQUBO, themost time-
consuming part is evaluation of 𝑓1 (𝒙) = 𝒙𝑡𝑄𝒙 for each particle. To
accept any function as 𝑓1 (i.e., 𝑓1 is given as a parameter), evaluation
of 𝑓1 have to be naively implemented as shown in Algorithm 2. Al-
though Algorithm 2 is embarrassingly parallelized among particles,
if the time complexity of evaluation of 𝑓1 is high, Algorithm 2 is
still time-consuming. However, if 𝑓1 (𝒙) is fixed to 𝒙𝑡𝑄𝒙 , evaluation
of 𝑓1 can be implemented as shown in Algorithm 3. Notice that
Algorithm 2 and Algorithm 3 have the same total work because the
total work of Algorithm 2 in the case that 𝑓1 (𝒙) = 𝒙𝑡𝑄𝒙 is𝑂 (𝑚𝑛2)
and Algorithm 3 consists of matrix multiplication with the total
work𝑂 (𝑚𝑛2) and a simple parallel loop with the total work𝑂 (𝑚𝑛).
The parallel loop can be efficiently implemented by a naive GPU
kernel function. For matrix multiplication on CPUs, there exist sev-
eral highly optimized implementations compatible with the famous
BLAS library [1]. For matrix multiplication on GPUs, GPU vendor
NVIDIA provides a highly optimized implementation compatible
with the BLAS library, called cuBLAS [4]. If we use such a highly
optimized implementation for matrix multiplication, Algorithm 3
runs much faster than Algorithm 2 on both a CPU and a GPU.

A pseudo code of the whole proposed method is shown in Algo-
rithm 4. Note that the proposed method parallelizes not only matrix
multiplication but also most other part of the algorithm. That is,
most part of the proposed method is parallelized. The solutions
in the true Pareto front of the bi-objective problem is forced to
be a 0-1 vector by the second objective function 𝑓2. However, our
MOPSO does not always generate the true Pareto front. In general,
our MOPSO generates an approximation of the true Pareto front.
Therefore, a Pareto front generated by our MOPSO includes vectors
such that each element is a real number at least zero and at most
one. Hence, in Step 2 of Algorithm 4, we round off each element
of every vector in the generated Pareto front to obtain the corre-
sponding 0-1 vector. Finally, Algorithm 4 returns a 0-1 vector with
the minimum 𝑓1 value of such rounded off vectors. Ties are broken
arbitrarily.

Algorithm 2 A naive evaluation of 𝑓1

Input: a function 𝑓1 of 𝒙 ∈ R𝑑 , a set of𝑚 particles
Output: the 𝑓1 value for every particle in the given set
1: for 𝑖 = 1 . . .𝑚 in parallel do
2: Let 𝒙 be the position vector of the particle 𝑖 .
3: Compute 𝑓1 (𝒙) directly.
4: end for

Algorithm 3 A fast evaluation of 𝑓1 with matrix multiplication

Input: a function 𝑓1 of 𝒙 ∈ R𝑑 , a set of𝑚 particles
Output: the 𝑓1 value for every particle in the given set
1: Let𝑋 be an𝑛-by-𝑚matrix such that the column 𝑖 is the position

vector of the particle 𝑖 .
2: Compute 𝑌 = 𝑄𝑋 with a highly optimized matrix multiplica-

tion subroutine.
3: for 𝑖 = 1 . . .𝑚 in parallel do
4: Let 𝒙 be the position vector of particle 𝑖 .
5: Compute the inner product of the 𝑖th column vector of 𝑌

and the 𝑖th column vector of 𝑋 as 𝑓1 (𝒙).
6: end for

Algorithm 4 The proposed method
Input: a positive integer 𝑛, an 𝑛-by-𝑛 matrix 𝑄 , the maximum

number 𝑡𝑚𝑎𝑥 of iterations
Output: an 𝑛 dimensional 0-1 vector that approximates

min𝒙 𝒙𝑡𝑄𝒙 where 𝒙 is an 𝑛 dimensional 0-1 vector
1: Using our GPU parallel MOPSO method enhanced with fast

matrix multiplication , generate a Pareto front {𝒔1, 𝒔2, · · · , 𝒔𝑚}
for BBCO min𝒙 (𝑓1 (𝒙) = 𝒙𝑡𝑄𝒙, 𝑓2 (𝒙) =

∑𝑛
𝑖=1 𝒙𝑖 (1 − 𝒙𝑖)) with

0 ≤ 𝒙𝑖 ≤ 1 (𝑖 ∈ {1, 2, · · · , 𝑛}).
2: return 𝒓𝑘 where 𝑘 = argmin𝑖 𝑓1 (𝒓𝑖) and 𝒓𝑖 is an𝑛 dimensional

0-1 vector such that each element of 𝒔𝑖 is rounded off to zero
or one. Ties are broken arbitrarily.

