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ABSTRACT

Developing software to effectively take advantage of growth in par-
allel and distributed processing capacity poses significant challenges.
Traditional programming techniques allow a user to assume that exe-
cution, message passing, and memory are always kept synchronized.
However, maintaining this consistency becomes increasingly costly
at scale. One proposed strategy is “best-effort computing”, which
relaxes synchronization and hardware reliability requirements, ac-
cepting nondeterminism in exchange for efficiency. Although many
programming languages and frameworks aim to facilitate software
development for high performance applications, existing tools do
not directly provide a prepackaged best-effort interface. The Con-
duit C++ Library aims to provide such an interface for convenient
implementation of software that uses best-effort inter-thread and
inter-process communication. Here, we describe the motivation, ob-
jectives, design, and implementation of the library. Benchmarks on
a communication-intensive graph coloring problem and a compute-
intensive digital evolution simulation show that Conduit’s best-effort
model can improve scaling efficiency and solution quality, particu-
larly in a distributed, multi-node context.
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1 INTRODUCTION

The parallel and distributed processing capacity of high-performance
computing clusters continues to grow rapidly and enable profound
scientific and industrial innovations [12]. Hardware advances af-
ford great opportunity, but also pose a serious challenge: developing
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approaches to effectively harness it. As HPC systems scale, deter-
ministic algorithms depending on global synchronization become
increasingly costly [9, 15].

Best-effort computing, where data dependencies are relaxed to
reduce synchronization [6], can improve scalability [24]. Evolution-
ary algorithms typically perform perform a search or optimization
with many acceptable results using pseudo-stochastic methods. Al-
gorithms with these properties can often tolerate significant pertur-
bations, including relaxation of synchronization requirements in the
underlying algorithm. For example, island model genetic algorithms
have been shown to perform well with asynchronous migration
[19]. While not the focus of this paper, the original interest that moti-
vated development of the Conduit library stems from work exploring
open-ended evolution. Researchers in this domain study long-term
dynamics of evolutionary systems in order to understand factors
that affect these systems’ potential to generate ongoing novelty
[30]. Some recent evidence suggests that the generative potential
of systems devised to study open-ended evolution is — at least in
part — meaningfully constrained by available compute resources [8].
Such observations raise the question of how to design parallel and
distributed open-ended evolution systems.

The concept of indefinite scalability was developed to describe
constraints distributed systems would face at the asymptote of tech-
nological (and even physical) constraints. Indefinite scalability the-
ory posits that such systems would necessitate

¢ asynchronous operation,
o decentralized networking,

e interchangeable components (i.e., no global identifiers),

o and graceful degradation under hardware failure [1].
Although bespoke experimental hardware such as Illuminato X
machina has been developed to demonstrate aspects of the indefinite
scalability paradigm [2], practical contemporary work scaling up
evolving systems necessitates working with commercially-available
hardware. However, existing distributed computing frameworks
for contemporary high-performance computing hardware do not
explicitly expose a convenient best-effort interface. In our current
work, we focus on asynchronous operation and decentralization. We
leave system robustness and resistance to hardware degradation to
future work.

The Message Passing Interface (MPI) standard [14] represents
the mainstay for high-performance computing applications. This
standard exposes communication primitives directly to the end user.
MPT’s nonblocking communication primitives, in particular, are suffi-
cient to program distributed computations with relaxed synchroniza-
tion requirements. Although its explicit, imperative nature enables
precise control over execution, it also poses significant expense in
terms of programability. This cost manifests in terms of programmer
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productivity, domain knowledge requirements, software quality, and
difficulty tuning for performance due to program brittleness [16, 29].

In response to programmability concerns, many frameworks have
arisen to offer useful parallel and distributed programming abstrac-
tions. Task-based frameworks such as Charm++ [21], Legion [3],
Cilk [5], and Threading Building Blocks (TBB) [28] describe the de-
pendency relationships among computational tasks and associated
data and relies on an associated runtime to automatically schedule
and manage execution. These frameworks assume a deterministic re-
lationship between tasks. In a similar vein, programming languages
and extensions like Unified Parallel C (UPC) [10] and Chapel [7] rely
on programmers to direct execution, but equips them with power-
ful abstractions, such as global shared memory. However, Chapel’s
memory model explicitly forbids data races and UPC ultimately relies
on a barrier model for data transfer.