4 EXPERIMENTS
We implemented the proposed method over a GPU based on the
CUDA architecture. To evaluate its parallel performance, we im-
plemented the proposed method also over a CPU. In this section,
using 45 benchmark problem instances, we evaluate the proposed
method in terms of accuracy of found solutions and the parallel
performance. Accuracy is measured by the relative error of a found
solution to the optimal solution. The relative error 𝑒𝑟𝑟𝑟𝑒𝑙 is defined
as follows:

𝑒𝑟𝑟𝑟𝑒𝑙 = (𝑓 (𝑠) − 𝑓 (𝑥∗))/𝑓 (𝑥∗) (6)

where 𝑓 is the objective function of QUBO, 𝑠 is the solution found
by our program, and 𝑥∗ is the optimal solution. The parallel per-
formance is measured by the speedup ratio, which is the ratio of
execution time of our CPU program to that of our GPU program.

1790

GECCO ’21 Companion, July 10–14, 2021, Lille, France Fujimoto and Nanai

Table 1: The parameters to generate problem instances

problem
instance

of
variables

Density Starting
Seed

Linear
Coef.

Quadr.
Coef.

(n) (Den) (Seed) (c-) (c+) (q-) (q+)

A1 50 0.1 10

-100 100 -100 100

A2 60 0.1 10
A3 70 0.1 10
A4 80 0.1 10
A5 50 0.2 10
A6 30 0.4 10
A7 30 0.5 10
A8 100 0.0625 10

B1 20 1 10

0 100 -63 0

B2 30 1 10
B3 40 1 10
B4 50 1 10
B5 60 1 10
B6 70 1 10
B7 80 1 10
B8 90 1 10
B9 100 1 10
B10 125 1 10

C1 40 0.8 10

-50 50 -100 100

C2 50 0.6 70
C3 60 0.4 31
C4 70 0.3 34
C5 80 0.2 8
C6 90 0.1 80
C7 100 0.1 142

D1 100 0.1 31

-50 50 -75 75

D2 100 0.2 37
D3 100 0.3 143
D4 100 0.4 47
D5 100 0.5 31
D6 100 0.6 47
D7 100 0.7 97
D8 100 0.8 133
D9 100 0.9 307
D10 100 1 1311

E1 200 0.1 51

-50 50 -100 100
E2 200 0.2 43
E3 200 0.3 34
E4 200 0.4 73
E5 200 0.5 89

F1 500 0.1 137

-50 50 -75 75
F2 500 0.25 137
F3 500 0.5 137
F4 500 0.75 137
F5 500 1 137

4.1 The Used Benchmark Problem Instances
For computational experiments about QUBO, an approach followed
by many researchers is to generate random instances by using a test
problem generator (P&R generator) [21] introduced by Pardalos and
Rodgers [24]. The algorithm of P&R generator is strictly defined and
opened, including the random number generator used. Therefore,
we can reproduce any random instance generated by P&R generator
if we know the used input parameter for P&R generator. According
to the approach, in order to evaluate the proposed method, we used
the test problems in the families 𝐴, 𝐵, 𝐶 , 𝐷 , 𝐸, and 𝐹 proposed by
Glover et al. [10]. The number of variables of generated QUBO
instances ranges from 20 to 500. The used parameters to generate
the problem instances with P&R generator are shown in Table 1.

4.2 Experimental Setup
Experiments were conducted using our GPU and CPU server. Our
GPU server has an NVIDIA TITAN V (5120 cores, 12GB VRAM), a
2.8GHz Intel Core i7-6700T (8MB L3 cache, 4 physical cores), 16GB
main memory, and Windows 10 Pro. Our CPU server has a 3.0GHz
Intel Xeon E3-1220V5 (8MB L3 cache, 4 physical cores), 16GB main
memory, and Windows Server 2019 Standard. Our GPU program
was written in CUDA C/C++ and our CPU program was written
in the standard C language. For compilation, we used Microsoft
Visual Studio 2019 Community and CUDA Toolkit 11.2 [5]. Matrix
multiplication was implemented by cuBLAS included in the CUDA
toolkit for our GPU program and OpenBLAS 0.3.13 [25] for our CPU
program. OpenBLAS is a highly optimized open source BLAS imple-
mentation. We implemented two versions of our CPU program. One
is the single-threaded version which uses the single-threaded ver-
sion of OpenBLAS. The other is the multi-threaded version which
uses the multi-threaded version of OpenBLAS. Note that our multi-
threaded CPU program uses multiple threads only in matrix multi-
plication implemented by OpenBLAS. That is, our multi-threaded
CPU program parallelizes only the most time-consuming part of the
program and the other parts remain single-threaded. In contrast,
our GPU program uses many threads for the whole program, i.e.,
not only for matrix multiplication implemented by cuBLAS but also
computing archive, updating velocities and positions of particles,
and so on.

4.3 Experimental Results
To evaluate the parallel performance of our GPU program by com-
paring the corresponding CPU program, we show in Table 2 ex-
ecution time of our single-threaded CPU program and our multi-
threaded CPU program for 1,024 to 32,768 particles and 2,500 itera-
tions. For smaller problem instances, the single-threaded program
is faster than the multi-threaded program. However, for larger prob-
lem instances, which are more time-consuming, the multi-threaded
program runs faster than the single-threaded program. Therefore,
in the following, we compare our GPU program only with our
multi-threaded CPU program.

Accuracy of the solution of QUBO generated by the proposed
GPU parallel MOPSO is shown in Table 3. Table 3 shows relative
errors of solutions found by our GPU program and CPU program
when we use 1,024 to 32,768 particles and 2,500 iterations in our
MOPSO. The relative errors of our GPU program are not completely
identical to those of our CPU program. This is because paralleliza-
tion of matrix multiplication of floating point number changes the
order of executed arithmetic operations. The difference of the order
yields the difference of rounding errors and truncation errors in
floating point arithmetic and thus changes trajectories of particles
between our GPUMOPSO and our CPUMOPSO. Roughly speaking,
the relative errors tend to decrease with an increase of the number
of used particles. The proposed method found optimal solutions
of QUBO for 16 of the 45 problem instances when we use 32,768
particles. 32 (respectively 27) of the 45 problem instances have
relative errors at most 2% under the same condition in the case
of GPU (respectively CPU). If the number of variables is at most
100, accuracy of the proposed method seems to be relatively good.
However, accuracy for the problem instances with 500 variables is

1791

Solving QUBO with GPU Parallel MOPSO GECCO ’21 Companion, July 10–14, 2021, Lille, France

Table 2: Execution time of our single-threaded CPU program and our multi-threaded CPU program.

of particles

1,024 2,048 4,096 8,192 16,384 32,768

problem
instance

of
variables

single
(s)

multi
(s)

single
(s)

multi
(s)

single
(s)

multi
(s)

single
(s)

multi
(s)

single
(s)

multi
(s)

single
(s)

multi
(s)

A1 50 2.68 2.70 5.11 5.13 9.16 9.40 17.79 31.24 37.80 36.38 76.34 84.75
A2 60 3.09 3.00 5.16 5.04 11.45 11.14 22.79 23.37 50.15 46.61 94.88 102.65
A3 70 3.74 3.41 7.81 7.75 11.73 13.47 27.01 26.50 53.10 53.41 107.05 119.73
A4 80 4.21 3.84 12.30 9.23 15.67 15.00 40.82 35.32 63.27 66.93 133.03 129.01
A5 50 2.62 2.56 4.59 8.30 9.51 9.18 18.03 17.25 36.55 35.43 78.50 81.85
A6 30 2.52 2.52 7.81 7.77 15.36 15.23 31.18 30.83 63.15 62.52 125.42 124.68
A7 30 3.27 3.26 3.98 3.73 5.65 5.51 11.09 10.68 24.17 23.60 44.59 46.36
A8 100 5.40 5.00 10.73 10.07 19.85 20.32 55.54 42.87 91.44 84.90 162.89 164.39