2 LIBRARY DESIGN

Inlet ~ Duct  Outlet

Figure 1: Schematic of Conduit’s Inlet and Outlet object
scheme. Intra-thread, inter-thread, or inter-process com-
munication behavior is performed by an underlying Duct
object. The underlying communication mechanism used is
transparent to the end-user.

The Conduit C++ Library aims to compliment the parallel and
distributed programming ecosystem by providing an abstracted
best-effort interface to application programmers. Under Conduit’s
interface, more recent messages may preempt existing ones, mes-
sages may be dropped under backlog conditions, and read operations
may opt to view the most recently received message in lieu of waiting
for an expected message.

Conduit represents communication in terms of a paired Inlet,
which accepts messages, and Outlet, which dispenses messages.
An Inlet and Outlet may exchange messages via an intra-thread,
inter-thread, or inter-process communication procedure, depending
on the runtime state of an underlying Duct object. Figure 1 provides
a schematic overview. The implementation of intra-thread, inter-
thread, and inter-process communication procedures may be con-
figured at compile-time. Conduit provides a library of intra-thread,
inter-thread, and inter-process implementations to choose from and
allows end-users to build their own.

The Inlet provides a non-blocking TryPut() method, which
attempts to queue a message for its corresponding Outlet but may
drop it under backlog conditions, as well as a Put () method, which
block under backlog conditions until buffer space is available to
queue the message is available. The Outlet provides a TryStep()
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and Jump () methods to load the next or latest message, respectively.
If no new messages are available, the last-received message will be
accessed. The Outlet also provides a Step() method, which will
block until a new message is received. At run time, Ducts can be cre-
ated or modified to perform intrathread, interthread, or interprocess
communication.

In addition to this granular connection-level interface, Conduit
provides a network-level interface where the user defines their com-
putation in terms of a directed graph. In this network topology, nodes
represent simulation elements and edges represent communication
channels. The library will assign nodes in that topology to available
threads across available processes and automatically instantiate ap-
propriate conduits. Individual threads of execution can then launch
and freely process computational updates on their assigned nodes
while receiving messages from nodes assigned to other processes
as they become available. Conduit provides several pre-defined stan-
dard topologies and node-assignment algorithms. However, users
can also opt to use the NetworkX graph library [18] to generate ar-
bitrary topologies and the METIS software package [17] to automat-
ically balance expected load across available threads and processes
while minimizing inter-process and inter-thread communication.

Defining program logic in terms of atomic, inter-communicating
simulation elements provides significant programmability advan-
tages. Such code can be written in terms of interactions between
intuitive domain-specific objects (e.g., digital organisms that inter-
act with one another, subpopulations with migration, etc.), while
leaving the task of mapping onto hardware resources to automatic
management by the underlying framework. However, a naive im-
plementation of this approach would entail significant inefficiency,
particularly with inter-process communication which has a large
overhead.Imagine, for example, a processes dispatching independent
MPI calls for each communication channel between another process
and the thousands of atomic simulation elements it holds. Conduit
addresses this issue by providing duct implementations that automat-
ically consolidate messages between processes into single MPI calls.
These implementations support a “pooling” mechanism, in which a
consolidated MPI call is dispatched once each constituent Inlet has
received a single message, and a “aggregation” mechanism, in which
arbitrary numbers of messages can be contributed from each Inlet.

Conduit is made freely available under a MIT License as a header-
only C++17 software package at https://github.com/mmore500/
conduit. Conduit was built using the cereal C++11 Library for seri-
alization [13] and the Empirical C++ Library [27].

3 METHODS

We performed two benchmarks to compare the performance of Con-
duit’s best-effort approach to a traditional synchronous model. We
tested our benchmarks across both a multithread, shared-memory
context and a distributed, multinode context. In each hardware
context, we assessed performance on two algorithmic contexts: a
communication-intensive distributed graph coloring problem (Sec-
tion 3.1) and a compute-intensive digital evolution simulation (Sec-
tion 3.2). The latter benchmark — presented in Section 3.2 — grew
out of the original work developing the Conduit library to support
large-scale experimental systems to study open-ended evolution.
The former benchmark — presented in Section 3.1 — complements
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the first by providing a clear definition of solution quality. Metrics to
define solution quality in the open-ended digital evolution context
remain a topic of active research.