B1 20 2.24 2.26 4.99 5.00 2.75 2.73 20.93 20.86 40.42 40.19 79.50 79.13
B2 30 4.10 4.10 5.42 5.39 12.23 12.08 28.46 28.13 39.18 38.54 94.25 93.29
B3 40 4.89 4.90 4.07 4.04 19.07 18.99 39.64 39.47 59.46 59.37 146.52 148.18
B4 50 6.64 6.58 10.69 7.45 25.27 24.98 50.48 50.31 98.31 98.03 199.52 200.13
B5 60 2.59 2.45 15.28 15.13 27.29 27.73 61.33 60.72 129.38 128.74 239.74 240.87
B6 70 9.20 9.06 4.72 4.50 31.99 31.47 53.73 55.91 117.85 122.33 122.47 103.50
B7 80 10.31 10.17 20.01 19.66 41.28 40.82 65.81 60.79 161.64 160.48 320.07 314.43
B8 90 11.70 10.19 22.59 22.15 45.71 46.53 143.76 95.63 57.58 75.75 348.34 296.02
B9 100 6.09 5.79 27.75 22.38 62.32 49.28 68.02 55.31 160.69 142.58 374.28 407.27
B10 125 23.46 16.38 54.50 35.86 115.59 74.85 218.58 148.81 366.53 276.37 862.20 549.81

C1 40 2.15 2.14 8.30 8.26 8.46 8.32 32.27 35.98 62.54 66.63 125.73 64.81
C2 50 6.34 6.17 12.70 12.56 24.40 24.71 47.75 26.78 50.90 56.66 155.05 97.61
C3 60 2.88 2.82 6.09 6.22 11.18 11.03 27.48 18.06 47.81 58.13 141.97 115.70
C4 70 3.69 3.56 12.54 10.67 13.80 13.43 29.94 28.70 60.59 60.55 119.12 122.57
C5 80 4.14 3.99 7.69 7.35 21.29 19.50 31.16 30.60 59.46 73.91 128.56 128.79
C6 90 4.62 4.38 9.30 8.64 18.88 17.70 37.68 35.96 75.87 70.82 153.21 155.26
C7 100 5.37 5.08 9.81 9.26 20.54 19.58 42.26 41.86 82.44 80.64 156.80 152.77

D1 100 4.52 5.03 10.51 9.21 19.97 18.73 42.61 41.15 80.94 84.07 175.21 165.07
D2 100 11.93 10.59 21.31 18.89 22.49 22.90 44.08 40.70 77.71 95.20 170.78 165.21
D3 100 11.11 11.44 21.80 23.67 50.49 48.83 90.72 84.70 202.88 190.09 301.64 330.88
D4 100 10.46 7.85 18.73 18.60 33.05 29.93 57.56 80.42 106.42 96.57 174.12 174.69
D5 100 9.94 11.85 15.32 11.54 19.09 17.29 41.29 41.08 84.28 83.99 238.54 176.32
D6 100 10.28 11.27 16.97 16.21 21.94 21.19 41.21 35.00 146.06 145.57 290.48 247.55
D7 100 5.34 6.68 10.59 9.43 20.58 18.72 40.71 39.62 82.52 81.41 170.28 287.25
D8 100 9.56 10.03 21.80 21.93 35.97 30.75 78.70 73.31 154.41 107.92 154.14 145.93
D9 100 11.96 10.07 10.37 9.77 41.79 41.43 78.97 89.98 174.04 124.06 320.12 286.96
D10 100 4.51 4.99 9.56 8.85 22.32 17.08 46.09 50.50 91.69 84.16 180.32 180.09

E1 200 12.17 15.21 26.51 25.32 47.22 41.22 94.90 85.03 188.90 177.40 376.83 330.55
E2 200 11.04 9.66 22.75 20.13 46.16 41.09 93.15 84.24 189.08 171.16 381.15 345.55
E3 200 18.82 14.79 30.19 24.00 46.74 40.76 99.81 86.83 241.24 212.08 438.73 336.11
E4 200 11.28 9.62 23.65 23.73 61.12 49.86 95.48 86.07 181.41 167.00 370.85 327.08
E5 200 11.07 9.66 22.48 19.73 47.27 42.29 93.34 84.02 187.03 169.49 375.18 339.74

F1 500 36.19 26.75 72.82 54.16 144.91 108.16 289.26 215.95 582.28 436.88 1160.77 868.64
F2 500 36.75 27.32 73.75 55.07 147.44 110.64 295.13 222.04 590.48 445.79 1181.01 890.57
F3 500 36.75 27.34 73.84 55.16 147.58 110.75 294.90 221.86 590.22 445.25 1182.58 891.71
F4 500 36.74 27.31 73.74 55.06 147.56 110.79 295.33 222.13 590.75 445.05 1181.80 891.87
F5 500 36.75 27.31 73.70 55.02 147.62 110.77 295.49 222.35 591.09 445.65 1181.44 891.38

much worse than other problem instances. Thus, we need further
improvement of the proposed method.

Table 4 shows execution time and speedup ratios of our GPU
program to the multi-threaded CPU program for 1,024 to 32,768
particles and 2,500 iterations. Our GPU program runs much faster
than our multi-threaded CPU program on four physical cores. The
problem instances with up to 100 variables runs within only a few
seconds even if we use 32,768 particles. The maximum speedup
ratio to the multi-threaded CPU program is about 202.

5 CONCLUSION AND FUTUREWORK
We have presented a novel method to solve QUBO, which seems to
be one of the most important combinatorial optimization problems.

The proposed method is suitable to be efficiently parallelized. We
have also implemented the proposedmethod on the GPU computing
platform based on the CUDA architecture. Furthermore, we have
empirically confirmed that QUBO can be approximately solved fast
for many of 45 benchmark problem instances.

Futurework includes to improve accuracy of the proposedmethod
for larger problem instances with at least 500 variables and to com-
pare the proposed method with other methods.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Numbers
17K00171, 20K11842.

1792

GECCO ’21 Companion, July 10–14, 2021, Lille, France Fujimoto and Nanai

Table 3: Relative errors of solutions found by our GPU program and our multi-threaded CPU program.

of particles

1024 2048 4096 8192 16384 32768

problem # of GPU multi GPU multi GPU multi GPU multi GPU multi GPU multi
instance variables (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

A1 50 0.76 2.90 0.00 0.00 0.76 0.76 0.00 0.76 0.00 0.76 0.00 0.76
A2 60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A3 70 4.52 5.17 1.06 3.99 3.28 3.33 3.33 3.33 1.49 3.33 1.14 3.33
A4 80 1.77 5.59 1.77 1.99 1.77 3.05 1.76 1.99 1.77 1.99 1.76 1.77
A5 50 3.35 4.93 2.79 4.97 3.35 3.38 2.48 3.35 3.35 3.35 2.58 3.35
A6 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A7 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A8 100 3.47 3.31 1.28 3.55 0.07 0.98 0.81 0.07 0.00 0.07 0.00 0.07

B1 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B2 30 0.00 2.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B3 40 13.56 13.56 13.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B4 50 0.00 31.01 8.53 0.00 0.00 20.16 0.00 0.00 0.00 0.00 0.00 0.00
B5 60 24.67 22.67 29.33 0.00 0.00 8.67 0.00 0.00 0.00 0.00 0.00 0.00
B6 70 50.68 40.41 28.77 19.86 22.60 34.25 18.49 29.45 18.49 22.60 0.00 0.00
B7 80 60.63 63.13 35.63 28.13 36.88 60.63 0.00 21.88 0.00 0.00 0.00 0.00
B8 90 57.24 60.00 45.52 26.90 27.59 56.55 51.03 27.59 15.17 16.55 16.55 8.28
B9 100 100.00 100.00 48.18 54.01 54.01 100.00 25.55 15.33 62.04 37.96 12.41 7.30
B10 125 85.71 100.00 100.00 100.00 100.00 100.00 100.00 100.00 60.39 62.99 61.04 100.00

C1 40 0.00 3.34 0.00 0.00 0.00 3.26 0.00 0.00 0.00 0.00 0.00 0.00
C2 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C3 60 0.00 1.35 1.35 1.35 0.00 1.35 0.00 0.00 0.00 0.00 0.00 0.00
C4 70 1.23 3.53 0.07 0.07 0.07 2.05 0.00 2.89 0.00 0.00 0.00 0.00
C5 80 2.76 5.00 2.36 3.60 1.75 0.43 1.63 1.63 0.43 0.43 0.43 0.43
C6 90 7.90 7.54 1.68 4.19 1.60 5.91 1.56 5.08 1.06 1.60 1.06 2.27
C7 100 3.35 6.87 2.69 3.76 3.40 6.67 1.91 6.48 1.69 1.98 1.98 3.11

D1 100 3.27 3.82 3.16 3.17 2.56 3.16 1.64 1.91 1.50 2.97 0.65 2.97
D2 100 1.69 1.25 3.66 1.87 3.07 1.66 1.64 1.82 1.66 1.66 1.64 1.66
D3 100 2.53 0.77 0.60 0.77 0.52 0.60 0.73 0.60 0.60 0.60 0.60 0.60
D4 100 1.25 2.15 0.90 2.15 1.60 2.15 2.15 1.34 0.95 2.15 1.34 2.11
D5 100 6.54 5.69 3.97 6.29 4.15 6.97 0.73 4.47 0.73 4.96 3.22 3.58
D6 100 4.03 4.50 1.79 4.86 3.96 3.53 1.65 2.79 1.65 1.79 1.65 1.65
D7 100 8.68 8.21 6.49 8.86 6.47 7.50 5.85 7.87 5.75 7.35 5.24 6.50
D8 100 3.52 0.52 2.62 2.97 0.34 2.34 0.83 0.52 0.83 2.07 0.83 0.83
D9 100 2.73 3.09 1.02 2.60 0.63 0.59 0.63 0.00 0.63 0.89 0.63 1.76
D10 100 3.59 7.25 1.02 3.83 0.79 4.09 0.99 2.33 0.81 2.00 0.81 0.90