3.1

The graph coloring benchmark employs a graph coloring algorithm
designed for distributed WLAN channel selection [23]. In this algo-
rithm, nodes begin by randomly choosing a color. Each computa-
tional update, nodes test for any neighbor with the same color. If and
only if a conflicting neighbor is detected, nodes randomly select an-
other color. The probability of selecting each possible color is stored
in array associated with each node. Before selecting a new color,
the stored probability of selecting the current (conflicting) color is
decreased by a multiplicative factor b. We used b=0.1, as suggested
by Leith et al. Likewise, the stored probability of selecting all others
is increased by a multiplicative factor. Regardless of whether their
color changed, nodes transmit their current color to their neighbor.

Our benchmarks focus on weak scalability, using a fixed problem
size of 2048 graph nodes per thread or process. These nodes were
arranged in a two-dimensional grid topology where each node had
three possible colors and four neighbors. We implement the algo-
rithm with a single Conduit communication layer carrying graph
color as an unsigned integer. We used Conduit’s built-in pooling
feature to consolidate color information into a single MPI message
between pairs of communicating processes each update. We per-
formed five replicates, each with a five second simulation runtime.
Solution error was measured as the number of graph color conflicts
remaining at the end of the benchmark.

Graph Coloring Benchmark

3.2 Digital Evolution Benchmark

The digital evolution benchmark runs the DISHTINY (DIStributed Hi-
erarchical Transitions in Individuality) artificial life framework. This
system is designed to study major transitions in evolution, events
where lower-level organisms unite to form a self-replicating entity.
The evolution of multicellularity and eusociality exemplify such
transitions. Previous work with DISHTINY has explored methods
for selecting traits characteristic of multicellularity such as reproduc-
tive division of labor, resource sharing within kin groups, resource
investment in offspring, and adaptive apoptosis [25].

DISHTINY simulates a fixed-size toroidal grid populated by digi-
tal cells. Cells can sense attributes of their immediate neighbors, can
communicate with those neighbors through arbitrary message pass-
ing, and can interact with neighboring cells cooperatively through
resource sharing or competitively through antagonistic competition
to spawn daughter cells into limited space. This cell behavior is con-
trolled by SignalGP event-driven linear genetic programs [22]. Full
details of the DISHTINY simulation are available in [26].

We use Conduit-based messaging channels to manage all inter-
actions between neighboring cells. During a computational update,
each cell advances its internal state and pushes information about
its current state to neighbor cells. Several independent messaging
layers handle disparate aspects of cell-cell interaction, including

o Cellspawnmessages, which contain arbitrary-length genomes
(seeded at 100 12-byte instructions with a hard cap of 1000
instructions). These are handled every 16 updates and use Con-
duit’s built-in aggregation support for inter-process transfer.
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Mode Description
0 Barrier sync every update
1 Rolling barrier sync
2 Fixed barrier sync
3 No barrier sync
4 No inter-cpu communication

Table 1: Asynchronicity modes used for benchmarking
experiments, arranged from most to least synchronized.

e Resource transfer messages, consisting of a 4-byte float value.
These are handled every update and use Conduit’s built-in
pooling support for inter-process transfer.

o Cell-cell communication messages, consisting of arbitrarily
many 20-byte packets dispatched by genetic program execu-
tion. These are handled every 16 updates and use Conduit’s
built-in aggregation support for inter-process transfer.

¢ Environmental state messages, consisting of a 216-byte struct
of data. These are handled every 8 updates and use conduit’s
built-in pooling support for inter-process transfer.

o Multicellular kin-group size detection messages, consisting
of a 16-byte bitstring. These are handled every update and use
Conduit’s built-in pooling support for inter-process transfer.

Implementing all cell-cell interaction via Conduit-based messag-
ing channels allows the simulation to be parallelized down to the
granularity, potentially, of individual cells. However, in practice, for
this benchmarking we assign 3600 cells to each thread or process.
Because all cell-cell interactions occur via Conduit-based messag-
ing channels, logically-neighboring cells can interact fully whether
or not they are located on the same thread or process (albeit with
potential irregularities due to best-effort limitations). An alternate
approach to evolving large populations might be an island model,
where Conduit-based messaging channels would be used solely to
exchange genomes between otherwise independent populations [4].
However, we chose to instead parallelize DISHTINY as a unified
spatial realm in order to enable parent-offspring interaction and
leave the door open for future work with multicells that exceed the
scope of an individual thread or process.

3.3 Asynchronicity Modes

For both benchmarks, we compared performance across a spec-
trum of synchronization setting, which we term “asynchronicity
modes” (Table 1). Asynchronicity mode 0 represents traditional fully-
synchronous methodology. Under this treatment, full barrier syn-
chronization was performed between each computational update.
Asynchronicity mode 3 represents fully asynchronous methodology.
Under this treatment, individual threads or processes performed com-
putational updates freely, incorporating input from other threads
or processes on a fully best-effort basis.