E1 200 3.75 1.66 0.93 0.63 0.77 0.76 0.49 0.59 0.76 0.42 0.76 0.63
E2 200 6.08 9.14 20.08 3.55 14.58 2.53 22.00 2.77 20.38 13.23 10.34 7.10
E3 200 3.70 3.42 4.58 2.41 2.23 2.56 3.14 2.27 5.50 2.41 1.90 1.38
E4 200 4.88 6.03 1.34 4.51 1.87 4.26 1.45 2.27 2.17 1.89 1.17 1.88
E5 200 5.29 5.22 21.64 4.15 15.64 4.27 13.13 4.32 17.74 4.42 9.19 3.99

F1 500 49.67 45.32 46.88 43.68 42.50 43.32 41.88 39.21 43.94 43.72 43.54 42.06
F2 500 50.10 49.27 51.20 52.36 53.53 45.14 48.88 44.54 53.70 49.12 44.13 42.83
F3 500 52.39 51.29 53.27 30.52 53.09 51.59 51.72 47.44 50.66 48.16 49.44 52.98
F4 500 56.39 55.38 49.23 54.95 53.13 49.74 51.13 53.74 50.74 48.70 50.36 47.84
F5 500 56.13 53.78 60.64 55.07 61.32 52.37 51.54 56.18 52.87 55.04 51.64 48.83

REFERENCES
[1] 2021. BLAS (Basic Linear Algebra Subprograms). Retrieved April 12, 2021 from

http://www.netlib.org/blas/
[2] Alexander A. Ageev and Maxim I. Sviridenko. 1999. An 0.828-approximation

algorithm for the uncapacitated facility location problem. Discrete Applied Math-
ematics 93, 2 (1999), 149–156.

[3] Kathryn M. Chaloner and Isabella Verdinelli. 1995. Bayesian experimental design:
A review. Statist. Sci. 10, 3 (1995), 273–304.

[4] NVIDIA Corp. 2021. cuBLAS. Retrieved April 12, 2021 from https://docs.nvidia.
com/cuda/cublas/index.html

[5] NVIDIA Corp. 2021. CUDA Toolkit. Retrieved April 12, 2021 from https://
developer.nvidia.com/cuda-toolkit

[6] NVIDIA Corp. 2021. CUDA toolkit documentation. Retrieved April 12, 2021 from
https://docs.nvidia.com/cuda/

[7] Abhimanyu Das and David Kempe. 2011. Submodular meets spectral: Greedy
algorithms for subset selection, sparse approximation and dictionary selection. In
Proc. of the 28th International Conference on Machine Learning (ICML). 1057–1064.

[8] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

[9] Fred Glover, Gary Kochenberger, and Yu Du. 2018. A tutorial on formulating and
using QUBO models. , Article arXiv:1811.11538 (2018).

[10] Fred Glover, Garey A. Kochenberger, and Bahram Alidaee. 1998. Adaptative
memory tabu search for binary quadratic programs. Management Science 44, 3
(1998), 336–345.

[11] Mark Harris, Shubhabrata Sengupta, and John D. Owens. 2007. Parallel Prefix Sum
(Scan) with CUDA. GPU Gems, Vol. 3. Addison-Wesley Professional, Chapter 39.

[12] Md Maruf Hussain and Noriyuki Fujimoto. 2018. Parallel Multi-Objective Particle
Swarm Optimization for Large Swarm and High Dimensional Problems. In Proc.
of the 2018 IEEE Congress on Evolutionary Computation (CEC). 1–10.

[13] Md Maruf Hussain and Noriyuki Fujimoto. 2020. GPU-based Parallel Multi-
objective Particle Swarm Optimization for Large Swarms and High Dimensional
Problems. Parallel Comput. 92, Article 102589 (2020), 19 pages.

[14] M. W. Johnson, M. H. S. Amin, and S. Gildert et al. 2011. Quantum annealing
with manufactured spins. Nature 473 (2011), 194–198.