During early development of the library, we discovered that un-
processed messages building up faster than they could be processed —
even if they were being skipped over to only get the latest message —
could degrade quality of service or even cause runtime instability. We
opted for MPI communication primitives that could consume many
backlogged messages per call and increased buffer size to address
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these issues, but remained interested in the possibility of partial syn-
chronization to clear potential message backlogs. So, we included two
partially-synchronized treatments: asynchronicity modes 1 and 2.

In asynchronicity mode 1, threads and processes alternated be-
tween performing computational updates for a fixed-time duration
and executing a global barrier synchronization. For the graph col-
oring benchmark, work was performed in 10ms chunks. For the
digital evolution benchmark, which is more computationally inten-
sive, work was performed in 100ms chunks. In asynchronicity mode
2, threads and processes executed global barrier synchronizations at
predetermined time points. In both experiments, global barrier syn-
chronization occurred on each time a second of epoch time elapsed.

Finally, asynchronicity mode 4 disables all inter-thread and inter-
process communication, including barrier synchronization. We in-
cluded this mode to isolate the impact on performance of communi-
cation between threads and processes from other factors potentially
affecting performance, such as cache crowding. In this run mode
for the graph coloring benchmark, all calls to put messages into
or pull messages out of ducts between processes or threads were
skipped (except after the benchmark concluded, when assessing
solution quality). Because of its larger footprint, incorporating logic
into the digital evolution simulation to disable all inter-thread and
inter-process messaging was impractical. Instead, we launched mul-
tiple instances of the simulation as fully-independent processes and
measured performance of each.

3.4 Code,Data, and Reproducibility

Benchmarking experiments were performed on [redacted for double-
blind review]’s High Performance Computing Center, a cluster of
hundreds of heterogeneous x86 nodes linked with InfiniBand inter-
connects. For multithread experiments, benchmarks for each thread
count were collected from the same node. For multiprocess exper-
iments, each processes was assigned to a distinct node in order to
ensure results were representative of performance in a distributed
context. All multiprocess benchmarks recorded from the same col-
lection of nodes. Hostnames are recorded for each benchmark data
point. For an exact accounting of hardware architectures used, these
hostnames can be crossreferenced with a table included with the
data that summarizes the cluster’s node configurations.

Code for the distributed graph coloring benchmark is available
at https://github.com/mmore500/conduit under
demos/channel_selection. Code for the digital evolution simu-

lation benchmark is available at https://github.com/mmore500/dishtiny.

Exact versions of software used are recorded with each benchmark
data point. Data is available via the Open Science Framework at https:
//ost.io/7jkgp/ [11]. Anin-browser notebook for all reported statistics
and data visualizations and is available via Binder at https://mybinder.
org/v2/gh/mmore500/conduit/HEAD?filepath=binder%2F [20].

4 RESULTS AND DISCUSSION
4.1 Multithread Benchmarks

Figure 2a presents per-cpu algorithm update rate for the graph color-
ing benchmark at 1, 4, 16, and 64 threads. Update rate performance
decreased with increasing multithreading across all asynchronicity
modes. This performance degradation was rather severe — per-cpu
update rate decreased by 61% between 1 and 4 threads and by about
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Multithread Graph Coloring
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Figure 2: Multithread benchmark results. Bars represent
bootstrapped 95% confidence intervals.
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another 75% between 4 and 64 threads. Surprisingly, this issue ap-
pears largely unrelated to inter-thread communication, as it was
also observed in asynchronicity mode 4, where all interthread com-
munication is disabled. Perhaps per-cpu update rate degradation
under threading was induced by strain on a limited system resource
like memory cache or access to the system clock (which was used to
control run timing). This unexpectedly severe phenomenon merits
further investigation to fully in future work with this benchmark.

Nevertheless, we were able to observe significantly better per-
formance of best-effort asynchronicity modes 1, 2, and 3 at high
thread counts. At 64 threads, these run modes significantly outper-
formed the fully-synchronized mode 0 (p < 0.05, non-overlapping
95% confidence intervals). Likewise, as shown in Figure 2b, best-
effort asynchronicity modes were able to deliver significantly better
graph coloring solutions within the allotted compute time than the
fully-synchronized mode 0 (p < 0.05, non-overlapping 95% confi-
dence intervals).

Figure 2c shows per-cpu algorithm update rate for the digital evo-
lution benchmark at 1, 4, 16, and 64 threads. Similarly to the graph
coloring benchmark, update rate performance decreased with in-
creasing multithreading across all asynchronicity modes — including
mode 4, which eschews inter-thread communication. Even without
communication between threads, with 64 threads each thread per-
formed updates at only 61% the rate of a lone thread. At 64 threads,
best-effort asynchronicity modes 1, 2, and 3 exhibit about 43% the
update-rate performance of a lone thread. Although best-effort inter-
thread communication only exhibits half the update-rate perfor-
mance of completely decoupled execution at 64 threads, this update-
rate performance is roughly 2.1x that of the fully-synchronous
mode 0. Indeed, best-effort modes significantly outperform the fully-
synchronous mode on the digital evolution benchmark at both 16
and 64 threads (p <0.05, non-overlapping 95% confidence intervals).

4.2 Multiprocess Benchmarks

Figure 3a shows per-cpu algorithm update rate for the graph coloring
benchmark at 1, 4, 16, and 64 processes. Unlike the multithreaded
benchmark, multiprocess graph coloring exhibits consistent update-
rate performance across process counts under asynchronicity mode
4, where inter-thread communication is disabled. This matches the
expectation that, indeed, with comparable hardware a single pro-
cess should exhibit the same mean performance as any number of
completely decoupled processes. At 64 processes, best-effort asyn-
chronicity mode 3 exhibits about 63% the update-rate performance
of single-process execution. This represents about an 7.8X speedup
compared to fully-synchronous mode 0. Indeed, best-effort mode
3 enables significantly better per-cpu update rates at 4, 16, and 64
processes (p < 0.05, non-overlapping 95% confidence intervals).
Likewise, shown in Figure 3b, best-effort asynchronicity mode 3
yields significantly better graph-coloring results within the allotted
time at 4, 16, and 64 processes (p < 0.05, non-overlapping 95% con-
fidence intervals). Interestingly, partial-synchronization modes 1
and 2 exhibited highly inconsistent solution quality performance at
16 and 64 process count benchmarks. Fixed-timepoint barrier sync
(mode 2) had particularly poor performance performance at 64 pro-
cesses (note the log-scale axis). We suspect this was caused by a race
condition where workers would assign sync points to different fixed
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Figure 3: Multiprocess benchmark results. Bars represent
bootstrapped 95% confidence intervals.
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points different based on slightly different startup times (i.e., process
0 syncs at seconds 0, 1, 2... while process 1 syncs at seconds 1, 2, 3..).

Figure 3c presents per-cpu algorithm update rate for the digi-
tal evolution benchmark at 1, 4, 16, and 64 processes. Relative per-
formance fares well at high process counts under this relatively
computation-heavy workload, with 64-process fully best-effort sim-
ulation exhibiting about 92% the update rate of single-process sim-

ulation. Thisrepresentsa 2.1X speedup compared to the fully-synchronous

run mode 0. Best-effort significantly mode 3 outperforms the per-cpu
update rate of fully-synchronous mode 0 at process counts 16 and
64 (p <0.05, non-overlapping 95% confidence intervals).

5 CONCLUSION

Benchmarks show that best-effort communication through Conduit
enables significantly better computational performance under high
thread and process counts. We also demonstrated how, in the case
of the graph coloring benchmark, best-effort communication can
help achieve tangibly better solution quality within a fixed time
constraint, as well. We observed the greatest relative speedup un-
der distributed communciation-heavy workloads — about 7.8x on
the graph coloring benchmark. Distributing the computation-heavy
digital evolution benchmark workload across independent nodes
yielded the strongest scaling of our benchmarks, achieving at 64
processes 92% the update-rate of single-process execution.

In future work, we plan to further characterize the performance
of the Conduit’s best-effort model with respect to the digital evolu-
tion simulation, looking directly at quality of service metrics such
as message latency and frequency of dropped messages. We are
also eager to investigate how Conduit’s best-effort communication
model scales on much larger process counts, perhaps on the order
of hundreds or thousands of cores.

Development of the Conduit library stemmed from a practical
need for an abstract, prepackaged interface to support our digital
evolution research. We hope that making this library available to the
community can reduce domain expertise and programmability bar-
riers to taking advantage of the best-effort communication model to
efficiently leverage burgeoning parallel and distributed computing
power.
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