1793

http://www.netlib.org/blas/
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/

Solving QUBO with GPU Parallel MOPSO GECCO ’21 Companion, July 10–14, 2021, Lille, France

Table 4: Execution time and speedup ratios of our GPU program to the multi-threaded CPU program.

of particles

1,024 2,048 4,096 8,192 16,384 32,768

problem
instance

of
variables

time
(s)

speedup
to multi

time
(s)

speedup
to multi

time
(s)

speedup
to multi

time
(s)

speedup
to multi

time
(s)

speedup
to multi

time
(s)

speedup
to multi

A1 50 0.71 3.82 0.68 7.55 0.72 13.04 0.78 40.14 0.95 38.40 1.32 64.31
A2 60 0.67 4.47 0.68 7.38 0.73 15.31 0.81 28.83 0.99 46.88 1.44 71.15
A3 70 0.69 4.97 0.70 11.10 0.76 17.64 0.88 30.22 1.09 48.93 1.66 72.31
A4 80 0.73 5.25 0.76 12.22 0.81 18.46 0.92 38.43 1.14 58.92 1.67 77.11
A5 50 0.66 3.90 0.68 12.27 0.71 12.93 0.77 22.35 0.93 38.21 1.31 62.41
A6 30 0.64 3.91 0.65 11.99 0.66 22.92 0.71 43.26 0.79 78.89 1.04 120.38
A7 30 0.64 5.10 0.65 5.76 0.66 8.33 0.71 14.99 0.79 29.81 1.03 45.12
A8 100 0.72 6.91 0.76 13.21 0.85 23.86 1.01 42.50 1.32 64.28 2.24 73.46

B1 20 0.63 3.58 0.64 7.85 0.65 4.19 0.67 30.99 0.75 53.88 0.90 87.82
B2 30 0.64 6.42 0.65 8.26 0.66 18.19 0.71 39.64 0.80 48.46 1.03 90.31
B3 40 0.65 7.50 0.67 6.06 0.69 27.56 0.75 52.95 0.86 68.76 1.16 127.55
B4 50 0.66 10.05 0.67 11.08 0.71 35.17 0.77 65.24 0.93 105.64 1.32 151.84
B5 60 0.67 3.68 0.68 22.16 0.72 38.25 0.80 75.94 0.98 130.83 1.42 169.86
B6 70 0.68 13.34 0.70 6.47 0.77 40.83 0.86 64.71 1.10 111.66 1.66 62.25
B7 80 0.73 14.01 0.75 26.18 0.82 50.08 0.92 66.27 1.12 142.98 1.68 186.97
B8 90 0.71 14.37 0.73 30.36 0.81 57.48 0.95 100.32 1.21 62.68 1.96 150.99
B9 100 0.73 7.91 0.75 29.67 0.85 57.95 1.01 54.95 1.32 107.72 2.25 181.41
B10 125 0.75 21.95 0.82 43.74 0.91 82.14 1.11 134.33 1.53 181.22 2.71 202.78

C1 40 0.66 3.26 0.67 12.35 0.68 12.23 0.75 48.21 0.86 77.81 1.17 55.61
C2 50 0.66 9.34 0.67 18.71 0.71 34.92 0.77 34.69 0.92 61.41 1.30 74.92
C3 60 0.67 4.20 0.68 9.11 0.73 15.20 0.80 22.46 0.98 59.07 1.42 81.55
C4 70 0.68 5.21 0.70 15.31 0.77 17.46 0.86 33.17 1.10 55.23 1.64 74.59
C5 80 0.73 5.46 0.75 9.81 0.82 23.81 0.92 33.17 1.14 64.89 1.68 76.62
C6 90 0.71 6.14 0.74 11.71 0.81 21.78 0.93 38.65 1.22 58.15 1.96 79.24
C7 100 0.73 6.97 0.76 12.18 0.86 22.84 1.01 41.54 1.33 60.83 2.22 68.78

D1 100 0.72 6.94 0.76 12.13 0.85 22.05 1.01 40.87 1.33 63.25 2.24 73.76
D2 100 0.73 14.58 0.77 24.65 0.86 26.69 1.01 40.37 1.33 71.53 2.22 74.27
D3 100 0.72 15.85 0.76 31.34 0.85 57.24 1.00 84.39 1.32 143.58 2.23 148.56
D4 100 0.73 10.80 0.76 24.47 0.85 35.07 1.00 80.19 1.33 72.47 2.25 77.73
D5 100 0.72 16.43 0.76 15.10 0.85 20.32 1.01 40.60 1.32 63.41 2.24 78.84
D6 100 0.73 15.52 0.77 21.13 0.85 24.90 1.00 34.89 1.33 109.11 2.23 111.01
D7 100 0.72 9.23 0.76 12.41 0.85 21.90 1.01 39.24 1.33 61.24 2.22 129.21
D8 100 0.72 13.93 0.76 28.86 0.86 35.95 1.01 72.70 1.32 81.47 2.24 65.17
D9 100 0.72 13.98 0.76 12.80 0.85 48.62 1.01 89.49 1.33 93.04 2.22 129.26
D10 100 0.73 6.84 0.76 11.64 0.85 19.99 1.01 50.21 1.33 63.41 2.23 80.91

E1 200 0.89 17.05 1.01 25.10 1.13 36.62 1.43 59.41 2.12 83.74 4.21 78.44
E2 200 0.89 10.83 1.01 20.03 1.12 36.80 1.42 59.48 2.11 81.30 4.18 82.67
E3 200 0.89 16.65 1.01 23.87 1.12 36.36 1.43 60.84 2.11 100.33 4.24 79.18
E4 200 0.90 10.70 1.01 23.49 1.12 44.33 1.42 60.69 2.11 79.14 4.17 78.38
E5 200 0.90 10.77 1.00 19.67 1.12 37.92 1.42 59.31 2.10 80.53 4.17 81.55

F1 500 1.30 20.59 1.59 34.00 2.07 52.30 3.05 70.81 5.33 81.91 11.61 74.85
F2 500 1.30 20.97 1.60 34.50 2.06 53.65 3.04 73.00 5.32 83.76 11.60 76.75
F3 500 1.30 21.05 1.59 34.64 2.07 53.59 3.04 72.88 5.33 83.52 11.61 76.79
F4 500 1.30 21.03 1.60 34.34 2.07 53.60 3.05 72.92 5.33 83.42 11.61 76.79
F5 500 1.30 21.07 1.60 34.49 2.06 53.67 3.05 73.02 5.33 83.62 11.61 76.76

[15] Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the
transverse Ising model. Physical Review E 58, 5 (1998), 5355–5363.

[16] James Kennedy and Russell C. Eberhart. 1995. Particle Swarm Optimization. In
Proc. of International Conference on Neural Networks (ICNN). 1942–1948.

[17] Andreas Krause and Volkan Cevher. 2010. Submodular dictionary selection
for sparse representation. In Proc. of 27th International Conference on Machine
Learning (ICML). 567–574.

[18] Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. 2008. Near-optimal sensor
placements in Gaussian processes: Theory, efficient algorithms and empirical
studies. Journal of Machine Learning Research 9 (2008), 235–284.

[19] Soniya Lalwani, Sorabh Singhal, Rajesh Kumar, and Nilama Gupta. 2013. A com-
prehensive survey: applications of multi-opbjective particle swarm optimization
(MOPSO) algorithm. Transactions on Combinatorics 2, 1 (2013), 39–101.

[20] Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in
Physics 2 (2014).

[21] Panos M. Pardalos and Gregory P. Rodgers. 1990. Computational aspects of a
branch and bound algorithm for quadratic 0-1 programming. Computing 45
(1990), 131–144.

[22] Chao Qian, Yang Yu, Ke Tang, Xin Yao, and Zhi-Hua Zhou. 2019. Maximizing
submodular ormonotone approximately submodular functions bymulti-objective
evolutionary algorithms. Artificial Intelligence 275 (2019), 279–294.

[23] Margarita Reyes-Sierra and Carlos A. Coello Coello. 2006. Multi-objective particle
swarm optimizers: a survey of the state-of-the-art. International Journal of
Computational Intelligence Research 2, 3 (2006), 287–308.

[24] Gabriel Tavares. 2008. New algorithms for Quadratic Unconstrained Binary Op-
timization (QUBO) with applications in engineering and social sciences. Ph.D.
Dissertation. New Brunswick Rutgers, the State University of New Jersey.

[25] Zhang Xianyi. 2021. OpenBLAS. Retrieved April 12, 2021 from https://www.
openblas.net/

1794

https://www.openblas.net/
https://www.openblas.net/

	Abstract
	1 Introduction
	2 A Brief Review of Our GPU Parallel MOPSO Method
	3 The Proposed Method
	4 Experiments
	4.1 The Used Benchmark Problem Instances
	4.2 Experimental Setup
	4.3 Experimental Results

	5 Conclusion and Future Work
	Acknowledgments
	References

